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ABSTRACT

Numerical models are used to test whether the meridional overturning circulation (MOC) can be recon-

structed from boundary densities and the wind stress. In idealized model setups without topography the

strength as well as the temporal and spatial variability of the MOC cell can largely be reproduced from

boundary densities and the zonal wind stress. With added slopes along the meridional boundaries, most of

the depth-averaged flow is missed and neither strength nor spatial structure of the MOC is well reproduced.

However, the temporal evolution of both MOC and its estimate are similar. In an eddy-permitting model

with realistic bottom topography the contribution of the depth-averaged meridional flow to the MOC is

captured at some places while it is missed at others. Nevertheless, boundary densities and the zonal wind

stress allow the leading modes of the temporal and spatial MOC variability to be reproduced. On seasonal

time scales most of the MOC variability is due to the wind stress but changes in the boundary density affect

the MOC as well. On interannual time scales the MOC variability largely reflects changes in the boundary

density. Generally, the MOC reconstructions are accurate when bottom velocities are small, an assumption

made in the reconstruction approach. The results are relevant for estimates of both the modern and the past

MOC. In the real ocean, boundary densities can be obtained from measurements of temperature, conduc-

tivity, and pressure in the water column, whereas past seawater densities have left their imprint in sea

sediments.

1. Introduction

The meridional overturning circulation (MOC) ad-

vects warm and salty surface waters to high northern

latitudes, where cooling increases sea surface density.

Eventually, surface waters sink and flow southward as a

deep western boundary current (Dickson and Brown

1994). This circulation transports about 1 PW (1 PW �

1015 W) of heat to the North Atlantic Ocean, which is

approximately equivalent to the northward energy

transport occurring in the atmosphere over the North

Atlantic area (Trenberth and Solomon 1994; Trenberth

and Caron 2001). The predominantly westerly winds at

northern midlatitudes carry large parts of this heat to-

ward Europe thus contributing to its mild climate.

One fundamental issue is the understanding of the

variability of the MOC and of the related heat trans-

port. Palaeoclimatic archives suggest that in the past

the thermohaline circulation has undergone large

changes (Heinrich 1988; Dansgaard et al. 1993). During

the last ice age abrupt changes associated with tempera-

ture variations of more than 10°C over Greenland were

not uncommon (e.g., Lang et al. 1999) and one plau-

sible mechanism is a changing strength of the MOC

(e.g., Broecker et al. 1992). Even the relatively stable

Holocene shows important variations. Recent ones

such as the Little Ice Age occurred in historical times

and are, at least partly, documented by instrumental

records. The underlying mechanisms and the links with

the ocean circulation are still under debate. During the

last century, anthropogenic emissions have risen the

levels of greenhouse gases to a level unprecedented
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during the last 500 kyr (Petit et al. 1999) thus raising the
question of the future behavior of the MOC.

Different ocean/ocean–atmosphere general circula-
tion models (OGCMs/AOGCMs) have been used to
investigate the MOC variability (e.g., Weaver and Sa-
rachik 1991; Häkkinen 1999; Eden and Greatbatch
2003; Delworth et al. 1993; Ganopolski and Rahmstorf
2001; Collins et al. 2001). These studies suggest a wide
range of time scales associated with the variability of
the MOC and indicate that even without increased
greenhouse forcing the MOC exhibits a large “natural”
variability. The behavior of the MOC under increased
levels of CO2 in the atmosphere has been widely ad-
dressed in modeling studies (Cubasch et al. 2001) and
most models agree that the MOC changes exceed its
natural variability when certain thresholds are reached.
The potential instability of the MOC inferred from
proxy data for the past and from numerical simulations
for the future indicate the importance of knowing the
current state of the MOC.

Observation-based estimates of the actual MOC and
of related transports are mostly based on hydrographic
sections that provide snapshots of the circulation (e.g.,
Hall and Bryden 1982; Ganachaud and Wunsch 2000).
For continuously measuring the MOC, frequent repeat
sections would be required. Therefore, the next ques-
tion is whether the amount of measurements can be
reduced without losing the main features of the MOC.
Using the density gradient across the Florida Strait ob-
tained from �18O of calcite in foraminifera, Lynch-
Stieglitz et al. (1999) inferred the vertical flow structure
during the Last Glacial Maximum. The same approach
has been suggested to estimate the basinwide flow for
past circulations (Lynch-Stieglitz 2001). Model results
indicate that based on the knowledge of zonal density
gradients obtained from few moorings, the current
MOC might be observed continuously across longi-
tude–depth sections in the North Atlantic (Hirschi et al.
2003; Baehr et al. 2004). Results from these papers have
been implemented in a real observing system of the
Atlantic MOC that was deployed at 26°N in 2004
(Marotzke et al. 2002).

A conceptual study of Marotzke (1997) highlighted
the relation between the density structure at the west-
ern and eastern boundaries of an idealized, purely
buoyancy forced ocean model and the MOC strength.
The question addressed here is whether this density
information combined with the zonal wind stress is
enough to infer the strength as well as the temporal and
spatial variability of the MOC on a basinwide scale. In
contrast to previous studies (Hirschi et al. 2003; Baehr
et al. 2004) no attempt is made to optimize an MOC
“monitoring” system at particular latitudes in the ocean.

Instead we discuss the quality of estimates of the MOC
if the same approach is used for an entire basin. This
paper can be considered to be the theoretical un-
derpinning of the experimental design work found in
Hirschi et al. (2003) and Baehr et al. (2004).

The paper is organized as follows. Section 2 describes
how the MOC is decomposed into the dominant terms
that govern its force balance. Section 3 introduces the
models and experiments. Results for the MOC esti-
mates are presented in sections 4 and 5. An outlook as
well as conclusions are given in sections 6 and 7.

