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Reconstruction Algorithms in Undersampled AFM
Imaging

Thomas Arildsen, Member, IEEE, Christian Schou Oxvig, Student Member, IEEE, Patrick Steffen

Pedersen, Member, IEEE, Jan Østergaard, Senior Member, IEEE, and Torben Larsen, Senior Member, IEEE,

Abstract—This paper provides a study of spatial undersam-
pling in atomic force microscopy (AFM) imaging followed by
different image reconstruction techniques based on sparse ap-
proximation as well as interpolation. The main reasons for using
undersampling is that it reduces the path length and thereby
the scanning time as well as the amount of interaction between
the AFM probe and the specimen. It can easily be applied
on conventional AFM hardware. Due to undersampling, it is
necessary to subsequently process the acquired image in order
to reconstruct an approximation of the image. Based on real
AFM cell images, our simulations reveal that using a simple
raster scanning pattern in combination with conventional image
interpolation performs very well. Moreover, this combination
enables a reduction by a factor 10 of the scanning time while
retaining an average reconstruction quality around 36 dB PSNR
on the tested cell images.

Index Terms—atomic force microscopy, undersampling, image
reconstruction, sparse approximation, interpolation, compressed
sensing

I. INTRODUCTION

ATOMIC force microscopy (AFM) is a scanning probe

microscopy technique that offers several interesting pos-

sibilities in the imaging of biological materials such as cells.

Atomic force microscopy complements other microscopy tech-

niques such as optical microscopy or scanning electron mi-

croscopy (SEM) by enabling three-dimensional imaging of

cell surfaces and imaging cells and bio-molecules in more

natural environments than other techniques. This also enables

imaging of live cells [1]. Imaging biological material such

as live cells does, however, entail some challenges such as

the risk of damaging the cells due to interaction with the

microscope probe tip [2], [3].

Imaging with AFM equipment is a relatively time-

consuming process, taking on the order of seconds to minutes

or even higher to image a region of interest using commercial

AFM equipment [4], [5]. While this may be inconvenient to

the operator of AFM equipment, it can become an impediment

when imaging temporally evolving material and organisms,

i.e. the AFM equipment may simply not be able to scan the
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specimen sufficiently fast to be able to follow the process [6],

[7]. Several approaches to achieving higher-speed scanning in

AFM have been explored. These include approaches dealing

with the mechanical characteristics of the equipment, control

of the probe, or design of special sampling patterns that allow

faster movement of the probe [6], [8]–[10]. However, since it

is often necessary to probe the specimen with great caution,

particularly in the case of live cell imaging, efforts to scan

faster and yet interact as little/carefully with the specimen as

possible may well run counter to each other.

One way to combat this dilemma could be to use sparser

sampling patterns than the patterns typically used in AFM.

The typical way to sample the topography of a specimen in

AFM is to scan the probe across the surface in a dense raster

pattern [11]. This process can be sped up by using a sparser

sampling pattern, i.e. effectively letting the scan path cover

the surface less densely and thereby enabling a shorter and

thus faster scan path. This approach simultaneously causes the

probe tip to interact less with the specimen. Such an approach

can potentially solve the dilemma of careful interaction with

a fragile specimen vs. fast scanning. In exchange, this neces-

sitates reconstruction of the full surface topography (image)

from considerably fewer samples instead.

In this paper we survey a range of methods that can

be applied in order to achieve faster and/or less destructive

cell imaging using AFM.1 In particular, we compare two

different sampling patterns (raster and spiral) in combination

with a selection of image reconstruction techniques based

on sparse approximation and an interpolation technique used

as reference. For the comparison, we use seven AFM cell

image specimens. We identify useful combinations of scan-

ning patterns and reconstruction algorithms that provide good

reconstruction quality and are sufficiently fast w.r.t. scan time

as well as reconstruction time. A perhaps somewhat surprising

finding is that the naive approach of simply scanning the cell

specimen with a less dense raster pattern, effectively skipping

a fraction of the lines, and then combined with standard image

interpolation, leads to the best overall objective reconstruction

quality for a fixed undersampling ratio. It is worth noticing that

if obtaining a less dense raster scanning pattern is supported

by the AFM equipment, then this technique does not require

1The underlying code-base and images required for reproducing all results
in this article is freely available at:

