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Abstract 29 

Hydrodynamic pressure is a physical quantity that is utilized by fish and many other aquatic animals to generate thrust 30 

and sense the surrounding environment. To advance our understanding of how fish react to unsteady flows, it is 31 

necessary to intercept the pressure signals sensed by their lateral line system. In this study, the authors propose a new, 32 

non-invasive method for reconstructing the instantaneous pressure field around a swimming fish from 2D particle 33 

image velocimetry (PIV) measurements. The method uses a physics-informed neural network (PINN) to predict an 34 

optimized solution for the velocity and pressure fields that satisfy in an ℒ2 sense both the Navier Stokes equations and 35 

the constraints put forward by the measurements. The method was validated using a direct numerical simulation of a 36 

swimming mackerel, Scomber scombrus, and was applied to empirically obtained data of a turning zebrafish, Danio 37 

rerio. The results demonstrate that when compared to traditional methods that rely on directly integrating the pressure 38 

gradient field, the PINN is less sensitive to the spatio-temporal resolution of the velocity field measurements and 39 

provides a more accurate pressure reconstruction, particularly on the surface of the body.  40 

Introduction  41 

Aerodynamic or hydrodynamic pressure is a physical quantity that is utilized by animals to both generate thrust 42 

(Akhtar et al., 2007; Zhang et al., 2015; Anderson et al., 2017; Dagenais et al., 2020; Thandiackal et al., 2020; Tack 43 

et al., 2021; Saadat et al., 2021; Han et al., 2022) and sense the surrounding environment (Liao et al., 2003; Liao, 44 

2006; Ristroph et al., 2008; McHenry et al., 2009; Ashraf et al., 2017; Verma et al., 2018; Halsey et al., 2018; Li et 45 

al., 2020). For example, fish have a sensory system, i.e., the lateral line, for detecting the rapidly changing pressure of 46 

the flow (Ristroph et al., 2020). To understand how fish react to unsteady flows, it is necessary to intercept the pressure 47 

signals received by the fish; however, it is challenging to do this instantaneously in a non-invasive manner. 48 

 49 

The most utilized non-invasive method is to reconstruct the pressure field from velocity measurements (van 50 

Oudheusden., 2013). Traditionally, there have been two main categories of this approach. The first computes the 51 

pressure field from the Poisson equation, i.e., as shown below for an inviscid flow (Fujisawa et al., 2005; de Kat et 52 

al., 2012; Shams et al., 2015; Neeteson et al., 2015; Pirnia et al., 2020). 53 

∇2𝑝 = −𝜌 (∇ ⋅
𝐷𝐮

𝐷𝑡
) , (1) 

where 𝑝 is the pressure, 𝐮 is the velocity vector, 𝜌 is the fluid density, and 𝐷/𝐷𝑡 is the material derivative. However, 54 

Charonko et al. (2010) and Pan et al. (2016) have shown that the Poisson-based solvers are sensitive to the grid 55 

resolution, flow type, velocity measurement errors, the shape of the immersed body, and the type of boundary 56 

conditions that are applied. Furthermore, as Dabiri et al. (2014) suggested, when applied to the study of animal 57 

locomotion under low or moderate Reynolds number (𝑅𝑒), it is difficult to predetermine the appropriate boundary 58 

condition at the fluid-body interface. Therefore, the pressure reconstruction could benefit from new methods that are 59 

less sensitive to these constraints. 60 

 61 
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The second category of techniques for pressure reconstruction is the direct integration of the pressure gradient along 62 

multiple different paths (Liu et al., 2006; 2013; Dabiri et al., 2014; Liu et al., 2021; Agarwal et al., 2021), as shown 63 

below. 64 

∇𝑝 = −𝜌 (
𝐷𝐮

𝐷𝑡
− 𝜈∇2𝐮), (2) 

Here, 𝜈 is the kinematic viscosity of the fluid. Multi-directional integration schemes utilize the scalar property of 65 

pressure, i.e., its local value is independent of the path taken, to improve the accuracy of the pressure estimation. Using 66 

this approach, Dabiri et al. (2014) developed an unsteady pressure reconstruction algorithm, known as Queen 2.0, to 67 

study animal locomotion (Dabiri et al., 2020; Dagenais et al., 2020; Siala et al., 2020; Costello et al., 2021; Gemmell 68 

et al., 2021; Kasoju et al., 2021; Thandiackal et al., 2021; Guo et al., 2022). 69 

