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Abstract—Differential interference contrast (DIC) microscopy
is a powerful visualization tool used to study live biological cells.
Its use, however, has been limited to qualitative observations. The
inherent nonlinear relationship between the object properties and
the image intensity makes quantitative analysis difficult. Toward
quantitatively measuring optical properties of objects from DIC
images, we develop a method to reconstruct the specimen’s optical
properties over a three-dimensional (3-D) volume. The method is
a nonlinear optimization which uses hierarchical representations
of the specimen and data. As a necessary tool, we have developed
and validated a computational model for the DIC image formation
process. We test our algorithm by reconstructing the optical prop-
erties of known specimens.

Index Terms—Differential interference contrast microscopy,
hierarchical reconstruction, iterative parameter estimation,
nonlinear optimization.

I. INTRODUCTION

T
HE NOMARSKI differential interference contrast (DIC)

microscope is the preferred method for visualizing live

biological specimens. The DIC microscope is an interferometer,

and therefore, the refractive structure of the specimen is made

visible. In biological research, live, transparent cells can be im-

aged with this microscope modality. Three-dimensional (3-D)

structure can be visualized by optically-sectioning1 through

the specimen. To date, however, biologists only qualitatively

assess DIC images of cell specimens. Quantitative microscopy

methods, such as computational optical sectioning microscopy

(COSM), have been restricted to linear microscopy modalities.

[5] The inherent nonlinearities in the DIC image formation

process have hindered past attempts at quantitative analysis.

In this paper, we describe a method to reconstruct specimens

imaged with DIC microscopy.

DIC microscopy offers several advantages over other

contrast-generating optical systems. In DIC the pupil is unob-

structed, and therefore transverse2 and axial resolution exceeds

that in Zernike phase contrast. Consequently, thick specimens

with 3-D features are better resolved. Unlike some fluorescence

methods, no dyes are injected and therefore, live specimens

are not adversely affected. Finally, unlike confocal scanning

methods which have slow rates of acquisition, an entire stack of

Manuscript received May 22, 2001; revised January 5, 2003. This paper was
recommended by Guest Editor N. Bourbakis.

The authors are with the Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA 15213 USA (e-mail: farhana@alumni.cmu.edu, tk@cs.cmu.edu).

Digital Object Identifier 10.1109/TSMCB.2003.816924

1For each image in an optically sectioned set, the optical elements are con-
figured to focus at a particular object distance.

2Transverse planes are perpendicular to the optical axis of the microscope.

Fig. 1. DIC optical components: Regular brightfield microscope components
such as a light source, collector, condenser, objective, and eyepiece are
supplemented with a pair of polarizer-prism set. Three light paths are shown
to illustrate conjugate planes of reference. Optical elements, spacing, and the
incident light angles are not to scale.

optically sectioned images can be acquired within a minute. In

the case of mobile cells, the short acquisition time minimizes

distortions between optically sectioned slices.

Looking through the eyepiece of the DIC microscope,

an observer sees a shadow cast image which deceptively

indicates 3-D structure. Actually, the image is the differential

of the optical path length introduced by the object into the

propagating light wave. The differential is along a particular

direction, in the transverse plane, called the shear direction.

In addition, each image contains both in-focus and out of

focus information. Therefore, the challenge in DIC microscopy

remains to interpret image features belonging to in-focus object

properties correctly.

II. DIC MICROSCOPY BACKGROUND

The DIC microscope, is essentially a brightfield microscope

with a polarizer-analyzer pair and two prisms. [Fig. 1] As in

standard brightfield optics, light from a lamp is collimated by a

collector and a condenser lens combination. In DIC, however, a

polarizer and a Wollaston prism is inserted between the collector

and condenser lens. Moreover, the prism is positioned with re-

spect to the back focal plane of the condenser. The described

setup produces two mutually coherent, polarized beams. Each

electric field is polarized perpendicularly with respect to the

other. In addition, the wavefronts impinging on the object are

differentially translated with respect to each other. In front of

the objective lens, an analyzer and Nomarski prism are inserted

and aligned with the front focal plane of the objective. The Wol-

laston prism behind the condenser introduces a linear phase gra-

dient across the two fields emerging from the condenser. The
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Nomarski prism in front of the objective lens compensates for

this linear phase gradient. Therefore, the combined action of

the two prisms results in a constant phase bias between the two

perpendicularly polarized fields. This combination produces a

steady pattern of interference between the two beams which can

then be detected by a CCD camera or the human eye.

