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Abstract

We propose a novel, large-scale, structure-from-motion

framework that advances the state of the art in data scal-

ability from city-scale modeling (millions of images) to

world-scale modeling (several tens of millions of images)

using just a single computer. The main enabling technology

is the use of a streaming-based framework for connected

component discovery. Moreover, our system employs an

adaptive, online, iconic image clustering approach based

on an augmented bag-of-words representation, in order to

balance the goals of registration, comprehensiveness, and

data compactness. We demonstrate our proposal by operat-

ing on a recent publicly available 100 million image crowd-

sourced photo collection containing images geographically

distributed throughout the entire world. Results illustrate

that our streaming-based approach does not compromise

model completeness, but achieves unprecedented levels of

efficiency and scalability.

1. Introduction

For decades, modeling the world from images has been

a major goal of computer vision, enabling a wide range

of applications including virtual reality, image-based lo-

calization, and autonomous navigation. One of the most

diverse data sources for modeling is Internet photo col-

lections, and the computer vision community has made

tremendous progress in large-scale structure-from-motion

(LS-SfM) from Internet datasets over the last decade. How-

ever, utilizing this wealth of information for LS-SfM re-

mains a challenging problem due to the ever-increasing

amount of image data. For example, it is estimated that

10% of all photos have been taken in the last year alone [1].

In a short period of time, research in large-scale modeling

has progressed from modeling using several thousand im-

ages [25, 26] to modeling from city-scale datasets of sev-

eral million [9]. Major research challenges that these ap-

proaches have focused on are:

Figure 1. Examples of our world-scale reconstructed models.

• Data Robustness: Enable the modeling from unorga-

nized and heterogeneous Internet photo collections.

• Compute & Storage Scalability: Achieve efficiency

to meet the true scale of Internet photo collections.

• Registration Comprehensiveness: Identify as many

camera-to-camera associations as possible.

• Model Completeness: Build 3D scene models that are

as extensive and panoramic as possible.

In practice, these goals have been prioritized differently

by existing LS-SfM frameworks [25, 26, 4, 3, 9, 24]. The

approach of Frahm et al. [9] emphasizes scalability to en-

able modeling from millions of images. While it achieves

impressive city-scale models, this emphasis leads to limita-

tions in the model completeness. In contrast, the approach

of Agarwal et al. [4, 3] prioritizes model completeness,

but can only model from hundreds of thousands of images,

instead of millions. We propose a novel structure-from-

motion framework that advances the state of the art in scal-

ability from city-scale modeling to world-scale modeling

(several tens of millions of images) using just a single com-

puter. Moreover, our approach does not compromise model

completeness, but achieves results that are on par or beyond

the state of the art in efficiency and scalability of LS-SfM

systems. We demonstrate this scalability by performing 3D

reconstructions from the 100 million image world-scale Ya-

hoo Flickr Creative Commons dataset [2, 28]. Our method



reconstructs models from a world-scale dataset on a single

computer in six days leveraging approximately 96 million

images (see examples in Figure 1).

Our framework achieves this high scalability by adopt-

ing a streaming-based paradigm for connected component

discovery. In order to balance between registration compre-

hensiveness and data compactness, we employ an adaptive,

online, iconic image clustering approach based on an aug-

mented bag-of-words representation. The new image clus-

ter representation overcomes several limitations of previ-

ous representations, which tended to partition images of the

same scene into multiple independent models. In achiev-

ing more large-scale scene integrity, our novel cluster rep-

resentation also avoids needlessly increasing the size of the

indexing structure, which previously prohibited the use of

datasets of tens of millions of images. Given the constantly

increasing size of available photo collections, we posit

streaming-based processing as a natural compute paradigm

for world-scale structure-from-motion (WS-SfM).

2. Related Work

In the last decade, LS-SfM systems for photo collec-

tions have achieved unprecedented scalability and model-

ing completeness. At their core, these systems address the

problem of data association for parametric model estima-

tion. The nature, scope, and efficiency of the data associ-

ation mechanisms greatly determine the performance char-

acteristics of an LS-SfM system.

