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Abstract

Background: Asymptomatic or subclinical SARS-CoV-2 infections are often unreported, which means that
confirmed case counts may not accurately reflect underlying epidemic dynamics. Understanding the level of
ascertainment (the ratio of confirmed symptomatic cases to the true number of symptomatic individuals) and
undetected epidemic progression is crucial to informing COVID-19 response planning, including the introduction
and relaxation of control measures. Estimating case ascertainment over time allows for accurate estimates of
specific outcomes such as seroprevalence, which is essential for planning control measures.

Methods: Using reported data on COVID-19 cases and fatalities globally, we estimated the proportion of symptomatic
cases (i.e. any person with any of fever ≥ 37.5 °C, cough, shortness of breath, sudden onset of anosmia, ageusia or
dysgeusia illness) that were reported in 210 countries and territories, given those countries had experienced more than
ten deaths. We used published estimates of the baseline case fatality ratio (CFR), which was adjusted for delays and
under-ascertainment, then calculated the ratio of this baseline CFR to an estimated local delay-adjusted CFR to
estimate the level of under-ascertainment in a particular location. We then fit a Bayesian Gaussian process model to
estimate the temporal pattern of under-ascertainment.

Results: Based on reported cases and deaths, we estimated that, during March 2020, the median percentage of
symptomatic cases detected across the 84 countries which experienced more than ten deaths ranged from 2.4%
(Bangladesh) to 100% (Chile). Across the ten countries with the highest number of total confirmed cases as of 6 July
2020, we estimated that the peak number of symptomatic cases ranged from 1.4 times (Chile) to 18 times (France)
larger than reported. Comparing our model with national and regional seroprevalence data where available, we find
that our estimates are consistent with observed values. Finally, we estimated seroprevalence for each country. As of 7
June, our seroprevalence estimates range from 0% (many countries) to 13% (95% CrI 5.6–24%) (Belgium).
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Conclusions: We found substantial under-ascertainment of symptomatic cases, particularly at the peak of the first
wave of the SARS-CoV-2 pandemic, in many countries. Reported case counts will therefore likely underestimate the
rate of outbreak growth initially and underestimate the decline in the later stages of an epidemic. Although there was
considerable under-reporting in many locations, our estimates were consistent with emerging serological data,
suggesting that the proportion of each country’s population infected with SARS-CoV-2 worldwide is generally low.

Keywords: Case ascertainment, COVID-19, SARS-CoV-2, Surveillance, Under-reporting, Situational awareness, Outbreak
analysis

Background
The pandemic of the novel coronavirus SARS-CoV-2 has

caused 25.3 million confirmed cases and 846,841 deaths as

of 31 August 2020 [1]. As a precautionary measure, or in

response to locally detected outbreaks, countries have in-

troduced control measures with varying degrees of strin-

gency [1], including isolation and quarantine, school and

workplace closures, bans on social gatherings, physical dis-

tancing and face coverings, and stay-at-home orders [2, 3].

Several features of SARS-CoV-2 make accurate detection

during an ongoing epidemic challenging [4–6], including

high transmissibility [3, 7, 8], an incubation period with a

long-tailed distribution [9], pre-symptomatic transmission

[10], and the existence of asymptomatic infections, which

may also contribute to transmission [11]. These attributes

mean that infections can go undetected [12] and that

countries may only detect and report a fraction of their in-

fections [3, 13].

Understanding the extent of unreported infections in a

given country is crucial for situational awareness. If the

true size of the epidemic can be estimated, this enables a

more reliable assessment of how and when non-

pharmaceutical interventions (NPIs) should be both in-

troduced, as infections rise, or relaxed as infections fall

[3]. Estimates of infection prevalence are also important

for obtaining accurate measures of transmission: if the

proportion of infections reported declines as the epi-

demic rises, the number of confirmed cases will grow

slower than the actual underlying epidemic. Likewise, if

detection rises as the epidemic declines, it may appear

that transmission is not declining as fast as it is in real-

ity. Underdetection of cases also makes it challenging to

estimate at what stage of the epidemic a particular coun-

try is [14]: viewed in isolation, case incidence data could

reflect a very large undetected epidemic, or a smaller,

better reported epidemic.