Mathematically, the DIC imaging process can be summarized

by the following set of equations. First, consider a coherent field

represented by

(1)

where are spatial variables in the coordinate space

of the object with the -axis coincident with the optical axis.

is the phase function. The action of the two prisms can be

represented as an aggregate by and , where

(2)

(3)

In the above equations, is the constant phase bias and is

the shear vector. After a phase transformation, , due to

the object, the wavefronts

(4)

(5)

contain the object information. The field in the image space

is (shown in equation at the bottom of the page) where

are spatial variables in the coordi-

nate space of the image with the -axis coincident with the

optical axis. is the complex amplitude

point spread function of the imaging system (objective and any

other auxiliary lens) of the microscope. describes the

propagation from the object plane at to the image plane

. The image intensity is

(6)

The nonlinearity in the DIC image has two basic sources.

First, since the image is an interference pattern, the detected

intensity is the squared magnitude of the light field’s complex

amplitude. Therefore, a convolution of the light intensity

with a lens transfer function does not accurately represent

the DIC image, which is a linear superposition of complex

amplitude, rather than intensity components, of the light field.

In addition, out of focus contributions from the object have

to be considered. Therefore a 3-D amplitude point spread

(or transmission) function is needed to accurately model the

image intensity. Second, the object itself aberrates the light

wave as it propagates through. The biological specimens under

consideration, though weakly refractive, are thick and scatter

light significantly. Therefore, aberrations due to the object

contribute significantly to the image.

Deconvolution methods, such as computational optical sec-

tioning microscopy (COSM), are widely used to recover ob-

ject information from images acquired by certain optical modal-

ities. COSM methods model the image intensity as a convo-

lution of the object’s intensity transmittance with a computed

point-spread function. In modalities such as fluorescence and

brightfield, a linear function of the intensity from the object

provides an accurate, first order approximation of the image.

However, in DIC microscopy, the image cannot be represented

by merely considering the intensity from the object. Both phase

and amplitude information have to be modeled.

Initial work in DIC image analysis algorithms used linear

models. [4] In 1996, Feinegle used a contour finding algorithm

to locate edges in each image from an optically sectioned stack.

[6] In her work, specimen structure is obtained by axial stacking

of contours. The most recent work in the analysis of DIC images

is by Preza. [12] This work recovers the optical pathlength at

each image point due to the object, and therefore does recover

some quantitative information. The only other attempt to quan-

tify information from DIC optics has been made by Cogswell,

et al. using optical techniques referred to as geometric phase

methods. [3] Though we are unaware of cases where this method

has been applied to recover three dimensional object informa-

tion. The work by Feinegle produced a 3-D model of the spec-

imen, but the object properties were not quantitated and the re-

covered specimen model was not validated with ground truth

experiments. Preza’s work recovers optical path-length but does

not actually reconstruct three dimensional object information.

So far, no attempt has been made to quantitatively reconstruct

the 3-D properties of the object from DIC images.

In contrast, the reconstruction algorithm that we have devel-

oped recovers the whole object information. We address the

nonlinearities in the image formation process by a precise com-

putational model of DIC microscopy which is used for recon-

structing specimens. Using a generalized ray tracing method we

have developed a model of light propagation through the micro-

scope and specimen. [8] and [9] The computational model is

used to generate simulated images of the current estimated ob-

ject as part of the hierarchical reconstruction algorithm.