2. Method

The starting point is a decomposition of the MOC
similar to the one used in Lee and Marotzke (1998).
The MOC � is split into three different contributions
related to the barotropic (depth averaged) velocities
� to the geostrophic shear �sh, and to Ekman tran-
sports �ek,

��z�� � �
�H

z�

dz�
xw

xe

dx � 	 �
�H

z�

dz�
xw

xe

dx �sh

	 �
�H

z�

dz�
xw

xe

dx ��ek � �ek�, �1�

where xw and xe are the western and eastern limits of
the basin, respectively, and where �H � z
 � 0.

The method developed here aims to approximate Eq.
(1) using only quantities that can be measured in the
real ocean. The first right-hand term in Eq. (1) is the
most difficult one. It does contribute to the MOC in the
presence of topography and is often referred to as the
external mode

�ex�z�� � �
�H

z�

dz�
xw

xe

� dx, �2�

with

� �
1

H
�

�H

0

� dz, �3�

where � is the full meridional velocity component. Cur-
rently, there is no existing measuring strategy for the
depth-averaged (barotropic) flow and for the external
mode �ex but as we will show later there are situations
where boundary densities allow us to reconstruct the
barotropic flow to a large extent.

From the knowledge of the zonal wind stress the Ek-
man velocity �ek can be derived from the theoretical
relationship

�ek � �
1

�*fL�z
�

xw

xe

�x dx, �4�
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where �*, f, L, and �x are a reference density, the Co-
riolis parameter, the basin width at the surface, and the
zonal wind stress, respectively. We assume that the Ek-
man transport occurs in a layer of thickness 
z and is
compensated by a barotropic return flow

�ek � �
1

�*fA
�

xw

xe

�x dx, �5�

where A is the total area of the corresponding longi-
tude–depth section of the ocean basin. This approach
relies on the assumption that the basinwide density
structure cannot adjust to changes in the wind field fast
enough to allow for a baroclinic compensation. From
�ek and �ek the Ekman contribution �ek to the MOC is
calculated according to

�ek�z�� � �
�H

z�

dz�
xw

xe

��ek � �ek� dx, �6�

which is identical to the third term of the right-hand
side of Eq. (1). Equation (6) allows us to isolate an
MOC contribution related to the shear due to Ekman
transports and that can account for a large fraction of
the total MOC (Lee and Marotzke 1998).

The shear component in Eq. (1) is defined as �sh �

� � � � (�ek � �ek), where � is the full meridional
velocity. Since the shear related to the Ekman transport
is removed, �sh reflects the geostrophic shear. Accord-
ing to Marotzke et al. (1999) the geostrophic shear can
be obtained from an endpoint method based on the
thermal wind balance

f
��

�z
� �

g

�*

��

�x
, �7�

where g is the earth’s acceleration. Zonally integrating
Eq. (7) yields

�
xw

xe ��

�z
dx � �

g

�*f
��e � �w�. �8�

According to Eq. (8) knowing the seawater densities at
the eastern (�e) and western (�w) boundary is sufficient
to capture the zonally integrated shear.

For the next step we assume that bottom velocities
vanish. This condition is relaxed later on, to ensure
mass balance. However, in the final reconstruction bot-
tom velocities are implicitly assumed to be small (cf.
Baehr et al. 2004). Dividing the right-hand side of Eq.
(8) by the basin width L(z) and integrating vertically
from bottom to z
 yields a meridional velocity compo-
nent:

�̃�x, z�� � �
g

�*f
�

�H

z� 1

L�z�
��e � �w� dz. �9�

The motivation for choosing a level of no motion at the
bottom for �̃(x, z
) is that we want to use an approach
that can be used at all latitudes. A level of no motion at
a fixed depth is problematic since the level of no motion
is not constant throughout the ocean. Assuming that
the thermal wind captures the shear of the meridional
flow and that the velocities at the ocean bottom are
zero or close to zero then �̃ is a good approximation of
the velocity field. Consider an example with northward
flow in the upper 1000 m and a return flow between
depths of 1000–3000 m and where the total ocean depth
is 4000 m (zero velocity at the bottom). Assuming zero
velocity at the bottom is equivalent to assuming it at
1000 m, which would be the correct choice. Of course
the bottom velocities are not always zero (e.g., Lee et
al. 1996) and the assumption of vanishing velocity at the
bottom can lead to an inaccurate representation of the
velocity (Baehr et al. 2004).

In general the depth average of �̃ is not zero and �̃

contains depth-dependent (baroclinic) as well as baro-
tropic elements. To make it comparable to �sh in Eq. (1)
the depth average

���x� �
1

H�x�
�

�H�x�

0

�̃�z, x� dz �10�

has to be removed.
The problem with removing the depth average from

�̃ is that valuable information is lost: �̃ does contain a
barotropic component that might be useful to estimate
the external mode. As mentioned above at places
where the bottom velocities are close to zero the veloc-
ity �̃ is comparable to the full velocity (except for the
Ekman transport at the surface). Therefore, a large
fraction of the barotropic flow and of the external mode
might be contained in �̃ at locations where the bottom
velocities are zero or close to zero along sloping side-
walls.

To test this assumption �̃ is used to compute a
streamfunction:

�̃�z�� � �
xw

xe

dx�
�H

z�

�̃ dz. �11�

In general �̃ does not fulfill the condition �̃(z
) � 0,
z
 � 0, �H. We introduce a correction

�̂ � ��0�	A, �12�

for �̃, which is obtained by dividing the transport im-
balance �(0) across a longitude–depth section by the
section area A. This correction fulfills the mass conser-
vation without affecting the vertical shear estimated
from Eq. (8). Note that the Atlantic and Pacific Ocean
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basins are not closed in the north and water can leave/
enter via the Bering Strait. However, this exchange
only being in the order of 1 Sv (1 Sv � 106 m3 s�1;
Coachman and Aagaard 1988), it is not considered
here.

