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Reconstructing the quantum critical fan of strongly
correlated systems using quantum correlations
Irénée Frérot1,2 & Tommaso Roscilde2,3

Albeit occurring at zero temperature, quantum critical phenomena have a huge impact on the

finite-temperature phase diagram of strongly correlated systems, giving experimental access

to their observation. Indeed, the existence of a gapless, zero-temperature quantum critical

point induces the existence of an extended region in parameter space—the quantum critical

fan (QCF)—characterized by power-law temperature dependences of all observables. Iden-

tifying experimentally the QCF and its crossovers to other regimes (renormalized classical,

quantum disordered) remains nonetheless challenging. Focusing on paradigmatic models of

quantum phase transitions, here we show that quantum correlations—captured by the

quantum variance of the order parameter—exhibit the temperature scaling associated with

the QCF over a parameter region much broader than that revealed by ordinary correlations.

The link existing between the quantum variance and the dynamical susceptibility paves the

way to an experimental reconstruction of the QCF using spectroscopic techniques.
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Quantum critical (QC) phenomena1–5 represent possibly
the most dramatic manifestation of quantum mechanics
at the macroscopic scale. Their typical setting involves an

Hamiltonian H ¼ H0 þ gV in which the competition between
the two noncommuting terms H0 and V, controlled by the
parameter g, induces a macroscopic rearrangement of the ground
state at a critical value gc, accompanied by the appearance of
critical quantum fluctuations of collective observables at all length
scales. This complex behavior of correlation and entanglement
properties emerges from extensive theoretical work based on
exactly solvable microscopic models4, quantum field theory2, as
well as numerical studies6. Experiments generally do not have
access to ground-state physics, but it was realized at an early
stage7 that zero-T quantum critical points affect a sizable portion
of the finite-T phase diagram, by inducing the presence of a so-
called QC regime, in which the behavior of thermodynamic
potentials and of response functions is controlled by the QC point
(QCP). Indeed, observables in the QC regime are expected to
exhibit thermal QC scaling, namely a power-law dependence on
temperature with exponents descending from the critical expo-
nents at the QCP. Strikingly, the QC regime is expected to be
wider in parameter space at higher temperatures: as sketched in
Fig. 1, it acts as a magnifying lens for the QCP. Even more
strikingly, the finite-T QC regime ignores completely the physics
of the T= 0 and low-T phases at g ≠ gc8, which are generally an
ordered phase with a classical analog (for, say, g < gc); and a
gapped quantum disordered phase (for g > gc). This implies that,
if the temperature is lowered from a point at g ≠ gc in the QC
regime, a crossover must occur toward a thermodynamic regime
which is instead controlled by the presence of long-range order in
the ground state—the so-called renormalized classical (RC)
regime for g < gc; or by the presence of a gap above a disordered
ground state—the QD regime for g > gc. This is all the more
striking, as it shows that a strictly quantum T= 0 phenomenon
(the QCP), governed by divergent quantum fluctuations, can have
consequences on the phase diagram at temperatures T which are
higher than those necessary to melt long-range order via a clas-
sical thermal transition.

Many exciting platforms for the exploration of QC phenomena
can be found across the physical spectrum4,5,9–12. But can one
reconstruct the QC regime quantitatively? The special scaling
properties of the thermodynamic potentials and the dynamical
response functions at g= gc and finite T (along the so-called QC

trajectory) have been observed in several systems, including
magnetic insulators13–17 and heavy-fermion compounds9,18; but
the persistence of the QC regime away from gc, and its crossover
into the competing low-T regimes, are almost uniquely observed
via transport properties in heavy-fermion materials9—the so-
called strange-metal phase in cuprate superconductors is also
interpreted as an extended QC regime19 associated with a puta-
tive QCP20,21. Hence it is fair to say that the quantitative extent of
the QC regime, and its crossovers toward the RC and QD
regimes, remain challenging to observe. Quite remarkably, the
same observations can be repeated for theoretical calculations on
microscopic models, for which the quantitative extent of the QC
regime is rarely investigated22. A general scenario (corroborated
by the present work) is that different observables exhibit thermal
QC scaling over different regions in the (g, T) parameter space.
Therefore it is crucial to identify those observables which man-
ifest such a scaling over the broadest possible range.