III. RECONSTRUCTION PROBLEM DESCRIPTION

Given a set of DIC images, the goal of the reconstruction

is to estimate the refractive index distribution throughout the

volume encompassing the object. Due to the nonlinearity of

the DIC image-formation process, a direct inversion of the

imaging equations is not feasible. Therefore, we use an iterative

nonlinear optimization algorithm. The optimization starts with

an initial estimate of the distribution. Using our computational
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model, we generate simulated images corresponding to this

estimate. The sum of squared differences between the real data

and the simulated images is the error function. The estimate

is modified at each iteration such that this error function is

minimized. Such a reconstruction process requires a repre-

sentation of the refractive index distribution at every point

across the specimen volume. One possible representation is a

weighted combination of basis functions where the weights are

the parameters. The degrees of freedom in the representation,

that is, the number of parameters used, play a critical role in the

accuracy with which an object can be represented and the ease

with which the optimization converges to the correct answer.

A nonlinear optimization method traverses the parameter

space searching for the point where the error function is min-

imized. To avoid converging to incorrect minima, traditional

nonlinear optimization problems require that the initial set of

parameters be close to the actual solution. In order to be able

to converge to the correct solution, despite the initial estimate

being far, one needs a systematic method of traversing the

parameter space such that the estimates approach the neigh-

borhood of the global minima without being trapped in local

minima. One possible method to achieve this is to first reduce

the parameters such that only coarse object properties can be

represented. If the volumetric distribution is approximated by

a small number of parameters, the consequent error function is

also of reduced dimension. In the process, local fluctuations

(minima) are smoothed over and the error function retains

global shape properties. One can then solve the optimization

with respect to the reduced parameter set. When projected back

to the original problem, the solution of the coarse optimization

is closer to the original global minima. Thus the coarse solu-

tion serves as an appropriate initial estimate for the original

optimization problem. Depending on the complexity of the

problem, this parameter reduction can be done in multiple

stages.

In our method, we represent the object and image data hi-

erarchically and optimize at successive levels of the hierarchy

by using a multilevel wavelet-like representation for the object.

At each level, the original image data is projected onto a basis

spanning a space of possible image features at the given object

resolution level. This projected data is compared with simulated

images in our nonlinear optimization. Thus, at each level of the

hierarchical reconstruction we obtain an object estimate that fits

the data at that level. This object is used as an initial estimate for

the optimization at the next level of the hierarchy.

IV. COMPUTATIONAL MODEL

Our computational algorithm models the DIC image forma-

tion process with sufficient accuracy such that it can be used to

reconstruct three dimensional optical properties of specimens.

We achieve this by developing a generalized ray tracer with vir-

tual models of the optical system and the specimen. We also

model the focused and out of focus information present in DIC

images by approximating light fields from each point in the ob-

ject. We assume the fields have small enough aberration that

they can be modeled as spherical. For each field, its radius of

curvature is determined by the object’s refractive structure.

The model consists of a polarized ray tracer and an approxi-

mation of the field contributions to the image. We assume that

the object has negligible absorption and its refractive index vari-

ation significantly impacts the resulting image. In our model,

light rays contain the cumulative effect of the object and optics

by accumulating phase information. According to laws consis-

tent with geometrical optics and energy conservation principles,

we propagate light paths through the object. As each ray propa-

gates through the specimen volume, the ray is deflected and the

ray’s phase is modified. We also approximate fields which em-

anate from all points in the object and which are diffracted by

the object inhomogeneities. Lastly, we approximate the effect

of diffraction by the lens pupil on each of these fields. Thus,

we incorporate wavelength-dependent information in addition

to the geometrical optics approximations allowing us to model

DIC images more accurately than in past models.

V. RECONSTRUCTION ALGORITHM

The hierarchical reconstruction consists of three processes.

In the first step, we represent the object at different resolutions.

Second, we decompose the image data in order to identify image

features corresponding to objects at the different resolutions.

Third is the nonlinear optimization algorithm which recovers

an estimate of the object at each resolution.

A. Hierarchical Object Representation

Since the DIC image captures the directional gradient of the

phase introduced by the object into the light path, we represent

the object as a volumetric distribution of refractive index values.

