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Abstract 36 

Background 37 

Accurately determining changes in tumor size during therapy is essential to evaluating 38 

response or progression. However, individual imaging methodologies often poorly reflect 39 

pathologic response and long-term treatment efficacy in patients with estrogen receptor 40 

positive (ER+) early-stage breast cancer. Mathematical models that measure tumor 41 

progression over time by integrating diverse imaging and tumor measurement modalities are 42 

not currently used but could increase accuracy in measuring response and provide biological 43 

insights into cancer evolution. 44 

Methods 45 

For ER+ breast cancer patients enrolled on a neoadjuvant clinical trial, we reconstructed 46 

their tumor size trajectories during therapy by combining all available information on tumor 47 

size, including different imaging modalities, physical examinations and pathological 48 

assessment data. Tumor trajectories during six months of treatment were generated, using a 49 

Gaussian process and the most probable trajectories were evaluated, based on clinical data, 50 

using measurement models that account for biases and differences in precision between 51 

tumor measurement methods, such as MRI, ultrasound and mammograms. 52 

Results 53 

Reconstruction of tumor trajectories during treatment identified five distinct patterns of tumor 54 

size changes, including rebound growth not evident from any single modality. These results 55 

increase specificity to distinguish innate or acquired resistance compared to using any single 56 

measurement alone. The speed of therapeutic response and extent of subsequent rebound 57 

tumor growth quantify sensitivity or resistance in this patient population.  58 

Conclusions 59 
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Tumor trajectory reconstruction integrating multiple modalities of tumor measurement 60 

accurately describes tumor progression on therapy and reveals various patterns of patient 61 

responses. Mathematical models can integrate diverse response assessments and account for 62 

biases in tumor measurement, thereby providing insights into the timing and rate at which 63 

resistance emerges. 64 

 65 

Introduction 66 

Cancer patients’ response to a therapy is highly variable, with some tumors responding 67 

slowly or rapidly, others progressing on therapy, and some exhibiting rapid early response 68 

followed by rebound regrowth (1, 2).  Despite this known diversity of patient tumor 69 

trajectories (3, 4) the treatment response of most solid tumors during trials is evaluated by 70 

comparing baseline and end point measurements. Patients are then grouped into a small 71 

number of response categories based on the best response. Therefore, a tumor that rapidly 72 

shrinks by 50% and then rapidly grows back and another tumor that slowly shrinks by 50% 73 

are both called partial responses (PR) (5-7). This end-point focused approach overlooks the 74 

diversity of tumor responses during a given trial, including what happens in between time 75 

points, and fails to distinguish different outcomes such as patients with stable disease versus 76 

those with an initial response followed by subsequent disease rebound (8). Due to different 77 

intrinsic biases between assessment modalities, inconsistent response classifications can be 78 

determined depending on the assessment modality used: mammogram (MG), magnetic 79 

resonance imaging (MRI), ultrasound (US), physical examination (PE), computed 80 

tomography (CT), blood biomarkers and others.   81 

 82 

Accurately classifying tumors with distinct trajectories is necessary to identify biomarkers 83 

specific for one of these outcomes (9, 10). Further, assessing the tumor trajectory during the 84 
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course of therapy can provide accurate real-time assessments to guide adaptive treatment 85 

strategies (4) (for current perspective see (11)).  A more dynamical approach to measuring 86 

changes in tumor size could also capture the evolution of resistance during treatment. 87 

 88 

The heterogeneity of solid tumors, such as breast cancer, can also obstruct the accurate 89 

measurement of tumor size when using a single imaging method alone. Physicians thus rely 90 

on a combination of imaging and physical examination modalities during the course of 91 

therapy to understand a tumor’s characteristics and to increase accuracy compared to using a 92 

single methodology (12, 13). The accuracy of each modality depends on patient specific 93 

factors, such as the level of inflammation or cancer subtype, and in clinical practice patients 94 

may be assessed by different modalities at different time points (14-16). However, when 95 

using a range of methodologies, it is challenging to combine information to a consensus 96 

reading or to integrate data sources across time points and methodologies.  97 

 98 

For early-stage ER+ breast cancers, tumor diameter on clinical physical examination, 99 

ultrasound, mammogram, and MRI can be used to assess response to neoadjuvant therapy.  100 

However, the use of a single imaging modality less accurately reflects surgical pathologic 101 

response or long-term treatment efficacy (17-21). Among the various imaging modalities, 102 

MRI appears the most accurate for predicting pathologic response in breast cancer (21). 103 

However, MRI accuracy is still below 80% for predicting pathologic response, and MRI use 104 

in earlier stage breast cancer is variable across treatment centers (22).  Further, the use of 105 

MRI in early-stage breast cancer remains controversial because of unclear effects on long 106 

term outcomes and concerns about over diagnosis of incidental indolent lesions (23, 24).   107 

 108 
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Here we provide a general approach to reconstruct the trajectories of patient tumors during 109 

treatment. The approach starts by generating a diversity of possible trajectories of tumor size 110 

over time using a Gaussian process model (25). To reconstruct the most likely tumor 111 

trajectory, we apply a Bayesian probabilistic framework to integrate all available 112 

measurements of tumor size during treatment and account for biases and differences in 113 

precision of each method (26). We test the power of the trajectory reconstruction approach to 114 

accurately recovers the underlying dynamics of tumor progression using in silico simulations. 115 