With the corrections for �̃ defined by Eqs. (12) and
(10) we can calculate two streamfunctions

�tw1
�z�� � �

xw

xe

dx�
�H

z�

��̃ � �̂� dz and �13�

�tw2
�z�� � �

xw

xe

dx�
�H

z�

��̃ � ��� dz, �14�

where both �tw1
and �tw2

fulfill the condition �tw(z
) �

0, z
 � 0, �H. The corrections for the mass conserva-
tion mean that the bottom velocities no longer vanish.
However, with Eq. (12) they remain small since the
mass imbalance is divided by the entire cross-section
area. Equation (14) is equivalent to the second term on
the right-hand side of Eq. (1). The streamfunction de-
scribed in Eq. (13) does contain a barotropic contribu-
tion and in the following we assume that it is represen-
tative of the sum of the first two terms on the right-
hand side of Eq. (1). Note that without topography
both streamfunctions �tw1

and �tw2
are identical (see

appendix A). It is also worth mentioning that �tw1
is

equivalent to an estimate of the thermal wind contri-
bution based on vertical profiles of density placed
across longitude–depth sections as used in Hirschi et al.
(2003) and Baehr et al. (2004) (see appendix B).

The total MOC can now be written as

�1 � �tw1
	 �ek or �15�

�2 � �tw2
	 �ek 	 �ex. �16�

The motivation for using �1 lies in the fact that it is only
based on quantities that can be estimated from mea-
surements of the surface wind stress and of seawater
density along the continental slopes. Using �2 is more
likely to represent the MOC accurately, however, this
requires the knowledge of the barotropic velocity field
for which no obvious measuring strategy currently ex-
ists.

3. Models and experiments

Three different model topographies are used: a flat-
bottomed rectangular basin, a rectangular basin with
sloping sidewalls, and an eddy-permitting model with
realistic topography. Using these model setups allows
us to estimate how the quality of MOC reconstructions
is affected by gradually increasing the complexity of the
models.

a. Idealized models

The simulations using idealized geometries are per-
formed with the Massachusetts Institute of Technology
(MIT) OGCM (Marshall et al. 1997). The model do-
main consists of a 60° wide rectangular basin extending
from 75°S to 75°N (Fig. 1a). Between 65° and 50°S the
basin is crossed by an Antarctic Circumpolar Current
(ACC) channel. The horizontal resolution is 2.5° in
both longitude and latitude and the vertical is divided
into 19 layers with thickness increasing exponentially
from 30 m at the surface to more than 500 m at the
bottom. The maximum depth is set to 5000 m. As
shown in Figs. 1b,c this model is set up in two different
configurations with a flat bottom or sloping sidewalls

FIG. 1. (a)–(c) Model geometries for the idealized runs (b) without and (c) with topography. (d), (e) Eddy-
permitting model (OCCAM). In the present study we only consider a North Atlantic domain extending from the
equator to 70°N. As an illustration (d) shows the topography at 40°N.
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along the meridional boundaries. The horizontal viscos-
ity and diffusivity coefficients are set to 2.5 � 105 m2 s�1

and 2.5 � 103 m2 s�1, respectively. Values for the ver-
tical viscosity and diffusivity are set to 20 and 1 cm2 s�1,
respectively. Both models are forced with idealized
zonally constant forcing profiles for the zonal wind, the
temperature, and the salinity similar to the ones used in
Hirschi and Stocker (2002).

b. Eddy-permitting OGCM

The model used here is a 1⁄4° version of the Ocean
Circulation and Climate Advanced Modeling Project
(OCCAM) described in Marsh et al. (2005a,b). OCCAM
is a global general circulation model with realistic to-
pography, and because of its relatively high resolution
it is eddy permitting (i.e., eddies are simulated, but their
dynamics is poorly resolved). The vertical is divided
into 66 levels with thicknesses ranging from 5 m at the
surface to 207 m at the bottom. The surface forcing
consists of 6-hourly fluxes from the National Centers
for Environmental Prediction (NCEP) for wind, heat,
and evaporation minus precipitation (E � P; Kalnay et
al. 1996). For the sea surface salinity there is an addi-
tional restoring term to monthly values of Levitus and
Boyer (1994). The model simulates the global ocean
circulation for the years 1985–2003. In the present study
we only use a North Atlantic domain of OCCAM ex-
tending from the equator to 70°N (Fig. 1e).

c. Experiments

To investigate the relative importance of each con-
tribution in the different model configurations we set
up four experiments, which are summarized in Table 1.
Experiment A is purely buoyancy forced and has no
topography and is therefore suited to test if the thermal
wind relation reproduces the vertical velocity shear.
The wind stress in experiment B leads to Ekman trans-
ports that are not linked to zonal density gradients. In
experiment C the addition of topography means that
barotropic contributions (external mode) no longer
vanish. A gradual slope was chosen in order to ensure
pronounced topographic effects. Note that in the real
ocean, the continental slopes are generally steeper.

Last, experiment D allows us to investigate which terms
are dominant for a realistic model configuration.

Starting from rest, the idealized models are inte-
grated under restoring boundary conditions for tem-
perature and salinity until a quasi equilibrium is
reached after 4000 model years. At the end of this first
phase the freshwater fluxes are diagnosed and both
model versions are further integrated for 1000 yr under
mixed boundary conditions (restoring for temperature,
temporally constant diagnosed freshwater flux). To in-
vestigate the quality of MOC reconstructions during
transient phases, a freshwater discharge is applied at
high northern latitudes thus inducing a temporary
change in the strength the MOC. The perturbation con-
sists of a short (10 yr) freshwater discharge of 0.2 Sv
evenly spread across the whole basin width at 62.5°N.

The freshwater discharge occurs between years 10
and 20 of the last 100 yr of the model runs.

The OCCAM integration simulates the global ocean
circulation between the years 1985 and 2003. The main
run is preceded by a 4-yr spinup phase during which the
model uses the forcing of the years 1985–88. Because of
the relatively short integration time, the circulation in
OCCAM has not reached equilibrium yet. Neverthe-
less, the circulation does not show any major drifts. The
temporally variable surface forcing (wind, heat, E � P)
ensures a temporal and spatial variability of the circu-
lation (see section 5). Details about the circulation in
OCCAM can be found in Marsh et al. (2005a,b).