Here, we propose a constructive definition of the QC regime
based on observables that do not admit any classical analog,
namely quantum coherence measures, capturing quantum corre-
lations and fluctuations for generic mixed states. Using quantum
Monte-Carlo numerical computations and exact-diagonalization
on paradigmatic models of quantum phase transitions, we single
out a broad, fan-shaped region in the phase diagram where
quantum fluctuations of the order parameter obey the expected
power-law scaling of the QC fan. Given the link between quantum
fluctuations and the dynamical susceptibility of the order para-
meter, our results open the way to the experimental reconstruction
of the QC region using, e.g., spectroscopy on strongly correlated
quantum systems.

Results
QC regime from quantum correlations. At first sight, defining
the QC regime using the scaling behavior of quantum fluctuations
sounds very natural: the T= 0 QCP is characterized by critical
quantum fluctuations, and the QC regime, if regarded as echoing
the QCP at finite T, should be characterized by enhanced quan-
tum fluctuations as well. The quantum coherence measures of our
interest generally belong to the family identified by Petz23,24 as
generalizations of the quantum Fisher information (QFI)25,26.
Among this family of quantities, we focus on the recently pro-
posed quantum variance (QV)27 of an observable O, possessing a
simple definition at thermal equilibrium at inverse temperature
β= (kBT)−1; it is the difference between the (total) variance (TV)
Var[O]= 〈O2〉− 〈O〉2 and the susceptibility

VarQ½O� ¼ Var½O� � kBTχO; ð1Þ

where χO= (∂〈O〉/∂h)h=0 and h is a field coupling to O in the
Hamiltonian as H� hO. Beyond its transparent physical mean-
ing (difference between fluctuations and response function), the
QV (like the QFI) has the fundamental property of being an
entanglement witness—denying separability of the state of the
system into clusters of size k (or smaller) when it exceeds a k-
dependent bound27–30. Moreover, unlike the QFI, it has the
remarkable property of being directly accessible to state-of-the-art
calculations for equilibrium quantum many-body systems at
finite T, as e.g., worldline quantum Monte Carlo (the computa-
tion of the QFI requires the precise knowledge of the dynamical
response function at real frequencies31, which can only be
inferred from quantum Monte-Carlo data through analytical
continuation, an operation very sensitive to numerical noise).
This makes the QV an observable of choice to explore quantum
coherence properties across the phase diagram of QC
phenomena.
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Fig. 1 Quantum critical fan. The quantum critical fan can be seen effectively
as a magnifying lens for the quantum critical point, making its existence
observable over an extended range of temperatures and of the control
parameter g of the transition
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Both the variance and the susceptibility in Eq. (1) can be
expressed as integrals of the imaginary part of the dynamical
susceptibility32, resulting in the fundamental relationship:

VarQ½O� ¼ �h
Z 1

0

dω
π

Lðβ�hω=2Þχ′′OðωÞ: ð2Þ

where LðxÞ ¼ coth x � 1=x is the Langevin function. Since
LðxÞ ! x=3 for x → 0, one sees that VarQ[O] is dominated by
modes with frequency ω such that β�hω≳ 1, namely modes which
are mildly (or not at all) affected by thermal fluctuations. A
similar expression to Eq. (2) holds for the QFI, with the
replacement LðxÞ ! 4 tanhðxÞ31. When O is the order parameter
of the quantum phase transition of interest, the dynamical
susceptibility in the vicinity of the QCP is expected to obey the
scaling form