At present, we assume that the object is transparent, and there-

fore the refractive index is a scalar quantity.3 We represent the

refractive index by a wavelet-like bases, approximating it at dif-

ferent levels of resolution, where at each level only a subset of

spatial frequencies are present. For the purpose of illustration,

let us formulate in one dimension. At a particular resolution ,

is represented by combining versions of the scaling func-

tion, , and wavelet function,

(7)

Both and are cubic spline functions, developed by

Cai and Wang [2]. The scaling function represents the lowest

spatial frequencies. The wavelet function represents the details

at different resolutions. Translated versions of , in addition

to, scaled and translated versions of span the domain of

an object. To represent a function at a particular level one needs

to find the combination of weights up to that level which best

approximates the original function. In Fig. 2, at the first level

( ), an example function is coarsely approximated by a

combination of the translated scaling functions. At each sub-

sequent level, the corresponding wavelet functions are added

to the representation and the function is better approximated.

To represent a two-dimensional (2-D) distribution, , we

have to use a combination of functions that are outer products of

3This may be generalized to include absorption. The refractive index would
then be a vector, or complex number.
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Fig. 2. Object hierarchy. In the right column an original 1-D object is shown
superimposed with the approximate object at the level of the hierarchy. The
left column shows the basis functions at each level. Each row shows the basis
functions that are added to the representation at that level.

Fig. 3. Sample 2-D scaling and wavelet functions. Each corresponds to a term
in (8).

the one-dimensional scaling and wavelet functions, (see equa-

tion (8) at the bottom of the page). Each tensor product results in

a 2-D function that can represent different properties of the ob-

ject. [Fig. 3] The extension to three dimensions is similar. The

levels of the wavelet functions provide a systematic hierarchy

for representing and recovering the object. At each level, of the

reconstruction algorithm, the goal is to recover the parameters at

that level. The scaling function coefficients ( ) are recovered

in the very first level ( ). At that level, the distribution is

(9)

The values of are initialized to 0. We then proceed to up-

date the parameters iteratively so that the error between the

simulated images and the image data at this level is minimized.

The iterations at this level terminate when small changes in the

parameter vector do not effect a significant improvement to the

error. The algorithm then proceeds to the next level ( ). The

estimated object from the previous level is transferred as the ini-

tial object at this level and we proceed to recover , ,

. Analogous to the previous level, these parameters are ini-

tialized to 0 and iteratively updated so that the error between

simulated images and the image data at level 0 is minimized.

Each subsequent level of the reconstruction proceeds similarly.

Fig. 4. Hierarchy of objects and images. The two object dimensions are the
axial (Z) and transverse (X). For each image, the object plane is at the center
of the Z axis. Rows 1–3 show the objects and corresponding images from the
coarsest to finest resolution (J = �1; J = 0; J = 1).

The wavelet-like basis provides a continuous representation

for the refractive index. For computations, we discretize this dis-

tribution. In our model, the refractive index is stored at discrete

locations of a three-dimensional voxel grid. We typically use

grids with resolution 0.2–1 m perpendicular to the optical axis

and 0.03–1 axially. A typical grid size is 100 100 50 in

the , and dimension, respectively.

B. Hierarchical Image Representation

Unlike microscope modalities for which analytical models of

the 3-D optical transfer function are available [13], object struc-

ture and the DIC image is related nonlinearly. Due to this non-

linearity, an algorithm using an analytical DIC imaging model

is not practical. If the relationship between the object and image

intensity were linear, then a linear decomposition of the object

would result in a linear decomposition of the image. Since this

is not possible, we have developed a “matching by synthesis” al-

gorithm that identifies image features which result from the rep-

resented object frequencies. The original data consists of image

features due to all object frequencies but this data cannot be lin-

early decomposed into features at all levels. Therefore, at each

resolution level we have to determine the image features which

are appropriate and match these to the original data. An example

of an object at different resolutions and the corresponding im-

ages simulated by our computational model is depicted in Fig. 4.

The matching by synthesis algorithm extracts features in the

original intensity data which correspond to objects at a partic-

ular resolution. At a given resolution level , we suppose that

(8)
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the DIC image of the object can be represented in terms of a

basis such that

(10)

where { } for is a set of basis functions specific

to the resolution . In order to relate the original image data,

, to the images at each resolution level, we need

to find the features in the original data that correspond to the

features in the basis functions. Before we can proceed to match

features in the original data, we need to find the basis images.

We obtain the basis images by perturbing parameters at a partic-

ular resolution and synthesizing an image per perturbed object.