 70 

However, Queen 2.0 does have its limitations. Firstly, to integrate the pressure gradient, a zero-pressure boundary 71 

condition is applied at all external boundaries, which is not always accurate. As demonstrated by He et al. (2020), 72 

when, for example, the wake of a turbulent jet crosses one of the boundaries, the pressure reconstruction by Queen 73 

2.0 becomes less accurate. Secondly, Queen 2.0 and most of the direct integration methods, do not incorporate 74 

information at the fluid-body interface into the pressure reconstruction. This is typically done because the velocity 75 

measurements, especially those obtained in typical PIV experiments, nearest to the body are often unreliable. Thus, to 76 

avoid this error from propagating to the pressure estimation, the integration paths are terminated before reaching the 77 

fluid-body interface. To then obtain the surface pressure, one would typically have to extrapolate from the nearest 78 

neighbor node in the surrounding pressure field. Pirnia et al. (2020) demonstrated that such an approach can provide 79 

a very accurate prediction of the surface pressure around stationary objects. However, the error increases greatly when 80 

the object is free to deform. They also showed that by incorporating the kinematics of the immersed body into the 81 

pressure reconstruction algorithm, the relative error in the surface pressure prediction can be sufficiently reduced. 82 

 83 

These results stress the need to have a pressure reconstruction algorithm that: 1) provides the user with the flexibility 84 

to alter the applied boundary conditions and 2) incorporates the kinematics of the undulating body into the pressure 85 

reconstruction. In recent years, new types of pressure reconstruction algorithms have been developed (Wang et al., 86 

2017; Jeon et al., 2018; Huhn et al., 2016; Cai et al., 2020; Wang et al., 2018; He et al., 2020); although these methods 87 

have made significant progress in other aspects of pressure reconstruction from velocity measurements, they do not 88 

correct the highlighted limitations of Queen 2.0. Furthermore, their applicability to flow fields involving actively 89 

deforming bodies remains relatively untested. 90 

 91 

Therefore, in this paper, we propose a new method to reconstruct the pressure field around undulating bodies based 92 

on physics-informed neural networks (PINNs) (Cai et al., 2022). The most important benefit of using PINNs is their 93 

flexibility. PINNs can deal with any boundary condition or no boundary condition; they do not need to deal with the 94 

complex grid designs required to incorporate the kinematics of the immersed body; they are less sensitive to the spatio-95 
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temporal resolution and noise, and they can patch the results in regions where velocity field data is not available (Cai 96 

et al., 2021, Di Leoni et al., 2022, Du et al., 2023). 97 

 98 

Previous research performed by Raissi et al. (2020) has utilized PINNs to reconstruct the pressure field around a 99 

stationary object. To build on this work, the authors will apply the method to reconstruct not only the pressure field 100 

around a swimming fish but also the pressure signals sensed by its lateral line. 101 

 102 

Materials and methods 103 

Physics-informed neural networks 104 

The general idea of the proposed method is not to derive pressure from the velocity field via integration, but to seek 105 

an optimized solution that simultaneously satisfies the governing equations and the constraints put forward by the 106 

measurements in an ℒ2 sense. The machine learning architecture provides an efficient way to meet these two 107 

requirements by iteratively updating the trainable parameters of the network to minimize a loss function, ℒ. The loss 108 

function can be decomposed into four main terms: the measured data (ℒ𝑑𝑎𝑡𝑎), the imposed initial conditions (ℒℐ𝒞), the 109 

imposed boundary conditions (ℒℬ𝒞), and the governing equations (ℒ𝒩𝒮). Thus, the loss function can be expressed as: 110 

ℒ = 𝜆1ℒ𝑑𝑎𝑡𝑎 + 𝜆2ℒℐ𝒞 + 𝜆3ℒℬ𝒞 + 𝜆4ℒ𝒩𝒮 , (3) 

where 𝜆1−4 are the weighting coefficients for the different loss terms. In this study, a fully connected feed-forward 111 

neural network is used to approximate the solution of the Navier-Stokes equations to recover the two-dimensional 112 

pressure field around a swimming fish. The PINN takes the spatio-temporal coordinates as inputs and performs a 113 

series of algebraic operations as they pass through twelve hidden layers, each of which contains 120 neurons. The 114 

output of the last layer, 𝐾, is used to approximate the solution of the Navier-Stokes equations. If the input variables to 115 

the 𝑘𝑡ℎ hidden layer are denoted 𝒛𝑘 (k=1,2, 3,...K-1), then the neural network can be represented as 116 