To estimate how the levels of under-ascertainment

vary over time, we present a modelling framework that

combines data on reported cases and deaths, and pub-

lished severity estimates. We apply our methods to

countries that have reported more than ten deaths to

date, then use these under-ascertainment estimates to

reconstruct global epidemics in all countries where case

and death time series data are available. We also com-

pare the model estimates for cumulative incidence

against existing seroprevalence results. Finally, we

present the adjusted case curves for the ten countries

with the highest confirmed and adjusted case numbers,

as well as global prevalence estimates for SARS-CoV-2.

Methods
As SARS-CoV-2 infections that generate mild symptoms

are more likely to be missed than severe cases, the ratio

of cases to deaths, adjusting for delays from report to

fatal outcome, can provide information on the possible

extent of undetected symptomatic infections. Using a

Bayesian Gaussian process model, we estimate changes

in under-ascertainment over time, as described below.

Adjusting for delay from confirmation to death

In real time, simply dividing deaths to date by cases to

date leads to a biased estimate of the case fatality ratio

(CFR), because this naive calculation does not account

for delays from confirmation of a case to death, and

under-ascertainment of cases [5, 6] and in some circum-

stances, under-ascertainment of deaths too. Using the

distribution of the delay from hospitalisation to death

for cases that are fatal, we can estimate how many cases

so far are expected to have known outcomes (i.e. death

or recovery), and hence adjust the naive estimates of

CFR to account for these delays and produce a delay-

adjusted CFR (dCFR). Separately published dCFR esti-

mates for a given country can be used to estimate the

number of symptomatic cases that would be expected

for a given dCFR trajectory. Available estimates for the

CFR that adjust for under-reporting typically range from

1 to 1.7% [7–10]. Large studies in China and South

Korea estimate the CFR at 1.38% (95% CrI 1.23–1.53%)

[9] and 1.7% (95% CrI 1.1–2.5%) [7] respectively.

Inferring level of under-ascertainment

Assuming a baseline CFR of 1.4% (95% CrI 1.2–1.5%),

the ratio of this baseline CFR to our estimate of the

dCFR for a given country can be used to derive a crude

estimate of the proportion of symptomatic cases that go

unreported for this country. For each country, we
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calculate the dCFR on each day and use the ratio of the

baseline CFR to the dCFR estimate to produce daily esti-

mates of the proportion of unreported cases. We then

use a Gaussian process (GP) model to fit a time-

dependent under-ascertainment rate for each country. A

more detailed description of the methods, including the

mathematical details of the Gaussian process and the

different sources of uncertainty present in the model,

can be found in the Supplementary Material.

With the aim of developing a parsimonious and easily

transferable analysis framework, we assume the same

baseline CFR for all countries in the main results. Given

that CFR varies substantially with age [5], this induces a

certain amount of error in our estimates, especially for

countries with age distributions significantly different to

China, where the data used to derive the baseline CFR

estimates originated [5]. Therefore, we include a version

of all the main results where we compute an indirectly

adjusted baseline CFR, using the underlying age distribu-

tion of each country using the wpp2019 R package [15]

and the age-stratified CFR estimates from [5] in the sup-

plementary material (Additional file 1: Figure S5, S6 and

S7), where we also include a verbose limitations section

discussing at length the potential errors induced under

such assumptions.

Relationship between under-ascertainment and testing

We attempt to characterise the relationship between

widespread RT-PCR testing and case ascertainment

using our temporal under-ascertainment estimates

and testing data for many countries from OurWorl-

dInData [16]. We do so by performing a correlation

test between the two for all countries we had both

data for. The resulting bivariate scatterplot is included

in the supplementary material (Additional file 1:

Figure S3).

Comparison against seroprevalence estimates

We attempted to reconstruct the infection curves by first

adjusting the reported case data for under-ascertainment

(Fig. 1). We then adjust further these estimated symp-

tomatic case curves so that they represent all infections.