• Code http://dx.doi.org/10.5281/zenodo.32959
• Results http://dx.doi.org/10.5281/zenodo.32958
• Images http://dx.doi.org/10.5281/zenodo.17573
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any hardware modification of the AFM equipment. The recon-

struction algorithm is then a purely software-based approach

that can be performed on a standard PC or enabled through a

firmware upgrade of the equipment. We also find that for the

seven AFM cell images considered in this study, interpolation

and total variation techniques work better with raster scanning

patterns, whereas sparse approximation techniques with DCT

dictionaries work better with spiral scanning patterns.
The paper is outlined as follows. In Section II we give an

overview of signal processing for atomic force microscopy,

introducing the basics of AFM equipment as well as the

necessary processing required to obtain useful images from

the equipment, possible impairments, and notation details.

In Section III we give an overview of image reconstruction

based on sparse approximation techniques and introduce a

reference method, interpolation, for comparison. Section IV

details our experiments regarding reconstruction of images in

AFM. Section V presents results from numerical experiments

with the presented reconstruction methods. Finally, Section VI

summarizes and concludes the paper.

II. NOTATION AND FRAMEWORK

A. Introduction to AFM

Atomic force microscopy (AFM) is one of the most ad-

vanced techniques for investigating and manipulating surfaces

on the atomic scale. By working on this scale, AFM pro-

vides magnification which is orders of magnitude beyond the

capabilities of optical, confocal, and even scanning electron

microscopy or transmission electron microscopy techniques

[12]. This is generally the case for scanning probe microscopy

(SPM) which encompasses the families of AFM and scanning

tunneling microscopy (STM). Whereas STM requires the

surface of interest to be electrically conductive, AFM does not

[11] and is therefore the technique of interest to the present

paper due to the potential application to live cell imaging.

However, many of the thoughts presented should be applicable

to SPM in general.
Being a state-of-the-art technique, AFM is used extensively

within nanoscale science and technology [13]. Partly because

the technique can be used on surfaces in both vacuum, air,

and liquids, there is a large variability in the applications [7].

A number of applications relate to materials science, some to

the study of biological processes, and some to the study of

biological materials [9]. Yet other applications use AFM for

surface manipulation including lithography, nanomanipulation,

and nanoassembly [14].
In the context of surface investigation, AFM is most com-

monly used to generate a 3D surface map of the object of

interest [6]. Loosely speaking, a probe is used to measure the

height of the surface while the probe and the surface are moved

relative to each other. Specifically, the vertical position of the

probe is controlled by a piezo which is itself controlled by a

feedback loop. This feedback loop keeps a particular measured

property constant, such as the deflection of the cantilever on

which the probe tip is located, in order to ensure that the

probe traces the surface. Independently of this control loop,

the probe and the surface are moved relative to each other by

the use of additional piezos [12].

B. Image acquisition

To prepare the AFM equipment for operation, the user must

perform an initial system setup which consists of a number of

steps. Some of these steps require the user to make decisions

based on the surface under investigation. These decisions

include selecting a cantilever, operating mode (contact mode,

acoustic AC mode, or magnetic AC mode), servo settings

or AC mode settings, and scanner settings. Although these

heavily affect the quality of the measurements of the surface,

an in-depth coverage of the initial system setup is beyond the

scope of the present paper. It is, however, worth mentioning

that the degree of interaction between the probe tip and sample

depends heavily on the chosen operating mode. In contact

mode, the probe tip is “dragged” across the surface and

thus typically applies a near-constant force to it [12]. In AC

mode on the other hand, the cantilever is oscillated and thus

only applies force to the surface a fraction of the time [15].

The interaction between probe tip and sample is particularly

important when dealing with soft materials such as biological

cells [16].

The setup of the AFM equipment includes a number of

steps related to the movement of the probe and the surface

relative to each other: i.e. the scanning path. Traditionally, a

raster scanning path is used [4], and this only requires the

user to decide which surface region to scan, how densely to

scan it, and how fast to scan it. If the raster scanning path

should not be used then the user is required to decide on

the actual scanning path, the movement speed of the probe,

and the sampling frequency. Additionally, when deciding on

a non-raster scanning path, the user is required to somehow

implement this scanning if it is not already available in the

AFM equipment.

The actual scanning path is subject to two major constraints:

1) The probe cannot easily or effectively “jump” from one

point on the surface to another. Therefore, the path must

be continuous. 2) The piezos have a band limited frequency

response. Therefore, when combined with a specific probe

movement speed, the path must have frequency contents which

are limited to that band in order to avoid distorting the

scanning path.