4. Meridional mass transports: Steady states

Here we present and discuss estimates of the MOC
obtained using the method described in section 2. The
MOC circulations considered here are steady states for
experiments A–C and a mean for the years 1985–2003
for experiment D.

a. Idealized cases

In experiments A and B the MOC consists of one
clockwise overturning cell with sinking of water masses
at high northern latitudes and upwelling south of 50°N
(Figs. 2a and 3a). The maximum MOC is reached
around 55°N and at 2000-m depth with values of 22 and
24 Sv for experiments A and B, respectively. For both
circulations 10 Sv of deep water are exported from the
northern to the Southern Hemisphere. The action of
the wind in experiment B is reflected by the presence of
equatorial and subtropical Ekman overturning cells in
both hemispheres. The clockwise northern equatorial
and southern midlatitude Ekman cells merge with the
main MOC cell while the southern equatorial and

TABLE 1. Configurations for experiments A–D.

Name Model Topography Wind Perturbation

A MIT No No Yes
B MIT No Yes Yes
C MIT Yes Yes Yes
D OCCAM Yes Yes No
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northern midlatitude cells are visible as counterclock-

wise features.

For experiment A the meridional extent and strength

of the reconstructed overturning cell are similar to what

is seen for the MOC (Fig. 2b). Shortcomings are most

pronounced north of 60°N where the reconstruction is

weaker by up to 6 Sv (Fig. 2c). Between the high north-

ern latitudes and the equator the differences are small

with maximum values of about 2 Sv. At the equator the

differences reflect the limitations of the thermal wind

balance due to the division by the Coriolis parameter f

in Eq. (7).

In experiment B the reconstruction has too much

upwelling between 55° and 35°N, which results in lower

values between northern midlatitudes and the equato-

rial region (Figs. 3b,c). Equation (1) allows us to repro-

duce the Ekman cells that are visible in the reconstruc-

tion as (anti)clockwise cells at the surface. The largest

differences between the reconstruction and the MOC

occur between 20° and 30°N and north of 60°N.

In experiments A and B the differences between the

MOC and its reconstruction are largely negative indi-

cating that at places the shear of the meridional flow is

underestimated by the thermal wind. The reason for

FIG. 2. Reconstruction of MOC for experiment A. (a) MOC based on meridional velocity field. (b) Reconstruc-

tion based on the thermal wind contribution. (c) Difference between the reconstruction and the MOC. Units are

Sverdrups (1 Sv � 106 m3 s�1), and the contour interval (CI) � 2 Sv.
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this is not fully understood yet but in the following we

give some elements of explanation. The latitudes be-

tween 60° and 65°N are adjacent to the deep convection

area found in the northernmost latitudes. Between the

northern high and midlatitudes there is a negative slope

for the sea surface height � (i.e., ��/�y � 0; not shown).

According to geostrophy the sloping in � has to be

balanced by an eastward flow (Figs. 4a,b). This current

is the extension of the western boundary current that

separates from the western boundary between 40° and

60°N and when it approaches the eastern boundary the

horizontal mass convergence leads to an increase in sea

surface height � (��/�x � 0) at the eastern wall (Figs.

4a,b). According to geostrophy the slope in � must be

balanced by a northward flow. In experiment B large

differences occur between 20° and 40°N where the in-

tensifying of the wind-driven gyre at the western

boundary coincides with a local maximum of the sea

surface height centered at 30°N, 17°E, which reflects a

wind-driven horizontal convergence of mass (Fig. 4b).

Even in an ocean with constant seawater density, the

wind stress would lead to the formation of gyres and

FIG. 3. Reconstruction of MOC for experiment B. (a) MOC based on meridional velocity field. (b) Sum of

contributions related to the thermal wind and to the Ekman transport. (c) Difference between the reconstruction

and the MOC. Units are Sverdrups, and the CI � 2 Sv.
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anomalies of the sea surface height that are not related

to the density structure of the water column. As a con-

sequence, the density field used to compute the thermal

wind contribution in experiment B misses a substantial

fraction of the western boundary current that forms the

northward flowing branch of the subtropical gyre.

For experiments A and B the differences are gener-

ally smaller than 2 Sv between 40° and 60°N. At those

latitudes the western boundary current gradually sepa-

rates from the boundary and starts to flow eastward

(Figs. 4a,b). There is no horizontal convergence of mass

that leads to a geostrophically balanced flow that is not

reflected in the seawater densities.

Next we examine the zonal structure of the meridi-

onal flow at latitudes where large or small differences

are found between the MOC and its reconstruction

(Figs. 4c–f). We consider the cumulative meridional

transport


cum�x�, z�� � �
xw

x�

dx�
�H

z�

� dz, �17�

where xw � x
 � xe.

For experiment A, �cum at 63°N shows a gradual

increase of the cumulative northward flow from 0 to 10

Sv between the western boundary and 55°E (Fig. 4c).

Tightening isolines between 55°E and the eastern

FIG. 4. (a), (b) Circulation averaged over the top 1000 m (vectors) and zonal anomalies for

the sea surface height (shading) for experiments (a) A and (b) B. (c) Cumulative transport at

63°N for experiment A. (d) Cumulative transport at 21°N for experiment B. (e) Cumulative

transport at 55°N for experiment A. (f) Cumulative transport at 55°N for experiment B. The

CI � 2 Sv for (c)–(f).
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boundary indicate the presence of an eastern boundary

current contributing 8 Sv to the total MOC. This me-

ridional transport is related to the eastward flow escap-

ing northward previously described. Below 2500–
3000-m depth the northward transport is compensated

by a southward return flow. As for the northward flow

there is a strengthening of the return flow close to the

eastern boundary.

For experiment B, the structure of the cumulative

transport at high northern latitudes is similar to that of

experiment A (not shown). Instead we look at 21°N, a

latitude representative of the differences seen between

the MOC and the reconstruction at midlatitudes (Fig.