Schaffalitzky and Zisserman [22] first tackled the prob-

lem of organizing unordered image collections. Then,

Snavely et al. [25, 26] demonstrated the feasibility of SfM

for several thousand Internet images. Li et al. [17] ad-

dressed scalability by leveraging recognition for image

overlap detection in photo collections of tens of thousands

of images. Their approach used appearance-based grouping

to represent the images and their relations through an iconic

scene graph. Irschara et al. [13] target the use-case of a

community-generated photo collection that is continuously

expanded. As an increasing number of photos are added,

the method uses a vocabulary tree [19] to retrieve similar

existing images on which to attempt geometric verification.

Depending on the results of the verification, the new image

is either incrementally added to an existing SfM reconstruc-

tion, used to join two or more reconstructions, or used in a

set of photos for a new reconstruction. Later, Agarwal et

al. [4, 3] used a cloud computing approach to enable recon-

struction from 150,000 images in less than 24 hours on a

62-computer cluster. Their method similarly leveraged the

benefits of image recognition through retrieval-based image

overlap detection. To improve basic retrieval performance,

they proposed to leverage query expansion [7] to obtain a

greater number of overlapping images. Frahm et al. [9]

extended the earlier approach of Li et al. [17] to enable

LS-SfM and dense reconstruction from city-scale Internet

photo collections of millions of images on a single PC in

less than 24 hours. Their approach used a binary appear-

ance representation to derive an iconic scene representation

for efficient registration and SfM. While this is arguably

the most scalable approach of those discussed, it slightly

compromises model completeness. In contrast to the above

methods, our proposed algorithm provides a higher degree

of scalability and efficiency while simultaneously providing

superior model completeness. Our method is the first to be

able to tackle world-scale Internet photo collections of tens

of millions of images, a scale that is out of reach (within a

reasonable compute time) for the above methods.

A major bottleneck in LS-SfM is image overlap de-

tection and connected component discovery, which deter-

mine the related images in unordered datasets. Recently,

Wu [30] proposed a framework for linear-time SfM. The

method uses a small number of SIFT features from each

image to identify candidate overlapping image pairs. Simi-

larly, Schönberger et al. [23] proposed a learning-based ap-

proach for image-overlap detection given a pair of images.

While both of these methods significantly reduce the com-

putational cost per candidate image pair, they still exhibit

quadratic runtime in the number of images (which prevents

scaling to large-scale photo collections).

Next, we discuss related approaches that tackle specific

bottlenecks within a reconstruction system. The first such

system, Image Webs [11], aims to recover graphs of con-

nected images. Their approach first performs content-based

image retrieval [15] and geometric verification to discover

connected components. Following this, the image connec-

tions are made more dense by ranking candidate image pairs

based on the increase they would provide to the overall al-

gebraic connectivity of the image graph. While providing

benefit for reasonably sized datasets, the storage and the al-

gebraic update of their connectivity becomes prohibitive for

world-scale datasets. Related to Image Webs is the work by

Lou et al. [18], which seeks to discover spanning trees that

define the connected components within a dataset. They

improve the image retrieval step by incorporating both rele-

vance feedback and entropy minimization. Relevance feed-

back uses the results of prior geometric verifications to re-

weight the bag-of-words representation [19] of a query im-

age to bias the results toward images that are more likely to

register. Entropy minimization, like algebraic connectivity

maximization, seeks to rank image pairs based on the in-

crease in connectivity that it would provide to the camera

graph. This approach requires random access to all image-

related data, hence it becomes prohibitive for the world-

scale datasets that our approach targets.

Havlena et al. [10] propose to circumvent feature match-

ing and pairwise image verification altogether by using

vocabulary-tree-based image retrieval as the correspon-
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Figure 2. Overview of the pipeline of our method.

dence mechanism. Each image pair with sufficient overlap

in its visual words is then directly used as an overlapping

pair for the reconstruction. This approach provides a sig-

nificant computational performance increase but does not

scale for datasets of millions of images or beyond, due to

the significant memory consumption [10].