C. Acquisition impairments

The image acquisition process is subject to a number of

impairments. Some of these impairments may severely affect

the image quality when image reconstruction is introduced

[17]. To ensure successful image reconstruction, the impair-

ments must be considered. Fortunately, some of these can be

mitigated by careful setup of the AFM equipment whereas

others must be accounted for in the image reconstruction [11].

This section highlights some of the possible impairments but

should in no way be considered a complete list.

Some of the impairments relate to the object of interest. First

of all, when this object is put in place, the surface is likely to

be tilted since the user cannot likely ensure that the surface

is perfectly normal to the probe tip. This impairment should

be accounted for by the image reconstruction. Next, when

acquiring an image, the surface may be deformed [18] since
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the AFM equipment applies force to the object which may

consist of a soft material. This impairment can be mitigated by

careful setup of the AFM equipment but it inevitably distorts

the image slightly [6].

Some of the impairments relate to the physical parts of the

AFM equipment. The probe tip is affected by an area of the

surface rather than a single point because of the shape and

size of the probe [11]. Depending on the probe, the slope

of the surface, and the desired physical resolution, this may

distort the image slightly. The sensors used in state-of-the-art

AFM equipment are sufficiently accurate and precise to only

cause negligible impairments [9]. The piezos used to move the

sample and probe relative to each other are intrinsically subject

to non-linearity, hysteresis, and creep [14]. However, state-of-

the-art AFM equipment can operate in closed-loop mode in

order to mitigate these effects [8].

Some of the impairments relate to the control loops and the

applied signal processing. The probe is part of a cantilever

which is deflected when the probe tip is affected by the

sample surface. This deflection is measured and compared to

the desired deflection resulting in an error signal which is

used to control the piezo. However, due to the filters used,

the type of controller, and the physics of piezos, the piezo

does not instantaneously compensate for changes in cantilever

deflection which may distort the image [18]. This impairment

may be mitigated by reducing the probe movement speed.

Finally, there are also possible issues of stochastic measure-

ment noise. Several factors specific to the equipment contribute

to stochastic noise in AFM [19]. These are for example related

to the optical system that is used to control the deflection of

the cantilever.

D. Discretization

As described in Section II-A, imaging with AFM can be

seen as measuring the surface height of a specimen across

a continuous two-dimensional surface (topography). The end

goal we consider here is conveying this measured topography

visually. This typically entails displaying an image of the

measured surface as points on a uniform grid, e.g. a computer

screen. This can be done in various ways, some of which are

described in the following. In order to do that, we first establish

some notation and general principles here.

We consider a region Ω ⊂ R
2 within which we wish

to image the topography of the continuous surface of the

specimen, denoted X . The surface of the specimen is sampled

along a scan path, on which the AFM probe, represented by

the sampling operator φ, collects m samples φ(X) ∈ R
m×1 at

discrete points on the surface X . From these samples, we wish

to reconstruct an h×w (pixels) image of the surface. We refer

to this image representation of the surface (with values located

on a uniform pixel grid over Ω) as a matrix, X ∈ R
h×w, or

as a vector, x ∈ R
hw×1, containing the stacked columns of

the matrix with the left-most column of X as the top entries

of x etc. The reconstruction of this image is correspondingly

denoted X̂ or x̂.

In the case of raster scanning as traditionally applied in

AFM, the sampled points can be chosen naturally to lie close

to a uniform grid that fits directly into an image interpretation.

In this case the sampled points φ(X) correspond directly to

the image X with the possible addition of noise and various

scanning artifacts E ∈ R
h×w as described in Section II-C:

φ(X) = X+E (1)

If one deviates from this traditional raster scanning and

sampling approach by either changing the scan pattern or using

non-uniform sampling, the acquired image samples do not

generally fall on a uniformly spaced grid corresponding to the

pixels of X. Having a uniformly spaced pixel grid is attractive

from a mathematical point of view, since the image can be

represented in a matrix form with an intuitive interpretation

of the physical locations of the sampling points. In this case,

we consider reconstruction X̂ of the hypothetical image X

from which measurements are obtained via an intermediate

interpolation from the measured points to the pixel grid. In

this spatially discretized setting, the obtained samples can be

seen as located at points on the uniform pixel grid as well

such that:

φ(X) = Φx (2)

The pattern of sampling points represented by the spatially

discrete matrix Φ is referred to as the sampling pattern.