Functions selected to be in the basis represent the image features

most common to the synthesized images. The original image

data is then projected onto this basis, thereby, giving the image

features that are present in the original data corresponding to an

object at the given resolution. Specifically, our algorithm pro-

ceeds in three steps. First, at a particular resolution, we intro-

duce a large set of perturbations to the initial object and generate

simulated images of each of the perturbed objects. Second, we

select a basis that best characterizes the images corresponding

to the perturbed objects. Third, we project the original image

data onto the estimated basis.

Object Perturbations: At a given resolution level , the

initial object is perturbed by a large number of random con-

figurations. Each perturbation involves adding or subtracting

a random amount from all parameters of the level basis

functions. Therefore, given random parameter vectors ,

and , a perturbed object at level is

(11)

We use the computational model to generate a simulated image,

, for each perturbed object. The set of simu-

lated images contain a wide range of possible image features

corresponding to objects at this resolution. Though, we have

only shown perturbations of the wavelet coefficients, the coeffi-

cients of the scaling functions are also perturbed at level

to obtain basis images at that level. For a particular resolution,

the total degrees of freedom at that resolution is

(12)

We have experimentally determined that perturbations (and

simulated images ) suffice.

Basis Selection: Next, we implement a basis selection

method from the simulated images, { }

for . One simple basis selection method is a

Karhunen-Louve decomposition applied to 2-D signals. [10],

[14] This method results in a set of “eigenimages,” each

functioning as a basis vector. We found that the eigenimages

based method does not sufficiently abstract image features from

the set of images. That is, although each

can be represented by a combination of the eigenimages,

each eigenimage doesn’t necessarily represent isolated image

features.

To find basis vectors which explicitly represent image

features, we implemented a basis selection method using the

“matching pursuit” algorithm. [11], [1], and [7] This algorithm

uses a redundant dictionary of functions, where each function

is a scaled and translated version of an exponentially modu-

lated window function. In our implementation, the window

is Gaussian. Using a redundant dictionary of such functions

offers an advantage over decomposition into a pre-established

basis, such as a wavelet basis. In a wavelet basis, scale and

frequency have a fixed relationship so that only features which

have a particular frequency content can be represented at a

particular scale. In contrast, exponentially modulated functions

can represent several kinds of features at any given scale.

The matching pursuit is an iterative greedy algorithm to

identify functions out of the dictionary that best match an

image in the set. Note, the iterations of the matching pur-

suit algorithm are embedded within each resolution level

of the reconstruction algorithm. Given an intensity vector

, ( ,

in our algorithm), the matching pursuit algorithm

defines a residual, at each iteration , where

. An iteration consists of finding,

the best function from candidate functions in the

dictionary, such that

(13)

where denotes inner product. is then removed

from the candidate functions in the dictionary. The residual is

updated as

(14)

The algorithm is terminated when the residual’s norm falls

below a preset threshold. More details can be found in the

references.

As a result of matching pursuit, each is decomposed

with respect to a unique matched set, { } for

, selected from the dictionary. Therefore we will have

matched sets. Finally, we extract a set of dissimilar func-

tions that are most prevalent across all the matched sets.4 This

set of functions forms the basis, { } for , for the

subspace of images corresponding to objects at resolution level

. [Fig. 5] The number, , is set experimentally to ensure that

{ } spans the entire image.

4Two functions, g (x ) and g (x ), are dissimilar if hg ; g i=hg ; g i
and hg ; g i=hg ; g i is less than an empirically determined threshold.
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Fig. 5. 1-D basis functions at the levels 0 and 1. (From specimen 1
reconstruction).

Image Projection: Once the appropriate basis hierarchy for

the images is selected, the original image data is projected onto

the basis at each level. A matrix, , is constructed in which

all the columns are the individual functions comprising of the

basis at a particular resolution. That is

...