Crandall et al. [8] propose a novel LS-SfM technique

for geo-localized images by leveraging a Markov Random

Field. The approximate geo-location of the images pro-

vides an initialization to a two-step discrete continuous opti-

mization followed by bundle adjustment. Another approach

leveraging geo-location is that of Klingner et al. [16], where

Google StreetView images are used to enable a world-scale

reconstruction. This method circumvents the challenging

problem of image overlap detection and connected compo-

nent discovery at world-scale by exploiting the known geo-

location to perform windowed bundle adjustments for pose

refinement for the cameras. In contrast to these methods,

our proposed approach does not require known geo-location

of the images and is the first method to perform world-scale

registration from unordered photo collections. We achieve

this through our proposed streaming-based image overlap

detection and connected component discovery.

3. World-Scale Structure-from-Motion

To enable efficient WS-SfM, our method needs to effi-

ciently identify overlapping images of each captured scene

(Section 3.1). Next, the connected components of the

dataset, formed by the overlapping images, have to be de-

tected to prepare for the camera registration (see Section

3.2). A flow chart of our method is shown in Figure 2.

The major challenge for WS-SfM is the massive amount

of imagery. City-scale data processing algorithms [4, 3, 9]

already spend significant effort on efficient representations

to maintain performance. To scale to world-scale datasets,

we propose an efficient method for processing images in

a sequential fashion (streaming). Our proposed streaming

imposes the constraint on the processing that, in one pass

through the data, an image is only loaded once from disk (or

other input source) and the image is discarded after a limited

period of time (much smaller than the overall computation

time). An obvious extension would be to allow multiple

passes through the data for improved results. The efficiency

of streaming methods for big data has long been known,

for example, in mesh processing [14]. The major challenge

posed by stream processing for image overlap detection is to

ensure that overlap is detected even when the images are not

concurrently loaded. To meet these constraints, we propose

to maintain and update in realtime a concise representation

of our current knowledge of the images’ connectivity. Upon

discovering the sets of connected images (referred to as con-

nected components), we then perform incremental SfM to

recover the 3D geometry of the dataset’s scenes.

3.1. Clustering & Connected Component Discovery

In our streaming algorithm, we aim to identify images

that view the same scene. Similar to Frahm et al. [9], we

seek to discover clusters of similar images, where each clus-

ter is represented by an iconic image (see Figure 3 for ex-

amples). In this context, in order for an image to belong to

a cluster, it must successfully register to the iconic image

of that cluster – i.e., there has to be a valid epipolar geom-

etry between the iconic and the cluster image (geometric

verification). We add to this the notion of connected com-

ponents, where each is a set of connected clusters (clusters

of the same scene for which images exist that establish an

epipolar geometry between the iconic images).

To perform the cluster and connected component anal-

ysis in our streaming approach, we process the images in

batches. The images of the first batch are used as our ini-

tial iconic images; in other words, the first batch represents

our scene viewpoints. Note that these initial clusters will be

merged or discarded, as appropriate, in the later processing.

Hence, even if they are not suitable iconic images, they do

not impair our results. For every following batch we per-

form Algorithm 1, which is detailed in the next sections.

Algorithm 1 Cluster & Connected Component Processing

1: for all batches bj do

2: for all images I in current batch bj do

3: Compute k-nearest neighbor iconic images of I

4: for all Register I to k-nearest iconic images do

5: if I registers to 1 neighbor iconic image then

6: Add I to the iconic image’s cluster

7: else if I registers to ≥ 2 iconic images then

8: Add I to best matching iconic image’s cluster

9: Join matched clusters into component

10: else

11: I is added as a new iconic image

3.1.1 Image Overlap Detection

The objectives of our method during streaming are the de-

tection of pairwise image overlap and the discovery of con-



Figure 3. Sample image clusters from our pipeline. The leftmost image in each cluster is the iconic image.

nected components. We propose to combine these two

objectives into a unified computation, which allows us to

achieve significantly higher data throughput and reduced

computational complexity. We use the iconic images (more

specifically, their augmented features, see Section 3.1.2), to

represent the currently known state of the scene within our

system. Loosely speaking, we represent the visual infor-

mation of a particular viewpoint by an iconic image’s aug-

mented features indexed in a vocabulary tree.

During the streaming of the dataset, every loaded image

uses the vocabulary tree to query for its k-nearest neigh-

bors (step 3 of Algorithm 1, where we chose k = 25).