The variables defined in this section form the basis of the

different reconstruction approaches presented in the following

sections.

III. SPARSE APPROXIMATION

Sparse regularization and/or approximation is a well-known

approach to solving ill-posed optimization problems, early

examples of which include [20]–[22]. The principle of com-

pressed sensing which has emerged quite recently has popu-

larized the sparse regularization principle [23], [24]. For an

introduction, see [25]–[27].

In this paper, we demonstrate a selection of reconstruction

algorithms based on sparse regularization. For this purpose,

we consider the following linear measurement model:

y = Aα (3)

The vector α ∈ R
n×1 is a sparse vector, i.e. it contains only

k ≪ n non-zero entries, also expressed as ‖α‖0 = k in the

ℓ0 pseudo-norm. The matrix A ∈ R
m×n is a sensing matrix

applied to the sparse vector to sample the measurements y ∈
R

m×1.

Typically, as is the case for the application to AFM proposed

here, a signal is not sparse in the domain we can observe it

in. The following more general model is therefore used:

y = Φx (4)

where:

x = Ψα (5)

Here x ∈ R
p×1 is the observable signal vector and Φ ∈ R

m×p

is a measurement matrix applied to sample the measurements.

The matrix Ψ ∈ R
p×n represents the dictionary, enabling a

sparse representation α of the observable signal x.
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If we consider the above formulations in the setting of

reconstructing an AFM image from samples scanned on a

specimen, y corresponds to the scanned samples of the image

x, a vector version of X. We wish to reconstruct an estimate

x̂ of the image from y. The fact that m < p ≤ n means

that (3), or equivalently (4) together with (5), constitutes an

under-determined linear equation system which we cannot

directly invert to obtain x̂. Sparse regularisation as used in, e.g.

compressed sensing enables solving (3) for α, and equivalently

for x through (5), by solving the following (non-convex)

optimization problem [23]:

α̂ = argmin
β

‖β‖0 s.t. y = Aβ (6)

Unfortunately (6) is an intractably difficult combinatorial

problem to solve exactly. However, compressed sensing theory

shows that (6) can be replaced by the following convex

relaxation of the problem [23], [26]:

α̂ = argmin
β

‖β‖1 s.t. y = Aβ (7)

The optimization problem in (7) can solve (3) exactly under

certain conditions [26], [28]. The convex relaxation in (7) is

one approach to approximating a solution to (6). However,

there exist a number of different approaches which we survey

a selection of in Section III-B.
The reconstruction method can be generalized to the case of

noisy measurements and/or signals that are not exactly sparse

but rather “compressible” in the sense that they are accurately

approximated by a few of the largest entries in α:

y = Φx+ e (8)

The vector e ∈ R
m×1 represents noise in the acquired

measurements, e.g. the impairments described in Section II-C,

and/or the error resulting from sparsely approximating a

signal that is not strictly sparse. In this case, the following

optimization problem reconstructs the signal [26]:

α̂ = argmin
β

‖β‖1 s.t. ‖Aβ − y‖2 ≤ ǫ (9)

The parameter ǫ bounds the 2-norm of the error e.
The sparse representation model (5) is known as the sparse

synthesis model – for its ability to synthesize a signal x from

a sparse vector α. This model also has a counterpart: the co-

sparse analysis model [29]:

α = Ψ⊤x (10)

This model admits a sparse representation of the signal x after

multiplication by an analysis dictionary Ψ⊤. Note here that

good dictionaries for the analysis model are not necessarily

simply a transpose of a corresponding synthesis dictionary,

but we use this notation here in order not to complicate the

notation with additional symbols. The optimization problem

for reconstructing x from the analysis model, as a counterpart

to (9) can be stated as:

x̂ = argmin
x̃

‖Ψ⊤x̃‖1 s.t. ‖Φx̃ − y‖2 ≤ ǫ (11)

A number of theoretical conditions for compressed sensing

reconstruction to succeed can be found in the literature [26],

[30], but most of the theory relies on the measurement

matrix Φ having i.i.d. random entries. A random measurement

matrix is difficult to achieve when scanning a specimen in an

efficient manner in AFM and further, the continuous trajectory

typically used in AFM in this case violates the assumption of

i.i.d. entries. Therefore, the imaging techniques explored in

this paper are not strictly compressed sensing. Nevertheless,

we investigate some of the reconstruction algorithms known

especially from compressed sensing to assess the value of

reconstructing images in AFM by sparse approximation.