(15)

In the above matrix, each basis image corresponding to a dif-

ferent axial position is stacked vertically so that the entire basis

image can be represented as a column vector. Since the matrix

will not be square in most cases, the original data is multiplied

with the pseudo-inverse to obtain the necessary weights for each

of the basis functions. This is the over constrained solution of

where is the vector of weights, is

the original data, formatted into a column vector similar to the

basis images above. The least squares solution is

where is the Moore–Penrose pseudo-inverse of . The

projected image,

(16)

corresponding to the resolution is the weighted linear com-

bination of the basis functions, using the functions obtained with

the matching pursuit algorithm and the weights based on the

least squares solution.

C. Optimization at Each Resolution

For each level in the resolution hierarchy, we optimize with

respect to the wavelet coefficients at the current resolution. At a

particular level, the initial object is the estimated object from the

previous level. At the first resolution level, the initial object is a

completely blank volume, i.e., all voxels are initialized with the

same refractive index as the background. The image data used

in the optimization is the original data projected onto the basis

selected for this resolution level. ( defined previously.) So at

each resolution level, the target data is actually the projected

images described above. At the final resolution level, we use

the original data. The sum of squared differences between the

projected data and the simulated data is the error term for the

optimization.

Levenberg-Marquardt: At the first resolution level, J ,

the degrees of freedom of the object is quite low. Therefore,

a Levenberg-Marquardt type nonlinear optimization produces

sufficiently good results. [15] This is basically a Gauss-Newton

type gradient-based optimization, where the Hessian matrix is

supplemented with an identity matrix scaled by a parameter. The

parameter is decreased at each iteration if the current estimate

reduces the error, otherwise it is increased. Implicitly, this op-

timization method assumes that the neighborhood of the global

solution is predominantly convex, barring some minor local un-

dulations, and that the current estimate is within this neighbor-

hood.

Randomized Methods: At subsequent resolution levels, the

degrees of freedom in the object increase rapidly. No longer can

one assume that the initial estimate is close to the solution at

this level and that the neighborhood along the error surface to be

traversed is sufficiently convex. Therefore, Gauss-Newton type

methods such as Levenberg-Marquardt tend to converge to local

minima. Although, the optimization is significantly aided by the

resolution hierarchy, we still need to implement a randomized

search method within the nonlinear optimization. We have im-

plemented a genetic algorithm that has been very successful in

finding the correct solutions.

The genetic algorithm combines parameters from members of

a population to produce a new member. The population that we

use to initiate the genetic algorithm is the same set of perturbed

parameter vectors described above. Each parameter vector, ,

is a concatenation of , and . In addition, each

has an associated error value which is the sum of squared

differences between the simulated image due to this object and

the projected image at the current level, plus any penalty terms

due to constraints. The population is divided into good and bad

candidates, represented by and . The good and bad

candidates have error values in the top and bottom 50th per-

centile respectively. There are two ways of combining member

parameters. The first method selects two good members (

and ) and a bad candidate ( ). The new member is

where , and

. This method is similar to traditional combination

methods in genetic algorithms. In this selection method, good

candidates with lower error values have better chances of being

selected than ones with higher error values. If the new member

is better than either of its “parents, ”i.e., and , ac-

cording to the above defined error, then the worst parent is re-

placed by the new member. The second method simply selects

a member of the population at random and randomly perturbs

some parameter values, i.e., where is a

randomly selected parameter vector from the entire population

and is a vector of random values. This method is consis-

tent with traditional mutation. If the error value corresponding

to is better than that of the worst parameter vector, then

this mutant replaces the worst member. At each iteration of the

algorithm we sort the members according to their error values,

and perform one combination and one mutation step.

Constraints: The only strong constraint on the object is that

the minimum refractive index be 1.0. Therefore, every estimated

distribution is offset by a suitable amount to ensure that the min-

imum value in the distribution is 1.0. In our reconstruction ex-

periments, the physical specimen has only two distinct refrac-

tive index values. So for those experiments we add a term in the

error that penalizes for inhomogeneity in the distribution. This

additional penalty term is only introduced at the finest resolution

level and has considerably sped up convergence. The penalty is
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Fig. 6. Physical data of bead specimen.

achieved by segmenting the volume into regions of high and low

refractive index values and then measuring the variance within

those regions. The variance terms are scaled by parameters,

and and added to the error. Therefore, the modified error is

(17)

where the first term is the sum of squared differences between

the intensity values of the projected image and the simulated

image calculated over the total number of pixels, . In the rest

of the error, is the total number of voxels, and are

the means of the high and low valued respectively, and

are the sets of discrete voxels which are above and below

the threshold, respectively.