In order to verify if these nearest neighbors overlap with

the new image, we perform efficient geometric verification

using ARRSAC [20], which is a version of RANSAC de-

signed for real-time applications. Coupled with this, we

use a 5-point essential matrix estimator [27], with estimates

for the intrinsic camera parameters initialized using JPEG

EXIF data whenever possible (assuming a 40
◦ horizontal

field-of-view otherwise). Additionally, we limit the number

of ARRSAC iterations to 400, for the same reasons as [9].

While geometric verification can be performed ex-

tremely efficiently [9, 21], it is still a major contributor to

the computational expense of an SfM system. We empir-

ically observed that not all retrieved nearest neighbors are

equally valuable for image overlap detection (a similar ob-

servation was made by Lou et al. [18]). Leveraging this ob-

servation, we set a budget kv < k for geometric verification

and only evaluate the kv most relevant nearest neighbors.

Our strategy is to first spend the kv match budget per image

on the highest-ranked nearest neighbors in the k retrieval

results. However, once a successful match is achieved and

there is a remaining budget, further matches are only per-

formed on nearest neighbors that do not belong to the same

connected component (similar to [18] and [11]). Intuitively,

this fosters registration to new iconic images not already as-

sociated with the currently-matched component.

During the above processing, we seek to discover any

connections between the current image and the set of iconic

images. Once an image registers to an iconic image, we

associate it with that iconic image and add it to its cluster.

However, in the case where an image registers to two or

more iconic images, we associate it with the iconic image

with which it had the highest number of inliers. Next, we

detail our iconic image representation before discussing the

selection strategy for choosing iconic images.

3.1.2 Iconic Image Representation and Selection

While we leverage the idea of iconic images representing

clusters of images from Li et al. [17] and Frahm et al. [9],

their use of the GIST descriptor results in the clusters cover-

ing a small distribution of images around a particular view-

point and at similar lighting condition. Moreover, GIST-

based clustering has very limited ability to cope with oc-

clusions, which are frequent in Internet photo collections.

To control the complexity of the representation, we pro-

pose a new cluster representation that covers a broader set of

views by taking inspiration from image retrieval techniques.

For instance, there have been a number of approaches that

leverage the idea of query expansion or relevance feedback

to improve the quality and breadth of the retrieved results

[18, 6, 4, 3, 9]. Generally speaking, these methods retrieve

a subset of results, and then based on what was returned,

a new query is issued to find an enhanced set. An alterna-

tive strategy is database-side feature augmentation [29, 5],

which leverages a static dataset to extend an image’s bag-

of-words representation with the representations of its ge-

ometrically verified neighbors. We opt for database-side

augmentation to achieve high efficiency by not incurring the

expense of reissuing queries.

In our approach, the database-side feature augmenta-

tion [29, 5] is applied to our current set of iconic images.

Each iconic image is represented by a set of visual words

(used for image retrieval in Section 3.1.1), which is then

augmented based on the images that register to it. Specifi-

cally, every time a new image is linked to an iconic image,

we add the visual words of the new image’s inlier features to

the set of visual words belonging to the iconic image. Each

feature in an iconic image then tracks the visual words with

which it has been associated (either by original assignment

or via an inlier to a newly-match image).

For efficiency and sparseness of representation, we limit

the augmentation to only include those visual words not al-

ready associated with the iconic image’s feature to which

they were an inlier. This prevents an unnecessary bias to-

ward the current set of inlier features, allowing the other

features in the image to more readily be used for retrieval.

In addition to improving the quality of retrieval results, the

augmentation can also be viewed as overcoming quantiza-

tion artifacts of the vocabulary tree. For instance, if a fea-

ture is nearly equidistant to two or more visual words, that

feature can be associated with those visual words once it be-



comes an inlier match to an image that had a different visual

word assignment for a similar feature.

Having discussed our iconic image representation, we

now detail the process of iconic image selection. Concep-

tually, our iconic images represent the images assigned to

their clusters. Hence, if we encounter a new image that

does not register to any current iconic image, we consider

it to be representing an as-yet unknown scene or scene part.