We do so using the assumption that 50% of infections

are asymptomatic (with an assumed wide range of 10-

70% feeding into our estimates 95% credible interval)

and mean-lagging the time point to adjust for the delay

between onset of symptoms and confirmation [18]. We

assume that serological tests are broadly similar between

locations, in order for a tractable and relatively simple

comparison. We include both our estimates, with their

95% credible intervals, and the confidence intervals of all

serological estimates in our comparison (Fig. 3).

Data and code availability

The data we use is publicly available online from the

European Centre for Disease Control (ECDC) [19]. The

code for the dCFR and under-reporting estimation

model can be found here: https://github.com/thimotei/

CFR_calculation. The code to read in the under-

ascertainment data and to reproduce the figures in this

analysis can be found here: https://github.com/thimotei/

covid_underreporting.

Results
We estimated substantial variation in the proportion of

symptomatic cases detected over time in many of the

countries considered (Fig. 1 and Figure S1). For example,

during March, the median percentage of symptomatic

cases detected across the 84 countries which experi-

enced more than ten deaths ranged from 2.38%

(Bangladesh) to 99.6% (Chile). Also during March, the

median percentage of symptomatic cases detected across

Europe ranged from 4.81% (France) to 85.5% (Cyprus).

Countries might expect to detect an increasing pro-

portion of symptomatic cases if they scale up testing ef-

fort in response to the outbreak. To measure this, we

compared our estimates for the proportion of cases de-

tected with the number of tests performed per new case

each day, which can provide an indication of testing ef-

fort with a country [19]. Taking a moving average with a

7-day window, we found that countries that showed high

testing effort did not necessarily have high levels of case

ascertainment. For example, in a 2-week period in

March, the UK performed 80 tests per new case (the

mean across Europe during the same period was 27 tests

per new case). However, we estimate that also in the UK

only between 3 and 10% of symptomatic cases were be-

ing detected (Fig. 1). Overall, we found a weak positive

correlation between testing effort and case ascertain-

ment (Kendall’s correlation coefficient of 0.16). This sug-

gests that increased testing effort can help to improve

case ascertainment, but on its own is not enough to

guarantee low levels of under-ascertainment.

Using our temporal under-ascertainment trends, we

estimate that during March, April, and May the percent-

age of symptomatic cases detected in European coun-

tries and averaged over time ranged from 4.8 to 86%

(France–Cyprus), 5.8 to 100% (France–Belarus) and 11

to 86% (Hungary–Cyprus) respectively. By comparison,

the number of reported tests performed per new con-

firmed case, averaged over the month in question,

ranged between 2.7 and 76 in March (Belgium–

Portugal), 2.7 to 832 in April (Belgium–Slovakia) and 12

to 1334 (Ukraine–Lithuania) in May.

Adjusting confirmed case data for under-

ascertainment to obtain estimated symptomatic case

curves, we found a much larger and more peaked
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epidemic in the ten countries with the highest total

number of confirmed cases and the ten with the highest

number of adjusted cases as of 6 July 2020 (Fig. 2, with

estimates for other countries shown in Additional file 1:

Figure S2). Typically, the estimated peak of symptomatic

cases in these countries ranged from 1.4 times (Chile) to

17.8 times larger (France) than the peak in the reported

case data (Table 1). Moreover, in the five countries of

these ten that had a clear initial peak before the end of

May 2020, we estimated that the post-peak decline in

the number of infections was steeper than that implied

by the confirmed case curves (Fig. 2b).

We also compared the estimated proportion of indi-

viduals infected in our model with seroprevalence stud-

ies that measured the prevalence of SARS-CoV-2

antibodies. We represent our cumulative incidence

estimates in the same form as the observed serological

estimates, as a percentage of the population. This is ei-

ther the population of the country or the population of

some smaller region or sub-region, depending on the

serological dataset. We found that all but one of the

published seroprevalence estimates fell within the 95%

credible interval (CrI) of our estimated cumulative inci-

dence curves over time, with the one exception being

Denmark where we underestimated the observed sero-

prevalence (Fig. 3).

Applying our estimation method to all countries for which

case and death time series data are available, we produced a

map of seroprevalence estimates as of 16 June (Fig. 4a), sug-

gesting that most infections by this point had been concen-

trated in Europe and the USA. We estimate that between

0.02 and 15% of populations in Europe have been infected.