4d). The zonal structure is different from what is seen at

high northern latitudes: here all northward transport

occurs close to the western boundary and the maximum

northward transport is reached at 13°E at a depth of

1500 m. Most of this northward flow is compensated by

a deep western boundary current indicated by the iso-

lines of the cumulative transport west of 13°W as well

as by a return flow related to the gyre circulation visible

as tight isolines between 13° and 20°E and 1500-m

depth. West of 20°E there is a weak gradual southward

flow of 4 Sv (1500-m depth).

At 55°N the difference between the MOC and the

reconstruction is small for experiments A and B (Figs.

4e,f). In experiment A, the cumulative transport indi-

cates a gradual basinwide meridional flow (Fig. 4e).

Above a depth of 2000 m there is a northward flow that

is compensated below that depth. No tightening of the

isolines indicates a strengthening of the flow close to

the boundaries. A similar picture holds true for experi-

ment B even if here the zonal structure indicates stron-

ger flows in the western and eastern parts of the basin

and virtually no flow in the midbasin. However, when

compared with the flow pattern illustrated in Figs. 4c,d

the eastern and western currents are much broader with

a width of about 15°.

With a maximum value of 16 Sv the MOC is weaker

in experiment C than in the previous cases (Fig. 5a).

There is less upwelling at northern midlatitudes and

despite the weaker maximum MOC the same amount

of deep water (l0 Sv) is exported to the Southern Hemi-

sphere. The wind-driven Ekman cells can be distin-

guished as shallow (anti)clockwise cells in the surface

ocean. Using all components Eq. (16) leads to a good

estimate of the MOC (Fig. 5b), whereas Eq. (15) cannot

reproduce the MOC cell (Fig. 5c).

If the MOC is calculated according to Eq. (16) the

largest differences of 2 Sv occur between 20°–40°N and

20°–40°S, respectively (Fig. 6a). As before, the short-

comings seen close to the equator are due to the divi-

sion by the Coriolis parameter. The small differences

are not surprising: using the external mode means that

we rely less heavily on the thermal wind and that we

introduce the exact barotropic velocities in the calcula-

tion of meridional mass transports.

The difference between the estimate based on Eq.

(15) and the MOC shows an anticlockwise cell with a

value of 14 Sv between 20° and 30°N where no north-

ward transport is reconstructed (Fig. 6b). The contri-

bution of the depth-averaged velocities (external

mode) is essentially the negative image of the error in

the reconstruction (Figs. 6b,c). The main reason for the

failure to reproduce the depth-averaged velocity is that

large velocities are found at the margins. Therefore,

assuming the level of no motion to be at the bottom

introduces an error in the depth-averaged velocities

(Baehr et al. 2004).

b. Realistic model geometry

When compared with experiments A–C the MOC

cell is shallower, and the maximum value of 18 Sv is

reached at a depth of 1000 m (Fig. 7a). This value re-

mains constant between 45° and 25°N and about 14 Sv

of North Atlantic Deep Water (NADW) are exported

to the Southern Hemisphere. Using Eq. (16) leads to a

good estimate of the MOC (Fig. 7b) although there is a

slight overestimation of the MOC strength especially

south of 25°N and north of 45°N. With Eq. (15) the

reconstruction is less accurate, however, major features

such as the single cell structure and the depth where

maximum transports occur are reproduced (Fig. 7c).

North of 35°N the values of both reconstructions are

similar. South of that latitude the reconstruction based on

Eq. (15) is noisier than the estimate based on Eq. (16).

The Ekman contribution (Fig. 8a) shows two distinct

cells with maximum/minimum values of 14 and �2 Sv at

13° and 50°N, respectively. The assumption is made

that the total Ekman transport occurs in the upper 30 m

of the model. Because of the barotropic compensation

of the surface flow [Eq. (6)] the Ekman cells reach to

great depths. For high-frequency variability a barotro-

pic return flow may reflect the return path of the sur-

face flow (Lee and Marotzke 1998). On longer time

scales the return flow is likely to have left its imprint in

the density field and to exhibit a depth-dependent

structure that is partly reflected by the thermal wind

contribution. The thermal wind contribution from Eq.

(13) exhibits one main cell reaching from the Tropics to

60°N (Fig. 8b). Between 10° and 35°N the cell is noisy

with fluctuations occurring in small bands of latitude.

The external mode exhibits two cells: a positive (clock-

wise) cell between 15° and 35°N with a maximum value

of 24 Sv and a weaker (12 Sv) negative (anticlockwise)

cell between 45° and 63°N (Fig. 8c). South of 15°S the
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Ekman transport is responsible for the largest north-

ward transport. North of 35°N the largest contribution

to the MOC is related to the thermal wind. Last, be-

tween 25° and 33°N the external mode shows the larg-

est transports. Note that, removing the barotropic com-

ponent from the thermal wind [Eq. (14)] results in a

contribution that shows a negative (anticlockwise)

overturning cell between 20° and 35°N (not shown).

For the reconstruction based on Eq. (16) the largest

differences of about 4 Sv occur in small bands of lati-

tude south of 35°N and between 45° and 55°N at depths

of around 2000 m (Fig. 9a). With Eq. (15) differences

mainly occur between 45° and 65°N and south of 20°N

(Fig. 9b). Additionally, there is a small area of large

differences around 34°N. In contrast to experiment C

the external mode (Fig. 8c) is not the negative image of

the anomaly structure seen in Fig. 9b and large parts of

the barotropic contribution to the MOC are contained

in the reconstruction. This is seen between 20° and

35°N where the differences depicted in Fig. 9b are rela-

tively small. The largest differences occur south of 15°N

with an overestimation of more than 10 Sv. Other areas

of large anomalies are found at 33°, 36°, and around

62.5°N. As shown in Fig. 9a most of these anomalies

FIG. 5. Reconstruction of MOC for experiment C. (a) MOC based on meridional velocity field. (b) Sum of contri-

butions related to the thermal wind, the Ekman transport, and the external mode [Eq. (16)]. (c) Reconstruction based

on Ekman transport and thermal wind contribution [Eq. (15)]. Units are Sverdrups, and the CI � 2 Sv.
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vanish or are reduced if the external mode is included.