This new image temporarily represents a new cluster until

further images are added to the cluster. Taking inspiration

from Frahm et al. [9], we select the permanent iconic image

after the cluster has grown to contain c images (c = 3 for all

our experiments). The permanent iconic image is selected

as the cluster image with the highest number of inliers to

the other images in the cluster.

3.1.3 Cluster Merging

During the above process of creating new iconic images,

it is possible that two iconic images are created for essen-

tially the same scene content. For instance, this can most

easily be seen for the first batch of images whose images

automatically become iconic images without being evalu-

ated for mutual overlap. Other cases of similar iconic im-

ages could result from retrieval failures or due to the limited

compute budget kv in the verification of the retrieved candi-

dates. Retrieval failures result in the ideal iconic image not

being retrieved due to quantization artifacts, a high amount

of occlusion, or other confusing visual words being present

in the image. The limited compute budget can lead to non-

evaluated relevant iconic images. To overcome these limita-

tions, we propose a cluster merging step in which geometric

verification is attempted on similar iconic image pairs. The

first indication that a pair of iconic images may be similar

is when a new image successfully registers to two iconic

images. To handle the case where the iconic images reside

in the same connected component (as we prevent duplicate

matches to the same connected component), we also look

at the order of retrieval results. If a new image matches to

one of the first r iconic image retrieval results, and there are

retrieval results that belong to the same connected compo-

nent, we flag these iconic images as candidate clusters for

merging (in our experiments, we set r = 3).

Once we have found the candidate clusters to merge, we

sort them by size so that we merge the smallest cluster first.

The reasoning for this is that we want to maintain a compact

and concise iconic image set, and merging two smaller clus-

ters increases the average iconic-to-cluster image ratio more

than merging a small cluster with a large one. If the iconic

images for a pair of candidate clusters register, the cluster

images and iconic image from the smaller of the two clus-

ters are appended to the larger cluster and the larger cluster’s

iconic image’s representation is augmented. This merging

ensures that, over time, our scene representation stays as

compact as possible. Now that we have introduced our new

stream processing algorithm for obtaining overlapping im-

ages and connected components, we will discuss the chal-

lenges in world-scale data management that remain even

with our compact and efficient representation.

3.1.4 World-Scale Data Management

Unordered world-scale photo collections pose significant

challenges for data storage and, in general, cannot be main-

tained in memory. It is critical to develop an efficient strat-

egy for data association and for the pruning of unrelated

images. We propose a strategy that measures the increase

of information of a cluster in order to decide on its impor-

tance for the world-scale scene representation. This strategy

enables our streaming approach and improves the efficiency

for handling world-scale data of arbitrary size.

To ensure memory efficiency, an image’s data (SIFT fea-

tures, visual words, camera intrinsics) are stored in memory

only as long as it is needed. For instance, an iconic image

could be matched to at any point, so its SIFT features should

be readily available. Furthermore, a cluster of size less than

c will need to retain its images’ data until it undergoes its

iconic image selection phase. All other images can have

their data immediately discarded, as the images will not be

used for any further match attempts.

For large or diverse datasets, this may still overreach the

memory resources, as the number of iconic images could

continually increase. To circumvent this problem, we limit

the number of images we store in memory by enforcing a

minimum information growth rate for each cluster. The mo-

tivation for this measure comes from the observation that

as the number of clusters grows, the scene coverage satu-

rates. Therefore, we desire to prune those clusters that no

longer add value to the scene’s representation in memory.

We enforce a minimum growth rate by computing the ratio

between a cluster’s current size and the total number of im-

ages that have been processed since the cluster’s creation.

If this ratio falls below a threshold 1/d, we discard the clus-

ter’s image information from memory. Note that we still

track that it belongs to its connected component, we just do

not allow it to grow any further. A side benefit of this strat-

egy is that it naturally limits the lifetime of unrelated/single

images, as a single image cluster will persist only until d
images have been processed.

Additionally, our strategy for discarding clusters helps to

eliminate bad iconic images. For instance, the case may ex-

ist where two iconic images show similar content, but fail

to register to each other (and thus do not merge). If one

of the iconic images has a low-quality set of features or

visual words, and if no better option was available during

the iconic image selection phase, then its cluster size will



be significantly smaller than the iconic image with a high-

quality, repeatable representation. Therefore, as processing

continues, the smaller cluster, and lower-quality iconic im-

age, will be discarded as the higher-quality iconic image

registers to an increasing number of images.