We then apply the model to reconstruct tumor trajectories using imaging data from a 116 

randomized clinical trial of ER+ breast cancer patients during neoadjuvant treatment with an 117 

aromatase inhibitor combined with a cell cycle inhibitor or placebo. From these data, we 118 

identify five distinct trajectories of tumor progression in this cohort, including a group of 119 

patients with a rapid rebound of disease after an initial response. The model also reveals the 120 

speed of growth changes during treatment, including shrinkage of tumor size in sensitive 121 

tumors and increased growth in resistant tumors. Applying this model to patients across 122 

treatments, we show that combination endocrine and cell cycle inhibitor therapy increases the 123 

frequency of resistance-related tumor trajectories compared to endocrine therapy alone.  124 

Further, high dose combination therapy increases the frequency of rebound disease outcomes. 125 

In summary, tumor trajectory reconstruction integrates multiple modalities of tumor 126 

measurement to describe the diversity of tumor response to therapy with increased resolution 127 

and dynamical precision. 128 

 129 

Methods 130 

Trial overview 131 

Tumor diameter (mm) was monitored over six months during a multi-institutional phase 2 132 

trial of women with early-stage ER+, HER2- breast cancer (27) which evaluated whether the 133 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2021. ; https://doi.org/10.1101/2021.01.14.426737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426737
http://creativecommons.org/licenses/by-nd/4.0/


Reconstructing tumor trajectories during therapy 6

addition of CDK inhibition to endocrine therapy in the neo-adjuvant setting promotes 134 

complete  cell cycle arrest and improves the preoperative endocrine prognostic index (PEPI) 135 

(27) (28). Post-menopausal women with node positive or >2 cm ER+ and/or PR+, HER2 136 

negative breast cancer (n=120) were randomized equally between three treatment arms, 137 

receiving: A) endocrine therapy alone (letrozole plus placebo), B) intermittent high dose 138 

combination therapy (letrozole plus ribociclib: 600 mg/day, three weeks on/ one off), or C) 139 

continuous lower dose combination therapy (letrozole plus ribociclib: 400 mg/d). 140 

 141 

Measurements of tumor size 142 

To assess each patient’s tumor progression, a range of standard imaging and physical 143 

examination assessments were used at different time points throughout the trial. Large 144 

discrepancies were observed between the estimates of tumor size from each of these 145 

measurement approaches (Fig S1), motivating the application of our tumor trajectory 146 

reconstruction approach. As is normal in the clinical setting, each patient had a unique 147 

combination of magnetic resonance imaging (MRI), ultrasound (US), mammogram (MG), 148 

clinical physical examination (PE), and surgical pathology (SP) observations. Imaging and 149 

physical examination assessments were made repeatedly during the 180-day period of neo-150 

adjuvant therapy (mean= 6.8 tumor measurements per patient). Of the 120 patients, 91% had 151 

sufficient clinical observations to reconstruct their tumor burden trajectory.  152 

 153 

Reconstructing tumor burden trajectories: Probabilistically combining tumor estimates 154 

from different measurement methods 155 

To reconstruct patient’s tumor trajectories during treatment, we developed a dynamic 156 

response evaluation approach (Fig.1 and below). Tumor trajectories were reconstructed by 157 

combining all available sources of clinical imaging, physical examinations and pathological 158 
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data, using a Gaussian Process Latent Variable Model (GPLVM) (29, 30). Potential tumor 159 

size trajectories were probabilistically evaluated, based on clinical data and known biases and 160 

differences in accuracy of different clinical measurement modalities, and the most likely 161 

tumor burden trajectories were learned using Bayesian statistical inference. 162 

 163 

1) Generating proposal tumor trajectories 164 

Potential tumor size trajectories were generated using a multidimensional Gaussian 165 

distribution (𝑓) (Fig.1a). Each dimension (1: 𝑛) describes the log tumor size on an 166 

occasion (𝑖) when the tumor was measured: 167 𝑓  ~ 𝑁 𝜇 , Σ , {𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑖 = 1 … 𝑛}, 168 

with 𝜇  reflecting the expected tumor size (log mean during treatment) and Σ  capturing the 169 

covariance of tumor size between occasions.  170 

Smoothly varying tumor trajectories are generated when ordering the dimension indexes by 171 

time. The resulting Gaussian process (𝑓(𝑡)) is a probability distribution describing the 172 

potential state of the tumor over time (31). Possible tumor trajectories were generated by 173 

sampling nonlinear functions from this Gaussian process:  174 𝑓(𝑡) ~ 𝐺𝑃 𝜇, 𝑘(𝑡, 𝑡 ) , {𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑡}. 175 

Here, 𝜇 scales the average tumor size and the covariance matrix 𝑘(𝑡, 𝑡 ) encodes how the 176 

tumor size changes between observation times. For example, a high correlation in tumor size 177 

between two time points yields little change in tumor size and produces a stable disease 178 

dynamic over this time frame (Fig.1a). The covariance structure was calculated using the 179 

squared exponential covariance function: 180 𝑘 𝑡 , 𝑡 =  𝜂 exp −𝜌 ∑ 𝑡 ,  – 𝑡 ,  +  𝛿 , 𝜎  . 181 
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The length scale (𝜂), controls the timescale at which the tumor burden fluctuates, whilst the 182 

signal variance (𝜌) determines the amount of tumor size variation during treatment. Together 183 

these estimated parameters of the covariance function describe the smoothness of a tumor 184 

burden trajectory. Finally, a viable positive definite covariance matrix was ensured by adding 185 𝛿 , 𝜎  to the diagonal covariance elements (𝛿 , = Kronecker delta function: 1 if 𝑖 = 𝑗, else 186 