𝐳0 = (𝑥, 𝑦, 𝑡),

𝐳𝑘 = 𝜎(𝐠𝐤𝐖𝑘𝐳𝑘−1 + 𝐛𝑘), 1 ≤ 𝑘 ≤ 𝐾 − 1,

𝐳𝑘 = 𝐠𝐤𝐖𝑘𝐳𝑘−1 + 𝐛𝑘 , 𝑘 = 𝐾,

 

(4) 

(5) 

(6) 

where 𝑥 and y denote the spatial coordinates, 𝑡 denotes the temporal coordinates, 𝐖𝑘, 𝐛𝐤 , and 𝐠𝐤 denote the trainable 117 

parameters of the network: weights matrix, bias and gamma vectors, respectively, and 𝜎(⋅) denotes the activation 118 

function. In this study, a sigmoid activation function was used. To determine an appropriate network size, a parametric 119 

study was performed in which the number of layers and neurons per layer were systematically varied. For each network 120 

size the global relative root mean square error in the velocity and pressure fields were computed. In the supplementary 121 

material, Fig. S1 shows that a network size of twelve layers consisting of 120 neurons provided the most accurate 122 

solution for the pressure field.  123 

 124 

In this application, how accurately the PINN predictions match the measured time-series of the two-dimensional 125 

velocity fields can be quantified by the following data loss term. 126 
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ℒ𝑑𝑎𝑡𝑎 =
1

𝑁𝑑

[∑(𝑢𝑝𝑟𝑒𝑑
𝑖 − 𝑢𝑑𝑎𝑡𝑎

𝑖 )
2

𝑁𝑑

𝑖

+ (𝑣𝑝𝑟𝑒𝑑
𝑖 − 𝑣𝑑𝑎𝑡𝑎

𝑖 )
2

] , (7) 

where 𝑁𝑑 is the number of training data points sampled at each iteration, and 𝑢 and 𝑣 are the lateral and transverse 127 

velocities, respectively. The subscript “pred” refers to the predictions by the PINN, and the subscript “data” refers to 128 

the velocities obtained from the simulation or PIV results. The training data includes the velocity vectors in the domain 129 

over the entire time. 130 

 131 

To enforce the physics of the problem, the residuals of the Navier-Stokes equations are also evaluated. In general, the 132 

equation loss term consists of the residuals of the dimensionless momentum equations and continuity equation. 133 

However, since a two-dimensional slice is extracted from a three-dimensional velocity field, the divergence free 134 

condition is not enforced. Furthermore, since the third component of the velocity field is missing, the product of the 135 

out-of-plane velocity and the spatial derivative of 𝑢 and 𝑣 in that direction is assumed to be negligible. Therefore, it 136 

is important to stress that the current method is only applicable to cases where three-dimensional effects are weaker. 137 

This can be achieved by ensuring the PIV plane passes through the midline of the fish’s body and that the fish’s motion 138 

lies within this plane. The Navier-Stokes residuals utilized in this framework are shown as follows:  139 

ℒ𝒩𝒮 =
1

𝑁𝑒

[∑ ∑ (𝑒𝑗(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖))
2

𝑁𝑒

𝑖

2

𝑗

], (8) 

𝑒1 = 𝜕𝑡𝑢 + 𝑢𝜕𝑥𝑢 + 𝑣𝜕𝑦𝑢 + 𝑝𝑥 − 𝑅𝑒−1 (𝜕𝑥𝑥𝑢 + 𝜕𝑦𝑦𝑢), (9) 

𝑒2 = 𝜕𝑡𝑣 + 𝑢𝜕𝑥𝑣 + 𝑣𝜕𝑦𝑣 + 𝑝𝑦 − 𝑅𝑒−1 (𝜕𝑥𝑥𝑣 + 𝜕𝑦𝑦𝑣), (10) 

Here, 𝑁𝑒 is the number of data points sampled at each iteration to evaluate the Navier-Stokes residuals. The partial 140 

derivatives in the governing equations are computed using automatic differentiation (Baydin et al., 2018), which 141 

calculates the derivatives of the outputs (𝑢, 𝑣, 𝑝) with respect to the network inputs (𝑥, 𝑦, 𝑡) directly in the 142 

computational graph, without any finite differencing methods utilized in more classical computational methods. It is 143 

important to stress that the Navier-Stokes residuals can be evaluated at points where measured data is not available 144 

thus providing a means for increasing the resolution of the measured data, which is grounded in physics. 145 

 146 

The applied initial and boundary conditions depend on the problem. Since the network is in essence solving the Navier-147 