At first sight it might be surprising that the external

mode is missed by the thermal wind in a simple model

while in a more realistic case it is largely captured. The

reason is that in experiment C large velocities are found

on the basin slopes whereas the bottom velocities are

generally close to zero in experiment D.

5. Spatial and temporal MOC variability

A principal component analysis is applied to the

MOC and its reconstructions. The principal compo-

nents (PCs) and the corresponding empirical orthogo-

nal functions (EOFs) allow us to highlight the temporal

(PCs) and the spatial (EOFs) variability patterns seen

in the various fields.

a. Idealized cases

In the idealized cases the freshwater discharges lead

to major rearrangements of the ocean circulation and

the MOC basically changes from an “on” to an “off”
state within a few decades. In experiment A, the lead-

ing EOFs of the MOC and of the reconstruction show

FIG. 6. Differences between estimates and MOC in experiment C. (a) Difference between the reconstruction

obtained from Eq. (16) and the MOC. (b) Difference between the estimate based on Eq. (15) and the MOC.

(c) External mode. Units are Sverdrups, and CI � 2 Sv.
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the same patterns indicating a coherent weakening/

strengthening of the entire overturning cell (Figs.

10a,c). The area of largest variability centered around

50°N coincides with the location of maximum MOC

values. The first PCs reflect the reduction of the MOC

strength due to the freshwater discharge applied be-

tween years 10 and 20 (Fig. 10b). The variability ex-

plained by the first EOFs of the MOC and of the ther-

mal wind contribution is 59% and 58% of the total

variance, respectively (Fig. 10d). The second EOFs ex-

plain less than 20% in both cases. Results for experi-

ment B are not shown since the addition of a (tempo-

rally) constant wind does not change the variability

when compared with experiment A.

For experiment C the leading EOF of the MOC con-

sists of a single-cell pattern that explains more than

75% of the variance (Fig. 11a). For the leading EOF of

the reconstruction based on Eq. (15) three variability

centers are found at low latitudes of the Southern

Hemisphere and at mid- and high latitudes of the

Northern Hemisphere (Fig. 11b). As for the meridional

mass transport, the structures seen at the equator

are due to the limitation of the thermal wind balance.

At midlatitudes the variability of the thermal wind

contribution is confined to the upper 2000 m. The

variabilities found at greater depths for the MOC

are not reproduced. For the two other centers the

maximum variabilities are found at a depth of 2500 m.

The three variability centers indicate that strengthening

or weakening of the thermal wind contribution at mid-

latitudes coincides with the opposite change at both

high and low latitudes. The first PCs show a similar

temporal evolution and the time series for the MOC

and the thermal wind contribution can hardly be

distinguished (black and light gray lines, Fig. 11e)

indicating that the transient behavior of the MOC is

qualitatively reflected in a reconstruction based on Eq.

(15).

FIG. 7. Same as Fig. 5, but for reconstruction of MOC in experiment D (OCCAM). Units

are Sverdrups, and the CI � 4 Sv.
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The structure of spatial MOC variability is better

captured by the external mode [Eq. (2)] even if the area

of maximum variability is shifted southward relative to

the MOC (Fig. 11c). Furthermore, the area of variabil-

ity does not extend as far south as for the MOC. The

first EOF of the external mode accounts for 50% of its

total variance (Fig. 11f). Although the spatial patterns

of the MOC and of the external mode are similar, the

evolution of the first PCs is slightly different (Fig. 11e,

dark gray dashed line).

The leading EOF of the MOC estimate obtained

from Eq. (16) exhibits a “monopole” variability struc-

ture with the largest values found at high northern lati-

tudes (Fig. 11d). The largest variability occurs at 60°N

as seen for the MOC and the variability extends into

the Southern Hemisphere. There is an almost perfect

match between the PCs of the MOC and of the recon-

struction. As for the MOC a large part (70%) of the

variance is explained by the leading EOF.

b. Realistic model geometry

Buoyancy forcing (heat flux, E � P) and the wind

stress introduce variability in experiment D but there is

no “on–off” change of the MOC during the model years

1985–2003. As illustrated for 45°N the MOC shows

variability on different time scales (Fig. 12). There is a

large subannual variability with peak-to-peak values of

5–10 Sv. There is also variability on interannual time

scales: between 1985 and 1994 the MOC strength in-

creases from 13 to 18 Sv and then gradually decreases

to 14 Sv between 1994 and 2003.

An EOF analysis based on monthly means between

1985 and 2003 for the MOC and for its estimate ob-

tained from Eq. (15) indicate a coherent weakening or

FIG. 8. Components of MOC in experiment D (OCCAM). (a) Ekman component (CI � 2

Sv). (b) Thermal wind contribution from Eq. (15) (CI � 4 Sv). (c) Contribution from the

external mode (CI � 4 Sv).
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strengthening between 25° and 60°N (Figs. 13a,b). The

maximum variability centers are located between 1000-

and 1500-m depth and occur at a shallower depth for

the reconstruction than for the MOC. The largest vari-

abilities do not occur at the ocean surface indicating

that the leading mode does not just reflect the variabil-

ity of the Ekman transport (which is largest at the sur-

face), but also the changes of the density field occurring

over a large depth range.

The second EOFs show a dipole structure for the

MOC and the reconstruction, suggesting that a

strengthening or weakening of the MOC north of 40°N

coincides with a change of the opposite sign south of

40°N (Figs. 13c,d). As for the leading EOF the maxi-

mum variability of the second EOF occurs closer to the

surface for the reconstruction than for the MOC. The

first PCs for the MOC and the reconstruction show

variability on a seasonal time scale with peaks mostly

occurring during the winter months and minimum val-

ues in summer. Additionally, there is an underlying in-

terannual variability that is seen as a gradual decrease

of the PC between 1985 and 1994 followed by an in-

crease between 1994 and 2003 (Fig. 13e, top panel). The

second PC shows variability on subannual time scales

but there is no clear seasonal cycle. With 8%–10% of

explained variance the first two leading modes only ac-

count for a small fraction of the total variance. How-

ever, the structure of the scree graph for the first seven

EOFs is similar for the MOC and the reconstruction

thus suggesting a similar structure for the higher modes

as well (Fig. 13f).