0; 𝜎 =1 × 10 ).  187 

 188 

2) Evaluating the likelihood of a tumor burden trajectory 189 

To determine the probability of a proposed tumor trajectory, measurement models were used 190 

to describe the accuracy and precision of each tumor measurement method (𝑚) (Fig.1b) (32). 191 

The measurement models then evaluate the likelihood of each tumor observation (𝑌 , (𝑡); 192 

method 𝑚, patient 𝑃 at time 𝑡), given the tumor size followed the trajectory proposed by the 193 

Gaussian process (𝑓(𝑡)). Observations were described as lognormally distributed 194 

measurements of a patient’s true tumor size, with the addition of a censoring threshold of less 195 

than the minimal measurable size (𝜑 = 0.1 𝑚𝑚): 196 𝑌 , (𝑡) +  𝜑 ~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙( 𝛽 , +  𝑓 (𝑡), 𝜎 , ). 197 

Each measurement methods’ bias (𝛽 , ) and inaccuracy (𝜎 , ) was estimated on a patient 198 

specific basis. 199 

 200 

3) Incorporating prior information about measurement precision and bias 201 

Knowledge about the rank precision of different measurement methods was encoded into the 202 

measurement models (Fig.1c) using conclusions of four recently published comparative 203 

studies examining the agreement between surgical pathology measurements of tumor size and 204 
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MRI, ultrasound, mammogram or clinical examinations (12, 14-16).  The four key 205 

conclusions across these studies were that: i) MRI is the most accurate imaging method to 206 

estimate tumor burden, with little or no systematic bias compared to the observation made at 207 

pathology. ii) Ultrasound provides similar measurements, but potentially with greater bias 208 

and variability, iii) Mammograms results are significantly more variable and also potentially 209 

biased iv) Clinical physical examinations provide the least accurate estimates of tumor size, 210 

as they systematically underestimate tumor size. 211 

 212 

Reflecting these conclusions, we constrained the variance parameter of more precise 213 

measurement modalities to be lower (𝜎 > 𝜎 > 𝜎 > 𝜎 > 𝜎 ) and estimated 214 

bias in clinical assessment, mammogram and ultrasound measurements (𝛽 ,  & 𝛽 , =215 0; 𝛽 , , 𝛽 , &𝛽 , ≠ 0; sign of bias not constrained). Along with the biological 216 

requirement that tumor size changes gradually over time, we constrained the tumor size not to 217 

fluctuate at timescales shorter than one month. 218 

 219 

Inferring tumor burden trajectories 220 

The most probable tumor trajectories during the trial were identified using Bayesian 221 

inference to combine prior information about methodological biases with the likelihood 222 

assessment of trajectories made by the measurement model (Fig.1d) (33). The Gaussian 223 

process generated proposal trajectories, the measurement model quantifying the consistency 224 

of observations with the proposed trajectory, and current clinical knowledge of the accuracy 225 

and precision of measurement methods were all encoded in the Bayesian priors.  226 

 227 
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The fitted GPLVM tumor reconstruction provides patient specific estimates (with 228 

uncertainty) of : i) the tumor size throughout the trial (𝑓(𝑡)), the speed and extent of tumor 229 

size fluctuations (𝜂 and 𝜌) and the bias and precision of each measurement method.  230 

The confidence in the patients’ tumor trajectory is also captured in the Bayesian posterior 231 

distributions of the sampled Gaussian process. All parameters were inferred simultaneously 232 

using Hamiltonian Monte Carlo in Stan (34).  233 

 234 

 Validating tumor trajectory reconstruction 235 

To verify the reliability of the GPLVM tumor reconstructions, we generated hypothetical 236 

tumor trajectories using a theoretical model of tumor growth and subclonal evolution (35). 237 

We then simulated the process of measuring this in silico tumor using measurement methods 238 

with differing precision and accuracy. Finally, we assessed how well our dynamics response 239 

evaluation approach could reconstruct the trajectory of the simulated tumors, based on the 240 

measurement observations that were produced (Fig.2). We compared the GPLVM tumor 241 

reconstruction with RECIST response category and naive smoothing of tumor measurement 242 

data (using generalized additive models) (36). 243 

We simulated tumor size trajectories over time, using a subclonal model of tumor growth and 244 

evolution:  =  1 − ∑ −  𝛿 𝑁 . In this model we described the interaction 245 

between resistant and sensitive cells competing for limited resources. The tumor is initially 246 

dominated by sensitive cells, but a small subpopulation of resistant cells was allowed to pre-247 

exist. Cell proliferation (𝐫𝐢) is reduced by the cell cycle inhibitory effects of treatment (𝐱). 248 

Resistant cell proliferation is assumed to be less sensitive to the impacts of therapy (𝛃𝐑 =249  𝛃𝐒/10). For simplicity, similar death rates (𝜹) and competitive abilities (𝑲𝒋) are assumed for 250 
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the two cell types, as these assumptions do not influence conclusions of the simulation study.  251 