Choosing the growth parameter d immediately influ-

ences our probability to find overlapping images in the

dataset. In fact, it controls the minimum size cm of a con-

nected component that can be reliably discovered. Let us

assume that every image within a connected component can

successfully register to every other image of the component.

While this assumption does not fully hold in practice, espe-

cially for components that have a wide spatial coverage, this

assumption is much more reasonable for a single cluster of

images. Additionally, let us assume that the images for the

connected component are randomly dispersed throughout

the entire dataset of size n. If the cm images are dispersed

in the worst case, the average number of images between

them in the input ordering is the greatest (i.e. the cm images

occur at intervals of n/cm). Then, finding matches between

the images is only possible if d is large enough to preserve

images in memory for that duration. Specifically, d would

have to be set such that d > n/cm. Therefore, for a dataset

that contains 10 million images, and with d = 100,000, we

could hope to reliably recover connected components (or

clusters) of size > 100 images. In our experiments, we set

d = 100,000 for the city-scale datasets, and d = 200,000
for the world-scale dataset [2].

3.2. Structure­from­Motion

To generate structure-from-motion (SfM) models, we

leverage the connected components already discovered dur-

ing the streaming phase, but densify the connections in or-

der to allow for more accurate and complete reconstruc-

tion. This provides us a significant advantage over previ-

ous methods such as Frahm et al. [9] as we do not need

to burden our structure-from-motion processing with clus-

ter or iconic image matching, which can be a significant

effort for tens or hundreds of thousands of iconic images as

encountered in our processing. Note the amount of iconic

images that we obtain is at the scale of the number of im-

ages processed in previous methods such as Agarwal et al.

[4, 3]. For increased performance and stability, we per-

form a separate hierarchical structure-from-motion process

for each connected component by first building a skeletal

reconstruction based on the iconic images of clusters with

more than three images and a few linking images for those

iconic images. Then, we register the remaining images with

respect to the skeletal reconstruction.

For the reconstruction from the iconic images it is im-

portant to note that for the sparseness of the representation

in the streaming, we enforced the fact that iconic images

should be a sparse representation of the scene and hence

they do not match densely with each other. Therefore, to

foster a successful reconstruction, we need to first add ad-

ditional images and densify their set of image connections.

We chose the additional images to be those images with

connections to multiple iconic images, so that each iconic

image is connected to as many other iconic images as pos-

sible. To quantify the connectivity during the addition of

the linking images, we track this connectivity by creating

a sparse adjacency matrix M . Each entry mi,j of matrix

M will store the number of connections between iconic im-

age i and j. At first we test for connection with the 50

nearest neighbors of each iconic image within the current

iconic image set using vocabulary tree image retrieval and

geometric verification. Based on the results of these match

attempts, we update M to have an entry of 1 wherever two

iconic images successfully matched. As our iconic images

are very disjoint, M is by design still very sparse after this

step. To increase the density of M , we now turn to the link-

ing images within our dataset. Here, a potentially benefi-

cial connecting image is any image that registered to two or

more other images during the streaming process (i.e. an im-

age that matched to and connected two iconic images). Our

goal is to add a subset of these connecting images to our

current iconic image set, such that we are left with a set of

images that is well-connected and ready for reconstruction.

In order to discover the subset of connecting images to

use for reconstruction we employ a greedy strategy which

adds connecting images based on the number of iconic im-

ages to which they register. We compute this number by first

matching each connecting image to its 10 nearest neighbors

in the iconic image set (once again using the vocabulary

tree). Then, we rank the connecting images by the num-

ber of new connections that they add, and greedily select

the ones with the most new connections. We continue until

there are either no connecting images left, or the connecting

images no longer provide new links between iconic images.

After preparing all connected components for recon-

struction, we then process them in parallel using our

structure-from-motion software. Once structure-from-

motion provides a sparse 3D model for each connected

component, we register the remaining connected com-

ponent images to this model using an efficient P3P

(perspective-3-point) algorithm. To avoid the challenges of

symmetric scene structures, we leverage the work by Heinly

et al. [12] for its robustness. However, we optimized the

implementation to achieve higher processing times by iden-

tifying independent sub-models within a single reconstruc-

tion (i.e. different buildings), and performing disambigua-

tion and correction on each sub-model individually.