Stokes equations, the applied initial and boundary conditions can involve either pressure or velocity. Compared with 148 

other methods relying on integrating pressure from boundaries to the point of interest, this method does not require a 149 

priori knowledge of the boundary conditions and certainly does not enforce the wrong boundary condition when it is 150 

not available. Furthermore, PINNs do not rely on a traditional Cartesian grid because they simply take any spatio-151 

temporal coordinate as inputs and outputs velocities and pressure. This feature is extremely helpful in dealing with 152 

complex animal locomotion problems because the undulating body and the fluids grid do not always coincide with 153 

one another. But for PINNs, there is no need to extrapolate from a grid to the body or back. The kinematics of the 154 

body can be input as a boundary condition into the network with ease. 155 
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For all cases in this study, a non-penetration boundary condition is enforced on the surface of the fish’s body, through 156 

which information of the fish kinematics is utilized. Therefore, the boundary condition is a measure of how well the 157 

PINN prediction matches the measured velocity normal to the fish’s body. In addition, boundary conditions can be 158 

enforced at external boundaries. These may include a zero-pressure boundary condition and an inlet velocity boundary 159 

condition. The boundary condition loss terms that were enforced in this study are shown as follows. 160 

ℒ𝐵𝐶
1 =

1

𝑁𝐵𝐶

[∑[(𝑢𝑛)𝑝𝑟𝑒𝑑
𝑖 − (𝑢𝑛)𝑑𝑎𝑡𝑎

𝑖 ]
𝛺

2

𝑁𝐵𝐶

𝑖

], (11) 

ℒ𝐵𝐶
2 =

1

𝑁𝐵𝐶

[∑[(𝑢𝑖𝑛)𝑝𝑟𝑒𝑑
𝑖 − (𝑢𝑖𝑛)𝑑𝑎𝑡𝑎

𝑖 ]
𝜑

2
+ [(𝑣𝑖𝑛)𝑝𝑟𝑒𝑑

𝑖 − (𝑣𝑖𝑛)𝑑𝑎𝑡𝑎
𝑖 ]

𝜑

2

𝑁𝐵𝐶

𝑖

], (12) 

ℒ𝐵𝐶
3 =

1

𝑁𝐵𝐶

[∑[𝑝𝑝𝑟𝑒𝑑
𝑖 − 0]

𝜑

2

𝑁𝐵𝐶

𝑖

], (13) 

where 𝑢𝑛 denotes the normal velocity, 𝑢𝑖𝑛 denotes the lateral component of the inlet velocity, 𝑣𝑖𝑛 denotes the 161 

transverse component of the inlet velocity, 𝛺 denotes the spatio-temporal coordinates of the fish’s body, 𝜑 denotes 162 

the spatio-temporal coordinates at the domain boundaries, and 𝑁𝐵𝐶  denotes the number of points on the boundary that 163 

were sampled at each iteration. There were no initial conditions applied to any of the cases in this study. 164 

 165 

To minimize the loss function and optimize the trainable parameters of the network, the ADAM optimizer was used 166 

(Kingma et al., 2015). The mini-batch size was set to 10,000. Therefore, at each iteration, a maximum of 10,000 spatio-167 

temporal points were randomly sampled from the entire training dataset to evaluate the terms of the loss functions. 168 

The PINN was trained on a NVIDIA a100 graphics card. For each case studied, the network was trained for 1500 169 

epochs, or 1500 passes through the entire dataset, and took approximately ten hours to complete. As shown in the 170 

supplementary material, 1500 epochs sufficiently balances the accuracy of the PINN predictions with the 171 

computational cost. 172 

 173 

It is important to note that the purpose of the PINN framework is to uncover hidden information from visualizations 174 

of the flow field. For this application, the goal is to recover pressure from velocity measurements. Therefore, for every 175 

new velocity field, the network must be retrained to obtain the corresponding pressure field. The trained network is 176 

not meant to predict the pressure field for a wide range of different flow types nor is it meant to be used to develop 177 

reduced order models. 178 

 179 

In theory, the PINN method can be applied to study undulatory locomotion over a range of Reynolds numbers if the 180 

animal’s oscillatory motion is primarily two-dimensional and lies in the same plane as the PIV data. To satisfy these 181 

two conditions, two datasets of the flow produced by the oscillatory motion of carangiform swimmers were selected. 182 
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One is the direct numerical simulation (DNS) of a swimming mackerel, which will be used to quantify the accuracy 183 

of the method. The other one is an experimental dataset of a turning zebrafish, Danio rerio. 184 