We generated a range of different tumor trajectories by varying the initial percentage of 252 

resistant cells between 0.01 and 0.4% (n=6 resistance levels) and varying the drug dosage 253 

from 33% to 100% of the maximum dose that would cause shrinkage of a completely 254 

sensitive tumor within 50 days (n=7 dosage levels). A broad range of tumor trajectories were 255 

generated (n=42), based on simulations with each combination of drug dosage and initial 256 

resistance levels (Fig S2). 257 

To assess the performance of the tumor reconstructions, we compared how well the known 258 

dynamics of tumor growth were recovered and compared this to trajectories predicted by: i) 259 

midpoint or end of treatment RECIST assessment and ii) a naive smoothing of all the clinical 260 

measurements using a generalized additive model. The performance of each approach was 261 

measured by the root mean-square-error (RMSE) between recovered trajectories and the 262 

known true tumor trajectory (RMSE closer to zero indicate less error in tumor trajectory 263 

reconstruction). 264 

 265 

 Identifying distinct dynamic response classes in clinical trial patients 266 

To compare tumor trajectories between patients, we standardized each trajectory, scaling by 267 

the tumor size at baseline. We utilized the patient’s tumor trajectory to quantify each tumor’s 268 

growth during the first phase (day 0-90) and second phase (day 90-180) of the trial. We 269 

calculated the tumor growth rate during each phase as well as the proportion of tumor 270 

remaining at end of treatment (relative to baseline). Based on these summary statistics, 271 

patients with similar overall tumor response trajectories were categorized into dynamic 272 

response classes, using a Gaussian mixture model (37).  273 
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 274 

The relative frequency of each dynamic response was calculated for tumors in each treatment 275 

arm. We examined whether certain dynamic responses where associated with a specific 276 

treatment regimen, using a chi-squared test. Pearson residuals were examined to identify 277 

which dynamic responses were strongly associated with a given treatment. All statistical 278 

analyses were conducted in R 3.5.1 (R Core Team 2018), using the RStan interface to 279 

perform Bayesian inference in Stan (34, 38). The code to implement the tumor reconstruction 280 

is provided along with the ER+ breast cancer patient clinical data (Supplemental data= 281 

Online Data Supplement 1; Supplemental code= Online Data Supplement 2). 282 

 283 

 284 

Results 285 

Tumor trajectory reconstruction and validation 286 

To test that our approach allows the reconstruction of tumor shrinkage and/or growth during 287 

treatment, we used a theoretical model of the subclonal evolution to a resistant state to 288 

generate trajectories of in silico tumors during treatment (Fig.2a). Initially drug sensitive in 289 

silico tumors develop resistance, as the composition becomes dominated by the initially rare 290 

resistant subclone, following drug-induced evolutionary selection. We next generated 291 

observations representing serial measurements of the tumor using methods differing in 292 

accuracy (bias) and precision (noisiness) (Fig.2b). We then compared our ability to 293 

reconstruct the underlying tumor trajectories using the GPLV model against predictions made 294 

using naïve smoothing of the observation data or using RECIST assessments of tumor size 295 

change comparing baseline to either midpoint or endpoint measurements (Fig.2c). Using 296 

tumor observations taken throughout the trial allows the identification of the emergence of 297 

resistance and the rebound of tumor growth, something not possible using the RECIST 298 
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assessment (Fig.2c left vs center and right panels). When a naïve smoothing approach was 299 

used, assuming all measurements were equally reliable, the general trend of the trajectory 300 

was recovered; however, the size of the tumor could be poorly measured due to the biases of 301 

frequently used measurement techniques (such as clinical physical examinations) (Fig.2c 302 

center vs right panel). Our approach allowed a description the smooth changes in tumor size 303 

over time, using the Gaussian process, and to correct for method specific biases using the 304 

method specific measurement models (Fig.2c right panel). This approach allowed a 305 

quantitatively accurate reconstruction of the tumor trajectory that captures: i) the initial rate 306 

of decline in tumor size upon initiation of therapy and ii) the timing and speed of tumor 307 

rebound growth following the emergence of resistance. 308 

The approach was applied to reconstruct a broad range of tumor dynamics, generated by 309 

modelling tumors with differing initial frequencies of resistant subclones and by varying the 310 

drug dose (Fig.2d). Across all tumor reconstructions, the GPLVM approach more accurately 311 

recovered the underlying tumor trajectories, having 87% less prediction error compared to 312 

midpoint RECIST assessments, 85% less that endpoint RECIST assessments, and 78% less 313 

than the naive smoothing approach. 314 

 315 

Reconstructing tumor trajectories: Probabilistically combining tumor estimates from 316 

different measurement methods 317 

Reconstruction of patient tumor trajectories provides a dynamic evaluation of response 318 

during treatment (Fig.3). Here we show the inferences that are obtained for each patient’s 319 

tumor by first presenting results of a representative tumor. All patients’ tumor reconstructions 320 

are provided in the supplement (SI Figure= Online Data Supplement 3). Figure 3a shows the 321 

tumor size estimated throughout treatment, including at time points in between observations 322 
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and the overall average tumor size during the trial. The fitted model also measures the speed 323 

at which tumor size fluctuates and also the magnitude of those changes relative to the tumors 324 

initial size (Fig.3b). For this specific patient, tumor responded over a timeframe of around 70 325 

days (lengthscale≈ 70), indicating a gradual reduction in tumor size rather than a rapid 326 

decline as may be expected under cytotoxic therapies. Furthermore, the signal variance 327 

measured the limited extent of tumor response during the trial, indicating that the reduction in 328 

tumor size was limited to only 16% of the baseline size (Signal variance≈ 0.15). 329 