VI. RESULTS

The first set of reconstruction results we obtain are in two di-

mensions. That is, instead of estimating the full 3-D volumetric

distribution, we chose to reconstruct one slice in the volume.

To provide a good proof of concept for this reconstruction algo-

rithm that would be less computationally expensive than a full

3-D reconstruction, we chose an axial slice (rather than a trans-

verse slice). Our decision is based on the fact that reconstructing

along the axial dimension presents the greatest challenge. Spa-

tial frequencies which have significant components in the axial

direction are attenuated the most in the image formation process.

The two transverse dimensions are imaged according to iden-

tical principles, thus reconstructing in one of them can serve as

a validation for both. We chose two test specimens, each having

some unique attributes. The first specimen, consisting of a bead

in optical cement, is symmetric and the object structure is em-

bedded in the volume. The second specimen, consisting of an

ion-milled wafer, does not have perfect symmetry and the struc-

ture extends to the top edge of the volume.

In the first 2-D experiment, we embedded several 10 di-

ameter beads in optical cement. The homogeneous beads have a

refractive index that is .03 less than the cement. We acquired an

optically sectioned data set of this specimen with an axial reso-

lution of .2 . A cropped region showing one bead in some of

the images is shown in Fig. 6. The data used in the reconstruc-

tion experiment consisted of a diagonal cut through the cropped

region of 10 images in the set. A cropped specimen is shown

in Fig. 7. Some of the intensity plots are shown in Fig. 8. The

image data projected onto the basis at different object resolu-

tions is shown in Fig. 8 as well. Fig. 9 shows the estimated ob-

jects at the different resolutions and a comparison between the

Fig. 7. Real data of wafer specimen.

Fig. 8. Intensity plots at different resolutions. Column 1–2: The original data
projected onto the levels 0–1 respectively. Column 3: The original data.

Fig. 9. Results for Specimen 1. A-C are the estimated answers at levels 0–2.
D: Real object. E: Final estimate. F: Error between real and estimated object.

expected object structure and the recovered object. The grid res-

olution in this experiment is 1 in both directions. As can be

seen from the error image, the object structure is recovered quite

accurately. The original object has symmetric structure and the

recovered shape is symmetric as well.

The specimen used for the second experiment consisted of

an ion-milled glass wafer. Due to error prone multiple millings,

the actual milled wafer pattern is defective in that it does not

have symmetric walls even though the specifications have

symmetric structure. The specimen was prepared by filling the

milled cavity with oil that had a refractive index 0.08 less than

the glass. The optically sectioned image set of this specimen

has a 0.2 axial resolution. A subset of the images are shown

in Fig. 7. For the reconstruction experiment, we extracted a

line of intensity data from each one of ten images in the set.

The line (horizontal) was extracted above the midpoint of the

shown images at a point such that two of the depressions in

the pattern are captured. The original image data is shown

in Fig. 10 along with the results of the image data projected

onto the basis at different object resolutions. Fig. 11 shows
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Fig. 10. Intensity plots of wafer data at different resolutions. Columns 1–3:
The projected data at levels 0–2, respectively. Column 4: The original data.

Fig. 11. Results for Specimen 2. A-C are the estimated answers at levels 0–2.
D: Real object. E: Final estimate. F: Error between real and estimated object.

the estimated object at different resolutions and a comparison

of the final reconstructed object and the expected object. The

grid resolution in this experiment is .3 in the -direction and

0.03 in the -direction. Since the exact nature of the defects

introduced by the milling process is not known, the expected

object shown is merely a hypothesis. As can be seen, barring

some small extraneous patches, the structure of the recovered

object is very close to that of the expected object. The lack of

symmetry that is apparent from the DIC images appears in the

recovered object as well.