Looking at the leading modes for the thermal wind

and Ekman components separately, allows us to high-

light the variability caused by the wind stress or by the

density field (Fig. 14). The first EOF for the thermal

wind contribution shows an area of maximum variabil-

ity between 40° and 60°N (Fig. 14a). For the leading

EOF of the Ekman transport the variability area be-

tween 30° and 60°N coincides with the location of the

anticlockwise Ekman cell shown in Fig. 8. From the PCs

it becomes clear that the seasonal signal previously seen

for the MOC and the reconstruction is mostly due to

the wind: the first PC of the Ekman contribution is

similar to the signal seen in Fig. 13e. For the first PC of

the thermal wind the strongest signal occurs on an in-

terannual time scale and reflects the long-term changes

seen in Fig. 13e. The leading EOF shown in Fig. 13b is

a combination of the leading modes of the thermal wind

and Ekman contributions (Figs. 14a,b).

For the second EOFs the thermal wind as well as the

Ekman component exhibit variability on subannual

time scales (Fig. 14f). The spatial variability patterns

show that most variability is found south of 35°N for the

thermal wind contribution (Fig. 14c) and a dipole struc-

ture characterizes the variability pattern of the Ekman

contribution. The pattern of the second EOF seen in

FIG. 9. Differences between estimates and MOC in experiment D. (a) Difference between

the MOC and the reconstruction obtained from Eq. (16). (b) Difference between the MOC

and the estimate based on Eq. (15). Units are Sverdrups, and the CI � 4 Sv.
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Fig. 13d appears to be a combination of the spatial

patterns shown in Figs. 14c,d: the variability occurring

between 50° and 60°N reflects the wind while the vari-

ability centered at 34°N is found in the thermal wind.

If annual means are used the EOF patterns show a

single cell structure for the MOC and its reconstruction

(Figs. 15a,b). The largest difference between the lead-

ing EOFs of the MOC and of its estimate occur south of

30°N, where larger variabilities are found for the MOC.

As for the monthly means the maximum variability

does not occur at the surface but instead is found at

depths between 1500 and 2500 m indicating rearrange-

ments of the circulation involving a large fraction of the

water column. The leading modes have similar tempo-

ral evolutions (Fig. 15c) and they explain about 25% of

the total variance for both the MOC and its estimate

(Fig. 15d). The second modes still explain between 15%

and 20% but in contrast to the monthly means neither

the corresponding EOFs nor the principal components

show similar spatial and temporal patterns (not shown).

Confining the EOF analysis based on annual means

to the northern part of the model domain increases the

dominance of the leading EOF (Fig. 16) and 35% of the

total variance is explained by the leading mode be-

tween 40° and 65°N (Fig. 16f). The variability patterns

seen for the MOC or the reconstruction are mainly due

to changes reflected in the boundary density field. The

leading EOF of the thermal wind contribution accord-

ing to Eq. (13) depicted in Fig. 16c shows that the spa-

tial variability pattern is almost identical to that ob-

tained for the sum of the thermal wind and Ekman

contributions [Eq. (15)]. In contrast, the pattern related

to the first EOF of the Ekman contribution (Fig. 16d)

has a different spatial structure with the largest vari-

ability occurring at the surface and a gradual decrease

with depth.

The temporal evolutions of the first PCs for the

MOC, the reconstruction from Eq. (15), and the ther-

mal wind contribution from Eq. (13) are almost identi-

cal. The different MOC trends seen from 1985 to 1994

and from 1994 to 2003 (Fig. 12) are reflected in the

temporal evolution of the PCs. This evolution is not

captured by the first PC of the Ekman contribution,

which has a more pronounced short-term variability.

The leading modes of the thermal wind and Ekman

contributions explain 40% and 55% of the total vari-

ance.

6. Outlook

In the model using realistic topography the main

modes of variability are explained by the thermal wind

and Ekman contributions. If we use monthly means the

FIG. 10. (a) Normalized leading EOF of the meridional overturning for experiment A. (b) Leading EOF of the

thermal wind contribution. (c) First PCs for the meridional overturning (black) and the thermal wind contribution

(gray). (d) Variance explained by the first seven EOFs of the meridional overturning (black bars) and of the

thermal wind contribution (white bars).
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dominant variability is a seasonal signal that mainly

reflects the variability of the wind field. However, the

temporal variability related to the second EOF (ex-

plaining almost the same amount of variability as the

first EOF) occurs on subannual time scales for both the

thermal wind and the Ekman contributions. Most of

the interannual variability found in the thermal wind

contribution occurs north of 40°N whereas the short-

term variability seems confined south of 35°N (Figs.

14a,c). The fact that the thermal wind contribution

exhibits short-term variability that is not confined to

the surface ocean (Fig. 14c) is interesting because it

raises the following question: what processes can

modify a substantial part of the water column and the

related meridional mass transport on short time scales?

An analysis of these processes is beyond the scope of

the present paper but it is certainly an area that de-

serves some attention especially on the background of

funded MOC monitoring projects (e.g., Marotzke et al.

2002).

Another aspect of this study is that the information

needed to calculate the thermal wind contribution

could be obtained from sea sediments along the conti-

nental slope. This is of particular interest if one consid-

FIG. 12. MOC at 45°N at 1000-m depth for experiment D.