χ′′OðωÞ ¼ T�ð2�ηÞ=zΦO ðg � gcÞνz=T;ω=T½ �; ð3Þ

where η, ν, and z are the correlation function exponent,
correlation length exponent and dynamical critical exponent of
the QCP, respectively, and ΦO is a universal function up to a
prefactor2. This directly translates into a scaling Ansatz for the
QV:

VarQ½O� ¼ T�ψGðQÞ
O ½ðg � gcÞνz=T�; ð4Þ

where ψ= (2− η)/z− 1 and GðQÞ
O � R

dωLðβ�hω=2ÞΦO. The TV
of the order parameter Var[O] possesses a similar scaling form to
Eq. (4), but with a different scaling function
GðQÞ
O ! GO � R

dω cothðβ�hω=2ÞΦO.
Eq. (4) forms the basis of our constructive definition of the QC

regime as detected by quantum correlations. Being controlled by
the QCP alone, such a regime must be nearly insensitive to
whether the control parameter g lies above or below gc. This
defining condition requires that, in the QC regime, the scaling
function GðQÞ

O ðxÞ depend very weakly on its argument, namely
GðQÞ
O ðxÞ � GðQÞ

O ð0Þ. This leads us then to the following quanti-
tative definition for the QC regime in the (g, T) plane:

QC regime : VarQ½O�ðg;TÞ � T�ψGðQÞ
O ð0Þ; ð5Þ

where the ≈ sign implies that the above condition is satisfied
within some tolerance. As the QC regime is not a phase of matter
which is divided from competing phases by sharp boundaries, the
tolerance defines operatively the crossover lines toward the other
regimes (RC and QD) in the vicinity of the QCP. The
constructive definition of the QC regime offered by Eq. (5)
identifies the latter regime with the region in the g-T phase
diagram in which the T-dependence of the quantum fluctuations
of the order parameter is uniquely controlled by the presence of
the QCP—namely it is the same (up to some tolerance) as along
the so-called QC trajectory (the line of variable T at g= gc). The
very fact that such a regime exists in an extended, fan-shaped
region, is a fundamental test of the validity of our definition. A
similar condition could obviously be formulated for the more
conventional TV in the form Var½O� � T1�2�η

z GOð0Þ: as we shall
see shortly, this condition in practice singles out only the QC
trajectory.

2d transverse field Ising model. We demonstrate our con-
structive definition of the QC regime using two paradigmatic
examples of quantum phase transitions in quantum spin models.
We begin by considering the 2d transverse field Ising (TFI)

model4

H=J ¼ �
X
hiji

Szi S
z
j � g

X
i

Sxi ; ð6Þ

where the indices 〈ij〉 and i run over the nearest-neighbor bonds
and the sites of a square lattice, respectively; and Sαi (α= x, y, z)
are S= 1/2 spin operators. A critical value gc= 1.522…33 of the
transverse field divides a ferromagnetic regime (g < gc) from a
quantum paramagnetic one (g > gc). We calculate the equilibrium
properties of this model on N= L × L lattices with periodic
boundary conditions numerically using Stochastic Series Expan-
sion quantum Monte Carlo34,35, which gives direct access to the
TV and QV of most relevant observables27. The temperature
scaling of the variances (total and quantum) of the macroscopic
order parameter Jz ¼ P

i S
z
i in the vicinity of the QCP are con-

trasted in Fig. 2. Here we take for simplicity Var(Jz)= 〈(Jz)2〉 as
〈Jz〉= 0 on finite lattices. We have checked that our conclusions
do not change when considering a finite-size estimate of the
actual variance, namely hðJzÞ2i � N2m2

L where m2
L ¼ hSzi SziþL=2i.

The QCP appears to control the T dependence of Var(Jz) only
along the QC trajectory [Fig. 2a], where it exhibits the expected
power-law dependence � T�ψ ; on the contrary the TV is strongly
bent upward by the finite-T transition for g < gc, as well as
downward by the opening of a spin gap for g > gc.