 185 

Single fish validation dataset 186 

To test the accuracy of the proposed method, it was applied to a direct numerical simulation of a swimming fish using 187 

the ViCar3D, a sharp-interface immersed boundary method (Mittal et al., 2008). The 3D model of the fish is based on 188 

the common Mackerel (Scomber scombrus). The fish model consists of body and caudal fin, and the caudal fin is 189 

modelled as a zero-thickness membrane. A carangiform swimming motion is prescribed by imposing the lateral 190 

displacement of the fish body and fin using the following prescription: 𝛥𝑦/𝐿 = 𝐴(𝑥)𝑠𝑖𝑛(𝑘𝑥 − 2𝜋𝑓𝑡 + 𝜙) ; 𝐴(𝑥) =191 

𝑎0 + 𝑎1(𝑥/𝐿) + 𝑎2(𝑥/𝐿)2 where 𝛥𝑦 is the lateral displacement, 𝐿 is the body length, 𝑥 is the axial coordinate along 192 

the body starting from the nose, 𝑓 is the tail beat frequency, 𝜙 is a phase, and 𝐴(𝑥) is the amplitude modulation 193 

function. The parameters are set based on literature (Videler et al., 1987) to the following values: 𝑎0=0.02, 𝑎1=-0.08, 194 

and 𝑎2=0.16. The wave number is set to 𝑘 = 2𝜋/𝐿 and the flow Reynolds number based on the body length and tail 195 

beat frequency, Re𝐿 = 𝐿2𝑓/𝜈, is set to 5,000. 196 

 197 

In the present simulation, the swimming motion is imposed on a ‘tethered’ fish and a flow velocity is prescribed at the 198 

inflow boundary, such that the net force on the fish is nearly zero, thereby simulating self-propelled swimming with 199 

net zero acceleration. The fish body and caudal fin are meshed with triangular surface elements and immersed into the 200 

Cartesian volume mesh which covers the flow domain. The flow domain size is set to 8𝐿 × 10𝐿 × 10𝐿 and this is 201 

discretized on a very dense grid with 640 × 320 × 240 (about 49 million) Cartesian cells. The minimum grid spacing 202 

(cell size) is 0.005L and the body length is covered by 200 grid points. The time-step size used in the simulation is 203 

𝛥𝑡 = 0.001/𝑓, which resolves one tail beat cycle with 1000 time-steps. A no-slip, no-penetration boundary condition 204 

is applied on the moving fish body and fin surfaces by using the sharp-interface, immersed boundary method and a 205 

zero-gradient velocity boundary condition is applied on the other domain boundaries except the inflow. For the 206 

pressure, a zero gradient boundary condition is applied on the fish body as well as all the outer boundaries (Seo et al., 207 

2022).  208 

 209 

A 2D slice at a z-plane cutting through the midline of the fish’s body was extracted from the 3D velocity field. The 210 

2D velocity and pressure gradients on this plane provide the hydrodynamic signals that a fish would sense with its 211 

lateral line. In addition, the simulation results fully define the fish’s motion as the velocities at multiple points along 212 

the fish’s body are known. The data extracted from the simulation results, which contains a time series of velocity 213 

fields and defined fish kinematics, were meant to replicate a dataset that can be obtained through experiments. For 214 

example, the velocity field on a plane cutting through the midline of a fish’s body can be obtained through particle 215 

image velocimetry (PIV), and the fish kinematics could be captured by imaging the silhouette of the fish body. The 216 

spatio-temporal resolution of the 2D velocity field on this DNS slice was made coarser to replicate data that would be 217 

obtained from a PIV experiment with either a large field of view or insufficient resolution. 218 

 219 
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To test the sensitivity of the proposed method to the spatial resolution, the PINN was trained using velocity fields with 220 

a grid size of 0.02𝐿, 0.04𝐿, 0.06𝐿, 0.08𝐿, and 0.1𝐿, which would respectfully consist of 50, 25, 17, 13, and 10 grid 221 

points along the length of the fish’s body. For this study, a temporal resolution of 0.02𝑇 was used. Here, 𝐿 is the body 222 

length of the fish, and 𝑇 is the time corresponding to the fish’s motion, i.e., one period of the tail beating motion. To 223 

test the sensitivity of the proposed method to the temporal resolution, the PINN was trained using velocity fields with 224 

a time step of 0.02𝑇, 0.04𝑇, 0.06𝑇, 0.08𝑇, and 0.1𝑇. For this study a spatial resolution of 0.02𝐿 was used. As previously 225 

mentioned, the Navier-Stokes residuals shown in Eqns 8-10 can be evaluated at any points in the domain and not 226 

necessarily at points where measurement data are available. Therefore, in the spatio-temporal resolution study, the 227 