4. Experimental Evaluation

To test our approach, we ran our method on datasets

of widely varying sizes (see Table 1), the smallest being



Number of Images Time (hours)
Dataset Input Valid Registered CC1 CC2 Iconics SfM Stream Densify SfM Register

Roman Forum [18] 74,388 73,566 45,341 17,804 2,971 3,408 23,397 0.35 0.27 0.42 0.10

Berlin [9] 2,704,486 2,661,327 702,845 259,705 6,869 42,612 235,155 7.89 1.14 2.92 2.66

Paris 10,390,391 10,177,094 2,492,310 1,228,062 7,016 131,627 1,017,372 29.16 4.04 57.85 6.96

London 12,327,690 12,036,991 3,078,303 779,036 17,382 228,792 672,850 38.29 5.57 22.72 6.57

Yahoo [2] 96,054,288 92,282,657 1,499,110 75,308 64,995 74,660 438,079 105.4 3.5 17.4 -

Table 1. Statistics for our tested datasets. CC1 and CC2 refer to the size of the first and second largest connected component. Iconics are

for clusters of size ≥ 3, and the SfM results report on the 32 largest components (or components with ≥ 50 images for the Yahoo dataset).

Streaming # Threads /

Module # GPUs Rate Time

Read Files from Disk 4 / - 120 Hz 8.3 ms

Decode & Resize JPEGs 4 / - 177 Hz 5.6 ms

Compute SIFT 8 / 8 138 Hz 7.2 ms

Compute Visual Words 4 / - 434 Hz 2.3 ms

Query Voc-Tree KNN 16 / - 4,475 Hz 0.22 ms

Geometric Verification 16 / 8 261 Hz 3.8 ms

Add Images to Voc-Tree 16 / - 14,485 Hz 0.069 ms

Save SIFT to Disk 3 / - 186 Hz 5.4 ms

Table 2. Performance of the streaming modules for the city-scale

datasets. The rate is the number of images, queries (voc-tree

knn), or image pairs (geometric verification) processed per sec-

ond. Time is the inverse value.

around 74,000 images and the largest being about 96 mil-

lion. Two of the datasets were obtained from the authors

of previous publications [18, 9], which provide a basis of

comparison between the methods. In our evaluation, we

leverage a mixed Matlab, C++, CUDA implementation of

our proposed streaming method. For the streaming and re-

construction of the city-scale datasets, we used the same

PC as in Frahm et al. [9] to allow direct comparison of re-

sults. For processing the world-scale dataset [2] we used

a dual processor computer with 256 GB of RAM and five

Nvidia graphics cards which are leveraged in the CUDA-

based parts of our system.

In our system, we used a 10
6 visual word vocabulary

tree trained on approximately 250M SIFT features from the

Berlin dataset from [9]. For geometric verification, we en-

forced a minimum of 30 inlier matches in order for a pair of

images to be considered successfully registered. Addition-

ally, we ignored any image pair that had 70% of its inliers

along the outer border of the image, as these matches were

most frequently caused by watermarks. Finally, when regis-

tering cameras to the already built 3D models, we enforced

a minimum of 50 P3P (perspective-3-point) inliers.

In general it can be observed that our computation for

the city-scale datasets is limited by the I/O bandwidth of

our system (see Table 2), where we only reach a sustained

disk read rate of 120 Hz when reading images at about

1024×768 resolution. For the world-scale dataset [2] we

leveraged seven high-performance hard drives, and used im-

ages at 640×480 resolution. In this case, disk I/O was no

longer the bottleneck, and SIFT computation and geometric

verification then became the limiting factors.