This picture is completely changed when one looks at quantum
fluctuations. Indeed Fig. 2b shows that a power-law QC scaling of
the QV as � T�ψ is manifested not only along the QC trajectory
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Fig. 2 Quantum-critical scaling in the 2d transverse-field Ising (TFI) model.
Temperature scaling of a the total variance and of b the quantum variance
of the order parameter around the quantum critical point of the 2d TFI
model (data have been obtained on a L= 64 lattice), for g= 1.46 (dark-blue
squares), g= 1.48 (blue dots), g= 1.5 (light-blue triangles), g= gc (yellow
dots), g= 1.5 (red triangles), g= 1.2 (purple circles), and g= 1.54 (dark-red
diamonds). The quantum variance (b) above the quantum critical point
(g≥ gc) has been multiplied by a factor of 3 to improve readability. Solid
lines are the QC scaling forms G(0)T−ψ (in (a)) and G(Q)(0)T−ψ (in (b))
respectively. Here, ψ= 0.964…37
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(down to T= 0), but it can be observed also over sizable segments
of the T-dependence both above and below the QCP. For g < gc
this is due to the fundamental property of the QV to be nearly
insensitive to finite-temperature transitions27—as it will be
discussed in a future publication, only weak singularities, in the
form of inflection points, can appear at Tc. Therefore, the thermal
critical region (in which power-law singularities dominate the
behavior of the system) is minute in the T-dependence of the QV.
Interestingly, a similar observation also applies to the case g > gc
in which a finite-T transition is absent. Indeed, unlike thermal
fluctuations, quantum fluctuations are much more moderately
suppressed by the opening of a gap. This observation can be
understood by considering that, associated to the quantum
fluctuations of the order parameter, there is an intrinsic quantum
coherence length ξQ36 which is always finite at finite T, and much
smaller than the ordinary correlation length ξ. Approaching the
QCP, ξ ≈ cT−1/z= c/T, but the opening of a gap (Δ) for g ≠ gc cuts
off the QC growth, as ξ saturates to its ground-state value ξ(T=
0) ≈ c/Δ. Such saturation occurs for T ≈ Δ. Similarly, one expects
that ξQ ≈ cQ/T, but with cQ << c; nonetheless, at T= 0, ξQ
saturates to the same value ξQ(T= 0)= ξ(T= 0)= c/Δ. There-
fore, the saturation occurs at lower temperatures, T ≈ (cQ/c)Δ. In
Supplementary Fig. 1, we show that cQ/c ≈ 1/6. Hence, one may
expect that saturation temperatures for ξ and ξQ are in a similar
proportion in the gapped phase. In summary, both above and
below gc the QV exhibits a clear crossover from a power-law
regime varying as T−ψ to a saturating regime, occurring around a
temperature T ~ Tc or T ~ Δ: this behavior reveals then the
crossover from the QC regime to the RC and QD regimes. We
can deduce that the QCP controls the thermodynamics of
quantum fluctuations over a region of sizable width, and which is
fan-shaped (namely broader in g, the higher T).

In order to quantitatively reconstruct the region in which the
T-dependence of the QV is influenced by the existence of the
QCP, we establish the following criteria: (1) the QV exhibits a
power-law dependence in T with an exponent (namely its
logarithmic derivative) reproducing ψ= 0.964…37 (within some
tolerance ε); (2) the coefficient of the power-law dependence
(estimated as VarQ(Jz)Tψ) reproduces the one along the QC
trajectory G(Q)(0) (within the same tolerance ε). These two
criteria are illustrated in Fig. 3a, b: the region matching both

criteria is then identified as the QC regime of quantum
fluctuations. We would like to stress that the regions identified
by criteria (1) or (2) individually can be quite different, and only
their intersection can be reliably considered as representative of
the QC regime. For instance criterion (2) is satisfied in a sizable
portion for g ≥ gc at low T, but this is a mere coincidence due to
the fact that VarQ(Jz)Tψ turns out to be a non-monotonic
function, crossing twice the value G(Q)(0)—at a lower and at a
higher temperature. But only the higher-temperature crossing
occurs with the QV exhibiting a logarithmic derivative compa-
tible with −ψ, and hence complying with criterion 1).