Navier-Stokes residuals were always evaluated on the finest grid even as the velocity measurements became coarser. 228 

 229 

To evaluate the accuracy of the pressure reconstruction along the surface of the body across all time steps for each 230 

spatio-temporal resolution tested, the relative global root mean square error (RMSE) was computed as follows. 231 

𝑅𝑒𝑙 𝑅𝑀𝑆𝐸 =

√
1

𝑁𝑠
[∑ {(𝐶𝑝)

𝑝𝑟𝑒𝑑

𝑖
− (𝐶𝑝)

𝐷𝑁𝑆

𝑖
}

2
𝑁𝑠
𝑖 ]

√
1

𝑁𝑠
[∑ {(𝐶𝑝,ℎ)

𝐷𝑁𝑆

𝑖
}

2
𝑁𝑠
𝑖 ]

, (14) 

where 𝑁𝑠 is the number of surface points, and (𝐶𝑝)
𝑝𝑟𝑒𝑑

𝑖
 and (𝐶𝑝)

𝐷𝑁𝑆

𝑖
 represent the non-dimensional surface pressure 232 

predicted by either the PINN or Queen 2.0 and the simulation data, respectively. (𝐶𝑝,ℎ)
𝐷𝑁𝑆

𝑖
 represents the non-233 

dimensional pressure at the fish’s head. The authors chose to normalize the global RMSE by the head pressure because 234 

the surface pressure for most of the body is close to zero. Furthermore, all data points on the body located at 𝑥 > 0.9𝐿 235 

were excluded from the error calculation. As shown by Fig. S3 in the supplementary material, in this region the flow 236 

becomes highly three-dimensional and thus naturally the errors in the pressure field will be much larger.  237 

 238 

In addition to the resolution of the velocity measurements, it is also expected that the level of noise in the velocity 239 

data will affect the accuracy of the PINN’s prediction. To test the sensitivity of the proposed method to noise, various 240 

levels of artificial white noise were systematically added to the velocity data on the 2D plane extracted from the DNS 241 

dataset. The details of this study and its results are available in the supplementary material.    242 

 243 

For each dataset analyzed, the loss function to be minimized consisted of the two-dimensional velocity data loss terms, 244 

the residuals of the x and y momentum equations, and the boundary condition loss terms. To incorporate the kinematics 245 

of the fish’s body, a non-penetration boundary condition was applied on the surface of the fish’s body. In addition, a 246 

zero-pressure boundary condition was applied at the top and bottom boundaries since they were considerably far away 247 

from the fish’s motion. An inlet velocity boundary condition was also applied. However, no boundary condition was 248 

added to the outlet where the pressure is significantly affected by the wake. Lastly, the divergence free condition was 249 

not enforced since a two-dimensional slice was extracted from a three-dimensional velocity field. 250 

 251 
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For this application, 𝜆1 and 𝜆3 in Eqn 3 were set to 100, λ2 was set to zero, and 𝜆4 was set to unity. As shown in the 252 

supplementary material, Fig. S2 demonstrates that by applying these weights, the PINN can more accurately recover 253 

the pressure field and provide a better prediction of the surface pressure. The choice of weights is consistent with that 254 

reported by Cai et al. (2021). 255 

 256 

Empirical dataset 257 

To test the proposed method on empirical velocity field data, the PINN was used to reconstruct the two-dimensional 258 

pressure field around a turning zebrafish, Danio rerio. The velocity fields were obtained from PIV experiments 259 

performed by Thandiackal et al. (2020).  260 

 261 

Before implementing the PINN, the velocity field grid points inside the fish’s body were removed from the dataset. 262 

Then, the velocity in the direction normal to the zebrafish’s body was computed at all time steps. Lastly, since the 263 

PINN utilizes the non-dimensional form of the Navier-Stokes equations, the spatio-temporal coordinates and the 264 

velocities were non-dimensionalized. The characteristic time was the turning time (0.15 s), the characteristic length 265 

was the zebrafish body length (22 mm), and the characteristic velocity was computed by dividing the center of mass 266 

displacement by the turning time. The Reynolds number for this case was 918. The dimensionless grid had a spatial 267 

resolution of 0.02 and a temporal resolution of 0.03. A total of 36-time steps were included in the training dataset. 268 

 269 

For the empirical dataset, the loss function to be minimized consisted of the two-dimensional velocity data loss terms, 270 

the x and y momentum equations, and a loss term needed to enforce a non-penetration boundary condition on the 271 

surface of the fish’s body. In this case, the zero pressure boundary conditions were not enforced at any of the 272 

boundaries because the zebrafish is relatively close to the top and left boundaries at various points throughout its 273 

turning motion. It is uncertain whether the pressure field induced by the fish motion would affect the boundaries. 274 