For our final experiments, we tried reconstructing a 3–D

object. Here we represented the object as a superposition of

three-dimensional wavelet basis functions and recovered the

respective coefficients. The three-dimensional experiment used

the optically-sectioned data set of bead images. A sampling of

these images is shown in Fig. 6. We used 25 images from the

data set for this reconstruction experiment. The initial object

was a blank volume. The estimated objects at resolution level

0 is shown in Figs. 12 and 13. A slice in Fig. 12 represents

the volumetric refractive index distribution across a transverse

planes cutting the volume. In Fig. 13 we show an axial slice

cutting through the center of the volume so the estimated object

extents can be seen. Figs. 14–15 show the estimated object

at level 1. For visualization purposes, we show the results as

Fig. 12. Bead experiment results: Estimated object at level 0. The object is
shown by transverse slices through the volume at a resolution of 5 �m.

Fig. 13. Axial slice through object at Level 0. The vertical axis is Z and the
horizontal axis is X .

Fig. 14. Bead experiment results: Estimated object at level 1. As in the
previous figure, the object is shown using transverse slices through the volume
at a resolution of 2.5 mm.

planes through the object. The actual experiment is performed

volumetrically. That is, each basis function is 3-D. In Figs. 13

and 15 we show an axial slice cutting through the center of

the volume so that the estimated object extents can be seen.
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Fig. 15. The object at level 1 is shown as an axial slice through the center of
the volume. The vertical axis is Z and the horizontal axis is X .

Fig. 16. The error between real object and estimated object at level 1. The error
through the volume is shown by transverse slices at a resolution of 2.5 microns.

At level 0, 27 coefficients are estimated which represent all

the translated scaling functions. At level 1, the initial object

is the level 0 object. The total number of coefficients at level

1 is 316 out of which we estimate only 26. These coefficients

correspond to the basis functions spanning the boundary and

internal extents of the initial object at this level. By simply

ignoring the basis functions which fall outside of the estimated

initial object (at this level) we can eliminate the majority of the

basis functions. This assumes that new object will fall within

the boundary of the old object which is valid since the basis

functions at the coarser level have larger support.

Comparison of the real object and the estimated object is

shown in Fig. 16. It can be seen that the estimated object is

slowly converging to the real object shape. At this resolution

level, the basis functions have too wide support to produce an

object with sharp boundaries. The comparison does show that

the optimization estimates a distribution that approaches the real

object. The error is shown axially in Fig. 17. Here it can be

seen that the estimated object’s extents do approach the real

object dimensions in the axial direction as well. One can also

note that the refractive index value of the estimated object does

approach that of the real object. The centers of both the real

Fig. 17. The error between real object and the estimated object at level 1.
The image here shows the error through an axial slice cutting the center of the
volume. The vertical axis is Z and the horizontal axis is X .

object and estimated object also approximately coincide. These

results are meant as a proof of concept to show that three-dimen-

sional reconstruction is possible with this method. This exper-

iment shows that given enough iterations, the estimated object

will approach the real object shape and recover the object’s op-

tical property.

VII. DISCUSSION AND CONCLUSION

The analysis of DIC images presents a substantial challenge

due to the nonlinearity of the image formation process and the

out-of-focus artifacts. We tackle the problem by developing two

tools. First, the computational model has been discussed in de-

tail in previous publications. The second is the hierarchical re-

construction algorithm discussed here. As shown by the results,

the nonlinear optimization is powerful enough to recover axial

and transverse structure and quantitate the optical properties

of the object. Even though, we initialize the optimization far

from the actual solution, we are able to converge very close to

it. In order to successfully converge to solutions when faced

with highly nonlinear error surfaces, we developed a hierar-

chical method. This method represents the object with respect to

a wavelet basis in order to systematically reduce the dimension

of the search space and arrive at a chain of object estimates at

finer and finer resolutions. The intensity data also has to be de-

composed in a manner consistent with the object decomposition.

Since the imaging process is nonlinear, we developed a method

by which image features present at the different object resolu-

tions are explicitly captured in a particular basis at each level.

The real data can then be projected onto the basis at each res-

olution level to obtain a hierarchical representation of the data.

Our results show that such an algorithm is capable of recovering

structure along all directions. By recovering the structure of two

very different specimens, we illustrate the capabilities of the re-

construction algorithm.
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