Obviously the extent of such a regime in the phase diagram
depends crucially on ε (taken as 10% in Fig. 3): yet it is important
to observe that, regardless of the value of ε, its lower boundaries,
marking the onset of the crossovers toward the RC and QD
regimes, follow faithfully the temperature scales set by Tc and Δ—
both scaling as |g− gc|νz in the vicinity of the QCP. In contrast,
applying similar criteria to the scaling of Var(Jz) essentially
reconstructs the QC trajectory only, as already anticipated above
(Fig. 3c). In Supplementary Notes 3 and 4, we provide evidence of
a similar phenomenology of the QV, as well as of the QFI, for the
exactly solvable cases of the TFI in d= 1 (Supplementary Note 4)
and d=∞ (Supplementary Note 3). In the d= 2 case, the chosen
tolerance ε assigns to the QC regime a temperature extent which
ranges up to a temperature T ~ 0.3J. This appears as a reasonable
upper bound, as it remains sizeably smaller than the temperature
scale T ~ J: at that temperature short-wavelength modes become
excited, making the microscopic details of the lattice model
overcome the universal power-law temperature scalings which are
distinctive of the QC regime.

Heisenberg bilayer. We conclude by considering another para-
digmatic model of quantum phase transitions, namely the S= 1/2
Heisenberg antiferromagnet on a square lattice bilayer, with
Hamiltonian

H=J ¼
X
hiji

Si � Sj þ g
X
hlmi?

Sl � Sm; ð7Þ

comprising intralayer (〈ij〉) as well as interlayer (〈lm〉⊥) bonds. A
quantum phase transition at gc= 2.522…38 divides a Néel
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Fig. 3 Reconstruction of the quantum critical fan of the 2d TFI model via the quantum variance. a Relative deviation of the logarithmic derivative of the
order-parameter QV from the QC scaling exponent ψ—the data shown have been obtained for a L= 64 lattice (uneven spots in the RC region are
numerical artifacts). The solid and dashed lines indicate the critical temperature53 and half of the spectral gap (extracted from the T scaling of 〈Sx〉)
respectively, while the dotted line marks the region with less than 10% deviation. b Relative deviation of VarQ(Jz)Tψ from the QC amplitude G(Q)(0); same
symbols as in (a). The dashed blue line encircles the region with less than 10% deviation on both the prefactor and on the logarithmic derivative. (c)
Relative deviation of Var(Jz)Tψ from the QC prefactor G(Q)(0); other symbols as in (a)
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antiferromagnetic regime (with order parameter given by the
staggered magnetization Jzst ¼

P
ið�1ÞiSzi ) from a nonmagnetic

dimer-singlet regime. The same kind of analysis of the order-
parameter QV, as the one presented above for the 2d TFI model,
leads to Fig. 4. There the QC region, where the thermal behavior
of quantum fluctuations is governed by the QC point, is shown to
be very broad (with a maximum width Δg which is around 20% of
gc). On the contrary, a similar analysis based on the behavior of
the TV singles out only a narrow region around the QC trajectory
(Fig. 4c), similarly to what we reported for the TFI model. In the
case at hand the QC-RC crossover is marked by a crossover in the
QV from the T−ψ power-law behavior into another power-law
behavior, as the RC regime is gapless and without a finite-T phase
transition; while the QC-QD crossover is similar to the one
observed in the 2d TFI model (low-T saturation of the QV).
Despite its sizable width, the QC regime of the QV remains
limited to a finite g range, and it does not come close to the limit
g= 0 corresponding to the most investigated case of the 2d
Heisenberg antiferromagnet (2dHAF)—this holds true even when
restricting uniquely to the criterion of the logarithmic derivative.
The 2dHAF Heisenberg model has been the subject of an intense
search for signatures of a QC-RC crossover in the past8,39–42: our
data (see Supplementary Fig. 2) exclude that such a crossover is
visible in the QV of the order parameter.