When such uncertainty exists, it is better not to enforce the zero-pressure boundary condition; rather, one should allow 275 

the PINN to learn what the pressure at the boundaries should be based on all the information provided during the 276 

training process. The same weighting factors used for the simulation data were applied in this experimental data as 277 

well. 278 

 279 

Results and Discussion  280 

Fig. 1 compares the instantaneous pressure field at 𝑡 = 0.2𝑇 obtained from the simulation to that predicted by the 281 

PINN and Queen 2.0. The results were computed from the simulation dataset with a spatial resolution of 0.02𝐿 and a 282 

temporal resolution of 0.02𝑇.  283 

 284 

The PINN effectively captures the high-pressure region near the head, the large pressure variation near the tail, and 285 

the pressure fluctuation in the wake. In comparison, Queen 2.0 captures the high-pressure region at the head but is 286 

less accurate near the tail. In fact, Queen 2.0 does not capture the negative pressure region on the right side of the 287 
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fish’s tail (pointed by the arrow in Fig. 1A,C,E) and instead predicts a region of positive pressure. This results in 288 

localized errors that are much larger than those obtained by the PINN. 289 

 290 

Results for validation dataset   291 

 292 

Fig. 1. Comparison of the 2D pressure field and surface pressure profiles predicted by PINN and Queen 2.0. (A) the 2D pressure data cut through the 293 

mid-plane of the fish from (B) the full 3D DNS results. (C)-(F) the reconstructed pressure fields and their associated absolute error for each method. The 294 

arrows denote a region where the localized error in the Queen 2.0 prediction is much larger than PINN. (G) the surface pressure profiles, including the DNS 295 

results (circles) and the prediction from the PINN (solid) and Queen 2.0 (dashed), on the right (blue) and left (red) sides of the fish body. (H) the pressure 296 

difference between the left and right side of the body predicted by each method. 297 

 298 

The decrease in the errors predicted by the PINN in the tail region can be attributed to the fact that it utilizes the fish’s 299 

kinematics as another constraint in the pressure reconstruction and resolves the pressure field up to the fluid-body 300 

interface, whereas Queen 2.0 does not. Furthermore, Queen 2.0 enforces a zero-pressure boundary condition on the 301 

right side of the domain. This is not an accurate boundary condition since the vortices shed by the beating tail pass 302 

through the boundary and results in a non-zero pressure. For the Queen 2.0 reconstruction, in the wake region certain 303 

areas exhibit higher errors than others. This is most likely because in these localized regions the multi-directional 304 

integration scheme is not able to sufficiently mitigate the error introduced by applying a zero-pressure boundary 305 

condition on the right side of the domain. For PINNs, there is no need to enforce this boundary condition and introduce 306 

the associated error into the pressure reconstruction. Thus, for the PINN reconstruction, the error in the wake region 307 

is more uniform. The results in Fig. 1 demonstrate how the PINN can overcome limitations of Queen 2.0 and provide 308 

an accurate reconstruction of the pressure field surrounding a swimming fish. 309 

 310 
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It is important to note that both algorithms produced an increased error in regions where the out-of-plane velocities 311 

are non-negligible (i.e., in the tail and wake region). This is unsurprising since only the 2D flow field was used during 312 

the pressure reconstruction. A more detailed discussion of this result can be found in the supplementary material. 313 

 314 

To better understand the signals that a fish is sensing with its lateral line, the pressure reconstruction method must 315 

accurately predict the pressure on the surface of the fish’s body. To obtain the surface pressure using Queen 2.0, one 316 

must extrapolate from the reconstructed pressure field. As was done in Thandiackal et al. (2020), the pressure at a 317 

point on the body is typically assumed to be the pressure at the closest grid point. In contrast, the PINN provides the 318 

ability to predict the surface pressure directly without any need for extrapolation. 319 

 320 

Fig. 1G,H compares the surface pressure on the left (red) and right (blue) side of the fish’s body and the pressure 321 

difference between the two sides as predicted by the PINN and Queen 2.0 to that obtained from the simulation. The 322 

pressure difference profiles are included because Ristroph et al. (2020) have suggested that the pressure difference is 323 

a quantity that fish can sense. The results demonstrate that, for most of the sensing region of the fish, both methods 324 

can accurately predict the surface pressure with the PINN being slightly more accurate particularly in the tail region. 325 