FIG. 11. Spatial and temporal variability in experiment C. (a) Normalized leading EOF of meridional overturn-

ing. (b) Leading EOF for the MOC reconstruction based on Eq. (15). (c) Leading EOF of the external mode. (d)

Leading EOF for the MOC reconstruction based on Eq. (16). (e) First PCs for MOC (black), external mode (dark

gray, dashed), thermal wind (light gray), and the sum of all components (dark gray). (f) Variance explained by the

first seven EOFs of the MOC (black), the external mode (light gray), and the reconstructions based on Eqs. (15)

and (16) (dark gray and white bars, respectively).
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ers past ocean circulations. Information about the

strength of the wind stress is not easily available but

past seawater densities have left their imprint in sea

sediments (Lynch-Stieglitz et al. 1999; Lynch-Stieglitz

2001). The work presented here is based on simple as-

sumptions: the marginal densities are assumed to be

known everywhere at all times and no errors in the

density value have been taken into account. In reality

the calcite shells of foraminifera needed to estimate

past water densities are not preserved everywhere. In a

refined model study the amount of density information

that is assumed to be known could be reduced and an

error comparable to that of seawater density obtained

from measurements (of seawater/sea sediments) could

be added to the model densities. This would help to

address the question if a reliable picture of the MOC

can still be obtained with sparse data that are subject to

uncertainties.

7. Conclusions

Based on the analysis of the results obtained from a

hierarchy of numerical models we conclude the follow-

ing:

1) In idealized model setups without topography the

knowledge of boundary densities and of the zonal

wind stress is sufficient to reproduce most of the

strength and variability of the full MOC cell.

2) A large part of the meridional flow (resulting from

the external mode) is not reflected in the boundary

densities if gradually sloping sidewalls are added.

Only the temporal MOC variability can be recon-

structed well in this case.

3) Shortcomings in the MOC reconstruction are linked

to the assumption of small bottom velocities for the

thermal wind contribution. At locations where large

bottom velocities are found over sloping topogra-

FIG. 13. Spatial and temporal variability based on monthly means for experiment D. (a) Leading EOF for the

MOC. (b) Leading EOF for the MOC reconstruction based on the Ekman and thermal wind contributions [Eq.

(15)]. (c) Second EOF of the MOC. (d) Second EOF of the MOC reconstruction based on Eq. (15). (e) (top) First

PC for the MOC (black line) and its reconstruction (gray line). (bottom) Second PC for the MOC (black line) and

its reconstruction (gray line). (f) Variance explained by the first 7 EOFs of the MOC (black bars) and its estimate

(white bars).
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phy, the projection of the external mode on the

MOC is not reproduced.

4) In an eddy-permitting model with realistic topogra-

phy, boundary densities and the zonal wind stress

allow us to reproduce the mean MOC as well as the

leading modes of variability.

5) On seasonal time scales the Ekman contribution ac-

counts for most of the variability but short-term

variability is also found in the thermal wind contri-

bution. On interannual time scales the thermal wind

contribution (i.e., the boundary density) reflects

most of the MOC variability.
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APPENDIX A

Equivalence of Mass-Conserving Barotropic

Velocity Corrections in the Absence of

Topography

The integration of Eqs. (13) and (14) over the full

ocean depth can be written as

�
0

L

dx�
�H

0

�̃ dz � �
0

L

dx�
�H

0

�̂ dz � 0 and

�A1�

�
0

L

dx�
�H

0

�̃ dz � �
0

L

dx�
�H

0

�� dz � 0, �A2�

FIG. 14. Spatial and temporal variability based on monthly means for experiment D. (a) Leading EOF for the

thermal wind contribution based on Eq. (13). (b) Leading EOF for the Ekman contributions. (c) Second EOF of

the thermal wind contribution. (d) Second EOF of the Ekman contribution. (e) First PC for the thermal wind and

Ekman contributions (black and gray lines, respectively). (f) Second PC for the thermal wind and Ekman contri-

butions (black and gray lines, respectively).
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where L is the depth-independent basin width and H is

the zonally constant ocean depth. The second terms of

Eqs. (A1) and (A2) must have the same value. Invert-

ing the order of integrations yields

�
�H

0

dz�
0

L

�̂ dx � �
�H

0

dz�
0

L

�� dx. �A3�

Since �̂ and �
 are depth-independent (barotropic) ve-

locity fields,

��̂�x�

�z
�

���x��

�z
� 0 �A4�

is fulfilled at all longitudes and depths. For a rectangu-

lar longitude–depth section (no topography) this means

that the zonal integral of �̂ and �
 is constant with depth

as well:

��
0

L

�̂�x� dx

�z
�

��
0

L

��x�� dx

�z
� 0. �A5�

Since the barotropic velocity corrections �̂ and �
 must

both ensure mass balance across the section, their zonal

integrals

�
0

L

�̂�z, x� dx � �
0

L

���z, x� dx � const �A6�

are identical for all depths z. This not only holds true

for the velocity corrections �̂ and �
 but for any baro-

tropic correction field, regardless of its zonal structure.

As long as a zero net mass transport across the section

is ensured, the result for the thermal wind contributions

defined in Eqs. (13) and (14) is the same.

APPENDIX B

Thermal Wind Contribution Based on Boundary

Densities or on the Full Density Field

As mentioned in section 2, calculating the thermal

wind contribution based on boundary densities only is

equivalent to using the full density field. Based on the

thermal wind relation the shear of the flow can be com-

puted for the entire section and the streamfunction �̃

can be written as

�̃ � �
�H

z�

dz�
xw

xe

dx�
�H

z� ��

�z
dz. �B1�

Inverting the order of the second and the third integra-

tion and making use of Eq. (8) yields

�̃ � �
g

f�* ��H

z�

dz �
�H

z�

�e � �w. �B2�

This can be written as

�̃ � �
g

f�* ��H

z�

dz �
xw

xe

dx �
�H

z� 1

L�z��
��e � �w� dz.

�B3�

FIG. 15. Spatial and temporal variability based on annual means for experiment D. (a) Leading EOF for the

MOC. (b) Leading EOF for the MOC reconstruction based on the Ekman and thermal wind contributions [Eq.

(15)]. (c) First PC for the MOC (black line) and its reconstruction (gray line). (d) Variance explained by the first

7 EOFs of the MOC (black bars) and its estimate (white bars).
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According to Eq. (9) this is equivalent to

� � �
�H

z�

dz�
xw

xe

�̃ , �B4�

which corresponds to Eq. (11).
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the Ekman component (white bars).
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