Measurements of the over/underestimation bias of each tumor measurement method were 330 

obtained, showing that for this patient, clinical physical examinations were overestimating 331 

tumor burden, whereas mammogram and ultrasound provided underestimates (Fig.3c). These 332 

biases can be visualized in Figure 3d where the clinical measurements are overlaid onto the 333 

reconstructed tumor trajectory. The surgical pathology measurement, which measures actual 334 

tumor size at time of surgical removal of the tumor, provides validation that the final tumor 335 

size was substantially higher than was estimated by ultrasound. Similarly, the baseline MRI 336 

tumor measurement was substantially larger than ultrasound and mammogram assessments, 337 

indicating an initial size of around 49 mm.  As the model describes smooth tumor size 338 

transitions over time, we can reconstruct the most likely tumor size trajectory (solid black 339 

line), and the Bayesian inference approach allows assessment of the range of tumor 340 

trajectories that are consistent with the data, quantifying the extent of our uncertainty in 341 

tumor trajectories (shaded region=high probability credible interval). 342 

 343 

Insights into the diversity of tumor response trajectories 344 

The trajectory of each patient’s tumor size during the trial was reconstructed, probabilistically 345 

combining information from all available sources of clinical imaging, physical examination 346 

and pathological data, which together captures the most probable tumor burden fluctuation 347 
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over time. Inferred tumor size at end of trial closely mirrored pathological observations (Fig 348 

S3) and frequently corrected for the underestimation of tumor size that previous studies have 349 

revealed (16) (Fig S4) (Strong underestimation through physical examination in 60% of 350 

patient’s tumors). 351 

 352 

Five distinct dynamic classes of tumor trajectories were identified (Fig.4a-b). These 353 

categories corresponded to: i) sustained shrinkage (continued decline during trial; final size 354 ≤25% baseline), ii) partial shrinkage (initial velocity of decline slowed in second half of trial 355 

and final size between 30% and 75% baseline), iii) stable disease (minor tumor size change 356 

and final size >70% and <150% baseline), iv) rebound disease (initial decline to size <70% 357 

baseline and rapid tumor regrowth during the trial), and v) progressive disease (increasing 358 

tumor size throughout trial despite treatment; final size >150% baseline). Figure 4c shows 359 

that the tumor response categories are distinct by comparing the overall reduction in tumor 360 

size during the trial and the initial rate of tumor size decline in the first phase of treatment. 361 

Similarly, by examining the change in tumor size continually during treatment, the five 362 

categories of tumor response show different trajectories (Fig.4c). For example, patient tumors 363 

exhibiting rebound disease had significantly more rapid reductions in tumor size during the 364 

first 100 days of treatment than patient tumors exhibiting partial or sustained response (lower 365 

tumor growth rate in days 0-100: versus sustained response t=-2.159, p<0.05; versus partial 366 

response t=-3.921, p<0.001). However, the subsequent regrowth after around 120 days of 367 

treatment contrasts the slower but more durable decreases in tumor size observed in sustained 368 

response tumors throughout the trial. Patients classified as non-responders using an MRI 369 

RECIST 1.1 assessment (Baseline versus day 90) were distributed between the residual 370 

disease categories, but reassuringly none were classified as sustained responders.  371 

 372 
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The frequency of patient tumors within each classification differed between the treatment 373 

arms (𝜒2=25.909, p<0.005) (Fig.4d), despite the average end of treatment tumor burden not 374 

differing between arms (39) (Fig S5). Therefore, tumor trajectory reconstruction reveals 375 

additional information about the time during which a treatment is effective and how rapidly 376 

resistance is emerging in a tumor. The use of combination therapy reduced the frequency of 377 

sustained response compared to endocrine therapy alone (z=3.040, p<0.005) and instead 378 

increased the frequency of stable disease trajectories under continuous low dose treatment 379 

(z=-3.221, p<0.005). The frequency of rebound disease trajectory was higher in the 380 

intermittent standard dose group than in the continuous low dose group (z=5.148, p<0.01).  381 

There were also more variable patient outcomes, as measured by an F-test of variance in final 382 

size (F=32.94, p<0.001; 2.7 × variability in final tumor size following intermittent vs 383 

continuous dosing) (Fig S5). Tumors exposed to intermittent high dose combination therapy 384 

decreased more rapidly during the first phase (day 0-90) of the trial, but this decrease was 385 

correlated with faster rebound growth in the second phase (day 90-180) (r=-0.76, F=16.87, 386 

p<0.0001) (Fig.4e). These added insights from the tumor reconstruction analysis suggests 387 

that combination therapy in this earlier stage ER+ breast cancer population, especially at 388 

higher doses, may potentially accelerate the evolution of endocrine resistance. 389 