Fig. 1 Illustrative examples of temporal variation in under-ascertainment and testing effort. Nine countries under-ascertainment and testing effort
dynamics, where the under-ascertainment dynamics display a typical U-trend. The solid black line is the estimated median proportion of symptomatic
cases ascertained over time and the shaded blue region is the 95% credible interval of these ascertainment estimates. Dashed line shows the reported
testing effort, which we defined as a 7-day moving average of the number of new tests per new case reported each day. The illustrative examples
chosen in Fig. 1 were constrained by the availability of testing data over a time period comparable to our under-ascertainment estimates. However, all
countries under-ascertainment estimates, with or without testing data, are presented in Additional file 1: Figure S1
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As of the middle of May, cases were in Latin America and

Africa. For both continents combined, we estimate that be-

tween 0.00 and 3.48% of the population of these two conti-

nents had been infected as of 16 June 2020. We also

reconstructed the early progression of the COVID-19

pandemic across Europe (Fig. 4b), finding that the estimated

infection prevalence over time was an order of magnitude

higher than the confirmed case numbers suggest, with preva-

lence growing rapidly in late February and early March in

several countries.

Fig. 2 Confirmed case curves adjusted for temporal under-ascertainment. a Confirmed cases (left) and adjusted cases (right) for the ten countries
with the highest number of confirmed cases. b Confirmed cases (left) and adjusted cases (right) for the ten countries with the highest number of
confirmed cases after adjusting for under-ascertainment. There are two countries which change between a and b: France and Mexico are
replaced by Chile and Peru respectively. c The same curves plotted in a, but with a plot per country. Blue-shaded region corresponds to the 95%
CrI of the adjusted curves. a and b highlight between country variation whereas c highlights within country variation

Table 1 Comparison between the confirmed and adjusted case numbers at their respective peaks for ten countries with the
highest number of total confirmed cases and ten countries with the highest number of symptomatic cases after adjusting for under-
ascertainment. Eight countries are in both lists, so the total is twelve distinct countries. We find that the peak of the case curves
shifts when they are adjusted for under-ascertainment. Clearly, Mexico and Brazil have not necessarily peaked yet, given that they
are not as far along their epidemic as the other countries. Therefore, for these countries, we simply report the date and number of
the highest number of cases to date

Date Value at peak

Location Peak of confirmed cases Estimated change in peak date
(absolute value)

New confirmed cases
at peak

Estimated total cases
(95% CrI)

Brazil 6 June 2020 0 days 54,771 122,512 (110,660–137,374)

Chile 18 June 2020 3 days 36,179 52,042 (47,828–56,338)

France 1 April 2020 0 days 7578 134,594 (120,450–151,352)

India 21 June 2020 18 days 15,413 48,513 (43,433–54,939)

Iran 5 April 2020 0 days 5275 17,931 (16,078–20,201)

Italy 22 March 2020 0 days 6557 75,521 (64,229–91,630)

Mexico 13 June 2020 0 days 5222 55,661 (50,204–62,237)

Peru 4 June 2020 0 days 24,603 24,603 (22,121–27,629)

Russia 12 June 2020 4 days 11,656 15,604 (14,248–17,270)

Spain 27 March 2020 1 day 9181 85,881 (77,697–96,319)

UK 12 April 2020 0 days 8719 100,870 (91,054–112,639)

USA 26 April 2020 21 days 48,529 280,631 (226,097–344,472)
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Fig. 3 Estimated infection prevalence curves compared with observed seroprevalence data. a Country-level comparisons. b City-level comparisons for
Geneva, London and New York. c Regional-level comparisons, using six of the eight regions of England. North West and Yorkshire are aggregated
together and London is shown above in b: After adjusting the reconstructed new cases per day curves for potential asymptomatic infections and for
the delay between onset of symptoms and confirmation, we sum up the cases and divide by the population in each country or region, to estimate
the total percentage infected. We are then able to directly compare the model estimates to existing seroprevalence results (black points, with 95%
binomial CI above and below). Dashed line shows the end of the serological testing period; therefore, we lag the seroprevalence estimate by the
mean delay between infection and seroconversion, which is likely to be around 14 days [17]