This can be confirmed quantitatively by computing the relative RMSE in the surface pressure according to Eqn 14. 326 

The PINN has a relative error of 10.1% whereas Queen 2.0 has an error of 12.0% at this time step. 327 

 328 

Results for the spatio-temporal resolution study  329 

The benefit of using PINNs becomes more apparent as the spatio-temperal resolution of the velocity field deteriorates. 330 

Fig. 2 compares the instantaneous surface pressure at 𝑡 = 0.3𝑇 (top row) and 𝑡 = 0.6𝑇 (bottom row) on the right side 331 

of the fish’s body predicted by the simulation to that predicted by the PINN and Queen 2.0 for each spatial and 332 

temporal resolution tested. For most of the body, the pressure predictions by the PINN collapse onto the simulation 333 

results for each of the spatio-temporal resolutions tested. Although at the coarsest resolution tested, comparatively 334 

larger deviations can be observed in the tail region. This result indicates that, for most of the body, the accuracy of the 335 

pressure reconstructed by the PINN is not that sensitive to the spatio-temporal resolution of the measured velocity 336 

field. For Queen 2.0, the accuracy of the surface pressure prediction greatly decreases as the resolution becomes 337 

coarser. The coarser the PIV grid, the farther the distance between the fish surface to the nearest PIV grid point. Since 338 

Queen 2.0 requires extrapolation from the grid to the surface, a longer extrapolation distance results in a larger error, 339 

as expected. The decrease in accuracy as a function of the temporal resolution, on the other hand, can most likely be 340 

attributed to the fact that the finite difference approximation of the material derivative shown in Eqn 2 becomes less 341 

accurate with a larger time step.  342 

 343 

Fig. 2E,F shows how the relative global RMSE in the surface pressure prediction by each method varies as a function 344 

of the spatial and temporal resolution. For Queen 2.0, the error quickly grows as the resolution becomes coarser, but 345 

for the PINN the error profile remains relatively flat across all temporal resolutions tested. The error only begins to 346 
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really rise as the spatial resolution exceeds 0.04𝐿. Note that the errors reported in Fig. 2E,F only represent the global 347 

average, the improvement of local pressure prediction could be much larger than these values.  348 

 349 

 350 
Fig. 2. Surface pressure profiles reconstructed from the velocity data using PINN and Queen 2.0 at different (A)-(B) spatial and (C)-(D) temporal 351 

resolutions: 0.02 (red), 0.06 (blue), and 0.1 (green) for two different times. (E)-(F) The relative global root mean square error in the surface pressure 352 

prediction obtained by both methods as a function of (E) the spatial and (F) temporal resolution of the PIV data. 353 

 354 

Results for empirical dataset  355 

Fig. 3A-F compares the instantaneous velocity field obtained from the PIV experiments to that reconstructed by the 356 

PINN. The PINN can accurately reconstruct the velocity fields, with absolute errors not exceeding 0.1. Since the 357 

optimization process was regularized by the Navier-Stokes residuals, an accurate reconstruction of the velocity field 358 

would imply that the reconstructed pressure field is also accurate. Fig. 3G,H shows the reconstructed pressure field 359 

around a turning zebrafish and the pressure distribution along its body directly predicted by the PINN. Although it is 360 

difficult to make a direct comparison to Queen 2.0 since the ground truth pressure field is unknown, the results from 361 

the validation case suggest that the PINN prediction would be more accurate because it resolves the pressure field all 362 

the way to the body, it incorporates the zebrafish’s kinematics into the pressure reconstruction, and does not enforce 363 

a zero pressure boundary condition since the zebrafish’s motion may induce flows crossing the boundaries. 364 

Comparative advantage 365 

In this paper, a machine learning-based method for reconstructing the pressure field around an undulating body from 366 

2D PIV data was developed. PINNs provide the user with greater flexibility in applying boundary conditions and 367 

provide a framework for incorporating the kinematics of the undulating body into the pressure reconstruction process 368 

without requiring any deforming grids. When compared to Queen 2.0, at the highest resolution of the PIV data, PINNs 369 

provide a small improvement in accuracy, but as the resolution decreases, PINNs show a clear advantage with much 370 
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smaller reconstruction uncertainty. The applicability of PINNs to empirically obtained data with no clear knowledge 371 

of the boundary condition was also demonstrated. 372 

 373 

374 

Fig. 3. Reconstructed velocity and pressure fields for empirical dataset. (A)-(F) The predicted velocity fields versus the direct PIV measurements and their 375 

differences. (G)-(H) the instantaneous pressure field and surface pressure predicted by the PINN 376 

 377 
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