 390 

Discussion 391 

Reconstruction of tumor trajectories of early-stage ER+ HER2- breast cancers during 392 

neoadjuvant treatment provides a detailed assessment of the impacts of combining endocrine 393 

therapy with targeted cell cycle inhibition therapy. Although combination treatment had no 394 

significant impact on average tumor size by time of surgery (39), the assessment of tumor 395 

trajectories reveals that combination therapy produced more highly variable tumor responses 396 

with an increased frequency of rebound disease, especially under high dose intermittent 397 
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treatment. Longer follow-up of the FELINE trial will inform if responses assessed by tumor 398 

trajectory reconstruction is prognostic. Further studies are needed to evaluate the role of drug 399 

dosage and timing on the evolution to a resistant tumor state.  400 

 401 

Using reconstructed tumor trajectories to distinguish patients with these distinct evolutionary 402 

resistance backgrounds (innate vs acquired) is essential for effectively implementing system 403 

biology based targeted therapeutic strategies (40). Endpoint focused response assessments 404 

are unable to distinguish these diverse tumor trajectories or differentiate rebound disease 405 

reflecting acquired resistance from stable disease indicative of weak innate resistance. For 406 

patients exhibiting a rebound disease trajectory, continued treatment permits rapid tumor 407 

growth once resistance is acquired. Because the mechanisms of innate and acquired 408 

resistance may be different, the classification of tumors into groups with distinct trajectories, 409 

rather than clinical outcomes may enable development of treatment approaches that target 410 

innate and acquired resistance.   411 

 412 

Another opportunity for improved patient care exists by using tumor trajectories to estimate 413 

the amount of bias for individual assessment modalities in individual patients. These 414 

estimates can be used when clinical circumstances require comparing one modality to a 415 

different modality at a previous time point. The weak correlation of tumor size estimates 416 

from surgical pathology with estimates from physical examination, and to a lesser extent 417 

ultrasound and mammograms, shows that single modality-based approaches are limited in 418 

accuracy. This reinforces the need to synthesize all available tumor measurements carefully, 419 

to account for the discrepancy in measurement accuracy across modalities.  420 

 421 
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Knowledge of the tumor trajectory, correcting for these biases, can guide adaptive therapy 422 

strategies, which work by initiating and ceasing therapy when the tumor reaches a critical 423 

size (11). As new data become available allowing the tracking of patient progress, the model 424 

can estimate how likely it is that the threshold size will be passed before the next assessment, 425 

allowing the application of adaptive therapies as threshold sizes are passed. Furthermore, 426 

there is no limitation to the number of measurement data types that can be used to inform the 427 

tumor trajectories. Other frequently monitored peripheral blood biomarkers of tumor burden 428 

can easily be integrated into the tumor reconstruction framework if sufficiently reliable 429 

markers are available. 430 

 431 

These added insights from the tumor reconstruction analysis suggests that combination 432 

endocrine therapy and cell cycle inhibitors in this early-stage ER+ breast cancer population, 433 

especially at higher doses of the cell cycle inhibitor, may potentially accelerate the evolution 434 

of endocrine resistance.  Interestingly, in the adjuvant treatment of early stage breast cancer, 435 

the MonarchE trial of abemaciclib, which is continuously dosed, showed an improvement in 436 

invasive disease free survival (41) while the PALLAS trial of palbiciclib, which is 437 

intermittently dosed like ribociclib, did not (42). Further research is needed determine 438 

whether the different results of these studies is related to the differences in dosing. Our 439 

results might inform the design of future neoadjuvant and adjuvant clinical trials by adopting 440 

continuous rather than intermittent dosing of the CDK4/6 inhibitors in combination with 441 

endocrine therapy. Furthermore, in early stage ER+ breast cancer, biological response to a 442 

neoadjuvant therapy is more prognostic than initial presentation factors (43). Hence, the 443 

adoption of a neoadjuvant strategy to help define tumor trajectories may add prognostic and 444 

predictive information to the ones currently available and allow us to change the treatment 445 

accordingly.  446 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2021. ; https://doi.org/10.1101/2021.01.14.426737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426737
http://creativecommons.org/licenses/by-nd/4.0/


Reconstructing tumor trajectories during therapy 19

 447 

Reconstruction of patient tumor trajectories allows assessment of response throughout 448 

treatment based on multiple different assessment modalities instead of relying on just the start 449 

and endpoint measurements. This dynamic approach enables refined description of the 450 

diversity of tumor response to therapy and enables identification of personalized tumor 451 

trajectories not usually captured such as rebound disease dynamics. All available 452 

observations of tumor size progression can be combined with existing knowledge of method 453 

specific biases and precision to recover the most probable trajectories and to quantify 454 

uncertainty. Our tumor reconstruction approach could assist with treatment decisions based 455 

on interim imaging changes in neoadjuvant trials using adaptive therapy approaches. 456 
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Fig.1. Overview of tumor reconstruction approach. a) The Gaussian Process model 705 

generates a wide range of potential tumor size trajectories by flexibly describing the 706 

correlation (covariance; left panel) between the tumor size at different time points. High 707 

covariance between time points (blue) generates stable tumor size during that timeframe 708 

(center panel), while low covariance (red) produces fluctuations in tumor size (right panel). 709 

b) Trajectories proposed by the GP are evaluated for consistency with clinical data. For each 710 

observation (point) made under each measurement method (color), the measurement model 711 

calculates the probability of the data, given the tumor is the size proposed by the Gaussian 712 

process. Combining these probabilities, information from multiple measurement methods is 713 

combined, allowing all available clinical data can be used to reconstruct tumor trajectories. 714 

Comparing observations across different measurement methods, the accuracy of specific 715 

methods is quantified (biases measured by 𝛽) as well as differences in precision 716 

(measurement noise measured by 𝜎). c) Existing knowledge about the differing precision (𝜎) 717 

and bias (𝛽; tumor size over/underestimation) of measurement techniques is incorporated into 718 