Fig. 4 Map of estimated seroprevalence as of the start of June, where we adjusted for under-ascertainment of symptomatic cases and asymptomatic
infections. a Estimated seroprevalence of SARS-CoV-2 globally as of 7 June 2020, for all countries we have reliable estimates for—greyed out countries
represent where we did not have reliable estimates due to insufficient data. b–d The estimated seroprevalence of SARS-Cov-2 in Europe on b 31
March, c 30 April and d 31 May represent where there was insufficient data to compute reliable estimates
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Discussion
The epidemiological and clinical characteristics of

SARS-CoV-2 mean that a large proportion of infections

may go undetected [13, 20]. In the absence of serological

data, the ratio between cases and deaths, adjusted for de-

lays from confirmation-to-outcome, can be used to de-

rive estimates of the proportion of symptomatic cases

reported. Using this approach, we estimated that case as-

certainment dropped substantially in many countries

during the peak of their first epidemic wave. Although

serological surveys are beginning to emerge [20], many

countries do not have such data available, or may only

have results from a single cross-sectional survey. The

methods and estimates presented here can therefore

provide an ongoing picture of the underlying epidemics,

including local level dynamics as fine-scale surveillance

data become available [21, 22].

Our analysis has some limitations. We assumed the

age-adjusted baseline CFR was 1.4% (95% CrI 1.2–1.5%)

[4], which is broadly consistent with other published es-

timates [5, 23, 24], and we assumed a range of 10–70%

of infections were asymptomatic [20, 25, 26] with a

mean value of 50% [12]. Given the uncertainty in these

estimates, we propagated the variance in baseline CFR

and range in proportion asymptomatic in the inference

process so the final 95% credible interval reported for

under-ascertainment reflects underlying uncertainty in

the model parameters. We also assumed that deaths

from COVID-19 are accurately reported. If local testing

capacity is limited, or if testing policy affects attribution

of deaths (for example, the evidence for the efficacy of

post-mortem swabbing is lacking), deaths can be misat-

tributed to a cause other than COVID-19. In that case,

our model may underestimate the true burden of infec-

tion. For example, in Peru between 1 April and 1 July

2020, there were excess deaths when compared to con-

firmed COVID deaths and 3396 reported COVID-19

deaths per 100,000 cases, whereas in the UK there were

199% excess deaths, and 23,642 reported COVID-19

deaths per 100,000. There have also been reports of data

reporting issues for several countries [27]. Additionally,

if a large proportion of transmission is concentrated

within specific age groups, the effective CFR may be

higher or lower than the assumed baseline; with better

age-stratified temporal data on cases and deaths, it

would be possible to explore the effect of this in more

detail. However, our estimates were in general consistent

with published serological data, where available, provid-

ing evidence that our method was robust for these coun-

tries at least.

To compare our estimates against seroprevalence

studies, and consistent with other simplifying assump-

tions across countries in this study, we assume that there

is little or no variation between the accuracy of the

various serological studies included. Including the confi-

dence intervals of each seroprevalence estimate in the

comparison allows for some of this variation to be cap-

tured quantitatively, but most will be missed. However,

as the comparison is crude for a number of reasons, we

believe the additional error incurred by such an assump-

tion is minimal. Further, given that our estimates of

under-ascertainment in many countries suggest that the

numbers of symptomatic infections at the peak of the

outbreak were one or two orders of magnitude larger

than reported cases, even if deaths are under-reported,

our estimates are still likely to be much closer to the

true burden than locally reported cases imply.

Our estimates of under-ascertainment over time re-

quire a time-series of COVID-19 deaths as an input, a

data source that may also exhibit reporting variation.

One notable example of this was Spain during June 2020

(Supplementary Appendix: Figure S1). However, as our

Gaussian process model quantifies time-varying case as-

certainment, it is able to account for positive or negative

spikes in reporting [13] (see the Estimating under-

ascertainment rates section in the Supplementary Ap-

pendix for more details). Finally, our results are limited

by the quality of the input data, which is likely to vary in

accuracy between countries. However, as we find good

agreement between the 95% credible intervals of our es-

timates and seroprevalence studies, we believe that our

model accurately captures some of this variation.