Discussion
Based on numerical simulations (quantum Monte Carlo) and
exact diagonalization on the paradigmatic transverse-field Ising
and bilayer Heisenberg models, we have provided evidence that
the existence of a zero-temperature QC point (QCP) fully con-
trols the thermodynamics of the quantum fluctuations of the
order parameter (estimated via the QV) in a broad, fan-shaped
region above the QCP itself. Such a region can be identified with
the elusive QC regime, acting as a finite-T magnifying lens of
zero-T quantum criticality. The extent of the QC regime, as
revealed by quantum fluctuations, far exceeds that of conven-
tional fluctuations properties—the latter contain a large thermal
component subject to thermal criticality on one side of the QCP,
and to a large suppression due to the opening of a gap on the
other side. Therefore we open the unconventional perspective of
using a property which bears no classical analog to unveil a finite-

temperature regime—somewhat reminiscent of the use of
entanglement to characterize QCPs at T= 0.

Our proposed constructive definition of the QC regime, sum-
marized by Eqs. (1) and (5), is completely general, and therefore it
is immediately applicable to detect the QC regime in numerical as
well as field-theoretical studies that have naturally access to the
QV. For instance, it could be applied to unveil the QC regime of
unconventional “deconfined" QC points43–45. Most importantly,
the quantitative relationship between the dynamical susceptibility
and quantum fluctuations offers the possibility to access the latter
in spectroscopic experiments on strongly correlated materials.
The main experimental requirement is the ability to measure the
dynamical response to a probe coupling to the order parameter of
the quantum phase transition; and the ability to reconstruct the
corresponding dynamical susceptibility over the relevant fre-
quency range where its imaginary part χ′′ has its strongest sup-
port. These requirements are clearly met by modern experiments
in neutron spectroscopy46 or AC susceptometry47–49 on bulk
materials, to cite a few relevant examples. Our proposed scheme
can serve as an effective tool to unveil the existence of zero-T
QCPs via finite-T experiments, especially in situations in which
other signatures of the existence of a QCP in the low-T ther-
modynamics prove elusive19,50.

Methods
Monte Carlo calculations. The calculations of the total and quantum variance of
the order parameter shown in the main text were obtained using stochastic series
expansion (SSE) quantum Monte Carlo (QMC)34 on N= L × L lattices with per-
iodic boundary conditions. In the case of the transverse-field Ising model the
quantization axis was chosen to lie along the field (x) axis35, so that the correlations
among the z components of the spins correspond to off-diagonal observables,
which are sampled with very high statistics during the directed-loop updates34. A
typical simulation consists of 104 MC steps (each comprising as many directed
loops as necessary to attempt on average to update all the spins in the SSE) for
thermalization, and 105 MC steps to accumulate the statistics for the observables of
interest. The QV is straightforwardly obtained as the difference between the
integrated equal-time correlation function and the integrated (imaginary-)time-
averaged correlations51.

Data availability
The data supporting the findings presented in this paper, as well as the computer
codes used to generate them, are available from the authors upon reasonable
request.
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Fig. 4 Reconstruction of the QC fan of the Heisenberg bilayer. (a) Relative deviation of the logarithmic derivative of the order-parameter QV from the QC
scaling exponent ψ= 0.962537. b Relative deviation of VarQðJzstÞTψ from the QC amplitude G(Q)(0). c Relative deviation of VarðJzstÞTψ from the QC
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have been obtained on an L × L × 2 lattice with L = 64
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