The smallest of our datasets, the Roman Forum, was

previously used by MatchMiner [18]. Our system regis-

tered 45,341 images and had a connectivity entropy of 7.58

(lower is better; we refer to [18] for a motivation of this

measure), compared to the 40,604 registered images and

11.62 entropy of MatchMiner. In contrast to our single PC,

MatchMiner used a 53-node compute cluster and took 1.65

hours to discover the connected components in the dataset

[18], whereas our single-machine system finished in 21

minutes for the streaming. There are several factors under-

lying the differences in results. For instance, the criteria for

valid geometric verification (i.e. minimum required num-

ber of inliers, which was not reported by MatchMiner [18])

may have been different between the approaches. Addition-

ally, MatchMiner used a much higher match budget, allow-

ing an average of 20 match attempts per image, whereas we

used used kv = 2 for this and all our other experiments

to ensure comparability across our different datasets. Our

system does employ GPU computation for SIFT extraction

and SIFT descriptor matching (leading to greater efficiency

in these modules), however MatchMiner does not include

SIFT extraction and visual word computation in their tim-

ings at all, further emphasizing the efficiency of our ap-

proach. Overall, we achieve a comparable level of connec-

tivity but at significantly lower computational cost.

Our second smallest dataset, Berlin, Germany, contains

2.7 million images and was obtained from the authors of

Frahm et al. [9]. It was reported [9] that, in the geometric

cluster verification of Frahm et al., 124,317 images were

registered overall for the dataset. In contrast, we register

around 5.5 times as many images (i.e. 702,845 or 26% of

the dataset, see Table 1) from the same data. When con-

sidering only the images registered to the 32 biggest re-

constructed 3D models, we reconstruct 235,155 images,

which is around 7.5 times the number of overall images

reconstructed by Frahm et al. [9] (31,190). The largest

reconstructed model of Frahm et al. contained 3,158 im-

ages, whereas ours contains 35,250 images and is close to

a kilometer long in the longest direction (shown in Fig-

ure 4). This significantly higher registration rate is a result



Figure 4. SfM models output by our system. From left to right, then top to bottom: Berliner Dom, Trafalgar Square, Brandenburg Gate,

Piccadilly Circus, Notre Dame, Louvre, Prague, Brussels, and Sagrada Famı́lia.

of our significantly improved cluster representation and the

streaming computation that readily obtains connected com-

ponents. Frahm et al. report a computation time of 20.32

hours for the structure-from-motion part of their system. On

the same machine we achieve a processing time of 14.61

hours for registering more than an order of magnitude more

images for the same dataset.

The third and fourth dataset we tested were datasets from

Paris, with 10.3 million images, and from London, with

12.3 million. Both datasets were downloaded from Flickr.

It can be seen that in both datasets our method reaches a

registration rate of around one quarter of the images (Paris

24% registration rate and London 26%) which is similar to

the 26% registration rate for the Berlin dataset. It can be

seen that the computation rates for these datasets are also

scaling linearly (less than 6% variation from linear). This

underlines the scalability of our proposed method that re-

constructs from an order of magnitude more image data

than previously proposed methods while reaching state-of-

the-art model completeness. Example data are shown in

Figure 4 and the detailed statistics are provided in Table 1.

To demonstrate the true world-scale processing, we pro-

cessed 96 million images spanning the globe from the Ya-

hoo webscope dataset [2, 28]. The processing time was ap-

proximately 5.26 days. Our pipeline is the first system to be

able to reconstruct from a world-scale dataset like this. Ex-

ample models are shown in Figure 4 and the detailed statis-

tics are provided in Table 1. This clearly demonstrates the

scalability of our newly proposed reconstruction system en-

abling us to reconstruct the world in six days on a single

computer. While we did register almost 1.5 million images,

the generated reconstructions were smaller compared to the

specific city-scale datasets (as the city-scale datasets have

a denser sampling of images). Therefore, we skipped the

iconic-image-based reconstruction, and instead used all of

the images in the connected components directly.

5. Conclusion

We proposed a novel stream computing paradigm to en-

able world-scale 3D modeling from unordered Internet im-

age photo collections. While the streaming processing al-

lows for high-scalability, it posed challenges for the data

association required for 3D reconstruction. We proposed

novel data association concepts to overcome these chal-

lenges and reach high model completeness. In compari-

son to the state-of-the-art modeling from unordered photo

collections, our proposed method pushes the scale of re-

constructabilty by more than an order of magnitude while

achieving highly complete models.
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