Since the temporal trend in under-ascertainment does

not necessarily reflect trends in reported cases or testing

effort, evidence synthesis methods such as the one pre-

sented here can provide additional insights into whether

observed case patterns reflect the underlying epidemic

dynamics. In the early stages of outbreaks, this method

can provide an indication of whether a large proportion

of cases are being detected— and hence whether trans-

mission may be containable with targeted measures such

as isolation and contact tracing—or whether transmis-

sion is more widespread and a more extensive response

is required. Such estimates can also provide insights in

the later stages of an outbreak, as they can indicate high

levels of detection in countries that have achieved con-

trol. For example, in Australia, an adapted version of our

model estimated that 80% (95% CrI 55–100%) of cases

had likely been ascertained during the outbreak [22]. By

adjusting for under-ascertainment, it is also possible to

reconstruct the temporal dynamics of SARS-CoV-2

internationally. During February and early March 2020,

importations of SARS-CoV-2 into the UK came primar-

ily from Italy, Spain and France [28]. This is consistent

with the inferred progression of infection during this

period in our model; we estimated that Italy, Spain,

France and Belgium all had over 6.5% of the population

infected by 31 March 2020 [28].
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Conclusion
Consistent with other studies [3, 20], we estimated that

the true numbers of symptomatic cases and infections

are appreciably larger than the number of confirmed

cases reported (Figs. 1 and 2). We also estimated that

the timing of the peak level of symptomatic cases may

be considerably earlier or later than the raw confirmed

case curve suggests (Table 1). Accurate surveillance of

an ongoing outbreak is crucial for estimating key epi-

demiological values such as the reproduction number,

and hence evaluating the impact of control measures

[21]. If reported case numbers do not reflect the shape

and magnitude of the underlying epidemic, it may bias

estimates of transmission potential and effectiveness of

interventions. If levels of under-ascertainment are in-

creasing, early interventions may appear to be more ef-

fective than they actually are, which could lead to delays

in imposing more stringent measures. Likewise, if ascer-

tainment increases in the declining phase of an epi-

demic, the effectiveness of interventions may be

underestimated, potentially leading to measures

remaining in place for longer than they would have been

had more accurate data been available.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12916-020-01790-9.

Additional file 1 : Supplementary Appendix 1–4. Figure S1: Figure

S1. Temporal variation in under-reporting for all countries with greater
than 10 deaths for more than 50 days. Figure S2: Temporal variation in
testing effort for all countries there was data for in the Our World In Data
database [18]. Figure S3. the relationship between case ascertainment
and testing effort. We define testing effort as the 7-day moving average
of the number of new tests per new case each day. We plot the under-
ascertainment estimates along with the testing effort estimates for all
countries we have both data for. We then fit, using a loess curve to high-
light the positive but weak relationship (, where is Kendall’s rank coeffi-
cient). Figure S4. Temporal variation in under-ascertainment and testing
effort for the nine countries with the maximum total cases that we have
reliable testing effort estimates for. This figure differs from Fig. 1 as the re-
sults are computed using the indirectly age-adjusted baseline CFR for
each country. Figure S5. Confirmed case curves adjusted for temporal
under-ascertainment adjusted indirectly for age. The results are similar to
those in Fig. 2 but have been computed using an indirectly age-adjusted
baseline CFR for each country. Figure S6. Estimated infection prevalence
curves compared with observed seroprevalence data. The results are simi-
lar to those in Fig. 3 but have been computed using an indirectly age-
adjusted baseline CFR for each country. Figure S7. Temporal variation in
under-reporting for all countries with greater than 10 deaths for more
than 50 days. The results are similar to those in Figure S1 but have been
computed using an indirectly age-adjusted baseline CFR for each country.
Table S1. A summary of the country-level serological studies we used
for comparison against our model estimates. Table S2. A summary of
the city-level or regional-level serological studies we used for comparison
against our model estimates. Table S3. A summary of the parameters,
distributions and output quantities either as inputs or outputs of our
under-ascertainment model.
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