Bayesian priors put on the measurement model parameters. d) Tumor trajectories are learned 719 

using a Bayesian inference approach, by combining parts A-C. The Gaussian process 720 

proposes tumor trajectories (i) and the product of the prior knowledge and the likelihood of 721 

the clinical observations determines whether the trajectory should be accepted (ii). By 722 

iteratively proposing new and trajectories and accepting improvements, the model converges 723 

on the tumor size trajectories that are most likely to have occurred, as well as capturing our 724 

uncertainty in the trajectory (red lines=possible trajectories, black line =expectation). Biased 725 

clinical estimates (triangles) inform about the shape of the trajectory, whilst unbiased 726 

measurement modalities (circles) provide information to determine the size of the tumor 727 

more accurately at a given time. 728 

 729 
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 730 

 731 

 732 

 733 

 734 

Fig.2. Validation of the performance of the tumor trajectory reconstruction approach, 735 

using simulated tumor trajectories and measurement observations to test the ability to 736 

recover known dynamics. a) Schematic and equation for the theoretical model of subclonal 737 

evolution of tumor resistance, used to generate in silico tumor trajectories. Subclonal tumor 738 

population (i) changes in size (N) following cell death and proliferation which depends of 739 

drug dose and the density of competing resistant and sensitive cells. Under drug selection, the 740 

tumor composition shifts from being dominated by sensitive (purple) to resistant (orange) 741 

subclones. Black line subdivides resistant and sensitive cells and distance to the colored line 742 

above and below indicates the abundance of resistant and sensitive cells respectively. 743 

Coloration of line signifies the proportion of resistant cells.  b) Tumor observations are next 744 

generated by simulating the observation process for measurement methods with different 745 
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levels of bias/accuracy and precision/noise. c) In silico tumor observations are used to 746 

reconstruct the known tumor trajectory (colored line signifies tumor resistance). Three 747 

methods to assess tumor trajectories are assessed: i) RECIST assessments (either comparing 748 

baseline with midpoint or endpoint tumor size), ii) naïve smoothing of the tumor observations 749 

from different measurement methods or iii) our GPLVM approach. Black lines indicate the 750 

predicted tumor trajectory and shaded regions indicate confidence intervals. RECIST 751 

assessment does not provide a measure of uncertainty, so we use dashed black and grey lines. 752 

Colored points indicate the data used by each approach. d) Comparison of the performance of 753 

the tumor reconstruction approaches as measured by the amount of prediction error between 754 

the known and predicted tumor trajectories (RMSE=residual mean square error of 755 

predictions). Violin plots show the distribution of prediction error for each approach, across 756 

42 in silico tumor trajectory simulations varying the subclonal tumor composition and drug 757 

dose. Lower RMSE values indicate better performance. 758 

 759 
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 766 

Fig.3. Inferences from tumor trajectory reconstruction applied to a representative 767 

patient. a) Throughout the trial, tumor size is estimated (points) and uncertainty measured 768 

(box and whiskers=95 and 99% posterior interval). Tumor size can be measured at time 769 

points when tumor is measured (red filled points), but can also be inferred at intermediate 770 

times between measurements (solid black points), due to the reconstruction of smooth tumor 771 

size transition. The average tumor size (with uncertainty:95% credible interval) is shown by 772 

the right hand density plot. b) Scatterplot of Bayesian estimates of the timeframe and extent 773 

of tumor response to therapy that are consistent with the clinical observations of that patient’s 774 

tumor.  The speed change in tumor size is measured by the lengthscale parameter, indicating 775 

the timeframe over which the tumor response occurred and the Extent of tumor response to 776 

therapy is measured by the signal variance parameter, indicating the proportional change in 777 

tumor size relative to baseline. Each point indicates the timescale and extent of tumor change 778 

in a trajectory that is consistent with the data. The highest density of estimates indicates the 779 
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most probable value of the parameters and the distribution of estimates measures uncertainty. 780 

Contour lines highlight the most probable regions (contours indicate 10% reductions in 781 

probability). c) Box and whisker plot showing the bias of tumor size estimates provided by 782 

different measurement methods. Negative values indicate underestimation of tumor size and 783 

positive values show overestimation (box and whiskers=95 and 99% posterior interval). 784 

Unbiased estimate indicated by dashed grey line. d) Reconstruction of the smooth tumor 785 

trajectory (black line) with uncertainty (shaded region= high probability density credible 786 

interval, shade indicates trajectory probability). Clinical measurements obtained by different 787 

measurement modalities are overlaid (colored points). 788 

 789 
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 794 

Fig.4: Distinct tumor trajectories associated with endocrine and combination endocrine 795 

and cell cycle inhibitor therapy. a) Five distinct response dynamics (columns) observed 796 

across clinical trial treatment arms: sustained response (continued decline to near complete 797 

response), partial response (initial response saturating, fraction tumor remaining > 40%), 798 

stable disease (little change during trial, tumor remaining>70%), rebound disease (initial 799 

response, subsequent regrowth) and progressive disease (continued growth despite 800 

treatment). Top panel: example tumors reconstructed and assigned to each category. Tumor 801 
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trajectory reconstruction (solid black line) and uncertainty interval (shaded regions: high 802 

probability credible interval) are overlaid with the clinical data used to inform the trajectory 803 

(points: color indicates measurement method). Bottom panel: spiderplots of patient tumor 804 

size trajectories classified into each response category. b) Patient tumor trajectories 805 

summarized by measuring the reduction of tumor size (relative to baseline) and tumor decline 806 

rate in second half of trial (points=summarized patient tumor trajectory). Distinct tumor 807 

trajectory categories (colors) identified using a Gaussian mixture model. Confidence 808 

ellipsoids show tumor trajectory characteristics leading to each categorization. c) Comparison 809 

of the speed of tumor growth/decline (relative growth rate of the reconstructed tumor 810 

between observations) across the trial for tumors in each response category (color). 811 

Differences in timing and extent of initial tumor decline and extent of rebound growth when 812 

resistance emerges evident. Solid lines show average trends in tumor growth and shaded 813 

regions signify the heterogeneity of growth over time within a tumors response category 814 

(confidence intervals). Dashed grey line indicates no tumor growth (negative=shrinkage, 815 

positive=growing during time interval). d) Relative frequency of each trajectory (columns) in 816 

patient tumors from each treatment arm (rows). The size of the ellipse indicates the absolute 817 

value of the Pearson residuals, measuring how strongly a trajectory is associated with a given 818 

treatment arm. The color indicates whether the dynamic occurs more (blue) or less (red) 819 

frequently than expected in a given arm.  e) Speed of growth of patients’ tumor (points) from 820 

each treatment arm (color) during first phase (day 0-90; y-axis) and second phase (day 90-821 

180; x-axis) of the trial, as measured by the tumor reconstruction. Dashed horizontal and 822 

vertical lines indicate no net change in tumor size during the first and second phase of the 823 

trial respectively (positive values = tumor increased in size, negative values= shrinkage of 824 

tumor). Solid colored line shows the association between growth of the tumor during the first 825 

and second phase under each treatment (shaded region = 95% confidence intervals) 826 
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Supporting information for: Reconstructing tumor trajectories during therapy, 827 

through integration of multiple measurement modalities. 828 

 829 

Despite clinical physical examinations suggesting complete response in 39% of patients, all 830 

examined patients were found to have some residual disease at the end of therapy surgery. 831 

MRI assessments could only be collected infrequently, but showed close agreement to the 832 

pathology results, with only 4% of patients being predicted to have experienced complete 833 

response. The inferred tumor burden trajectories, obtained from our mathematical model, 834 

show a more complete picture. The model predicts that none of the patients experience 835 

complete response, with the estimated tumor burden at the end of treatment correlating 836 

strongly with pathological results (Fig S1). Rather than obtaining just a classification of 837 

response at end of therapy, the model shows the most probably course of tumor size across 838 

the trial period, allowing a distinction to be made between patients that showed no response 839 

initially and those that experienced an initial response followed by relapse before the end of 840 

the trial. 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 
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 852 

Fig S1: Large discrepancy (weak correlation) between surgical pathology observations 853 

of tumor size (mm) and measurements obtained by different imaging and clinical 854 

physical examination (colored points) just prior to surgery. Perfect agreement pathology 855 

observations and imaging/physical examination is indicated by the diagonal grey dashed 856 

line. 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 
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 867 

 868 

Fig S2:  Diverse trajectories of in silico tumors generated by simulating the theoretical 869 

model of subclonal evolution of tumor growth. Left panel shows the diversity of changes 870 

in tumor size during treatment across simulations. Middle panel shows the emergence of a 871 

resistant subclone over time. The population size of the resistant subclone increases at 872 

different speeds, depending on the dose of therapy that drives selection. The initial frequency 873 

of this population also varies between simulations. Right panel shows the fraction of the total 874 

tumor that is comprised of resistant cells during the timecourse of therapy, showing the 875 

variation in the rate at which the resistant subclone becomes dominant. 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 
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 886 

Fig S3: Strong agreement between tumor reconstructions and surgical and imaging 887 

measurements. Correlation of tumor size estimates from tumor trajectory reconstruction 888 

(first column/row) and surgical pathology observations (second column) and measurements 889 

from other imaging and physical examination assessments. Pairwise scatterplots show the 890 

agreement between each combination of methodologies (lower triangle of subplots). The 891 

correlation between these pairs of measurements is shown in the mirroring upper triangle of 892 
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subplots. The overall distribution of tumor size estimates across patient tumors is shown by 893 

the density plots in the diagonal subplots.  894 

 895 

Fig S4: The tumor size measured by physical examination was consistently an 896 

underestimate of tumor size, independent of the tumor trajectory during therapy. 897 

Histogram shows the estimated fraction the tumor measured for patients with tumors 898 

exhibiting each tumor trajectory (color). Biases are estimated individually for each patients’ 899 

tumor and no constraint is added to enforce that physical examination underestimates tumor 900 

size. The bimodal distribution of measurement bias indicates that physical examinations were 901 

unbiased for around 60% of the patients of the study but provided large underestimates of the 902 

tumor size in the remaining 40%.  903 
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 907 

 908 

 909 

 910 

 Fig S5: Combination therapy results in equal average reductions in tumor size 911 

compared to endocrine therapy alone. Violin curves show the distribution of final sizes of 912 

patients’ tumors (relative to baseline) in each treatment arm (color). Log linear regression 913 

used to compare average final tumor size (points show the expected final tumor size for each 914 

treatment. Overlapping confidence interval error bars shows that the final size did not 915 

significantly differ between groups.  916 
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