Previous work has shown that for particular AFM images

having much greater energy in the high-frequency domain than

in the low-frequency domain, sparse approximation techniques

generally perform better than (Delaunay) interpolation-based

techniques, whereas for low-frequency AFM images, excellent

performance can be obtained with Delaunay interpolation [31].

A. Measurement and Dictionaries

As mentioned in Section III, the sensing matrix A can be

considered as the product of a separate measurement matrix Φ

and (synthesis) dictionary matrix Ψ where the purpose of the

measurement matrix is to represent the process that physically

measures the sample. The purpose of the dictionary matrix is

to enable a sparse representation of the image x.

When considering separate measurement matrices Φ and

dictionaries Ψ, the matrices should be selected from incoher-

ent orthogonal bases Φ and Ψ. Coherence, µ, is a measure of

the similarity of the vectors Φ and Ψ [26]. A low coherence

is better. The measurement matrix Φ should consist of rows

selected uniformly at random from Φ while the columns of

the dictionary matrix Ψ should be the vectors from Ψ [26].

The preceding descriptions apply to the case of a dictionary Ψ

corresponding to an orthonormal basis [32], i.e. m = p in (5).

However, the more general case of over-complete dictionaries

where m < p is also possible [33].

An overview of the past and present directions in the

design of dictionaries is given in [34]. The possibilities range

from the fixed, general purpose, orthogonal dictionaries over

more adapted over-complete dictionaries [35], [36] to the

highly data- and application-specific dictionaries designed

using a Karhunen-Loeve transform [37] (also known as a PCA

transform [38]) or a learning approach [39], [40]. Although

any of these approaches may be applicable for AFM image

representation, here we only discuss fixed dictionaries such as

the discrete cosine transform (DCT)2 or the discrete wavelet

transform (DWT). These transforms are of particular interest

due to their simplicity, their celebrated applicability in general

compressive imaging [27], and the availability of efficient

implementations requiring only O(n log(n)) computations as

well as relaxed memory requirements due to an implicit

representation of the dictionary matrix [41].

The DCT is used in the JPEG coding standard [42] and

as such is known to be successful in sparsely representing

2Here we consider the DCT as a representative of the family of sinusoidal
transforms which also includes, e.g. the discrete Fourier transform (DFT). It
is our experience that the use of the DFT gives reconstructions comparable
to those based on the DCT.
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smooth images. However, in JPEG the DCT dictionary is

used on smaller patches of the image whereas we only apply

dictionaries to the full image in this study. In terms of its

applicability in AFM imaging, the DCT is the dictionary

used in two independent recent studies on the applicability of

compressed sensing in AFM [31] and SEM [43]. The DWT

is generally very successful in sparsely representing piece-

wise smooth images. Consequently, it is the transform chosen

in the JPEG2000 coding standard [44]. The DWT has been

successfully used in a number of compressive imaging studies,

see e.g. [45] and [46]. Note, however, that these studies use

dense sampling matrices with random entries and not the

sparse point sampling used in AFM.

The excellent sparse representation capabilities of the DCT

and DWT on natural images make them both good candidates

for use in reconstruction of undersampled AFM images. We

have, however, found that the DWT can be problematic when

used in combination with point sampling. As (4) shows, mea-

surements in compressed sensing are generally random linear

combinations of the entries of the observable signal. In AFM,

however, the physical properties of the probe tip only allow

the microscope to sample the specimen in discrete points,

i.e. each row in Φ contains only one 1-entry while the other

entries are 0, making this point sampling measurement matrix

extremely sparse. The DWT dictionary matrix is relatively

sparse compared to the DCT and it follows that their product

is likely to be sparse, where some columns can become all-

zero. Thus, the null-space of the product matrix is non-empty

and there exist sparse solutions which cannot be represented

by the particular pair of measurement and dictionary matrix.

Intuitively, the DWT basis functions are not able to smoothly

interpolate between points spaced too far apart due to being

very localized in the image domain. Hence, we may experience

low incoherence between the DWT and point sampling. This

is not the case for the DCT dictionary matrix, which is

dense and maximally incoherent with point sampling [26].

To demonstrate the difference in reconstruction capabilities

between DCT and DWT dictionaries, we include results of

experiments with both dictionary types in Section IV. As the

results show, the performance depends strongly on the type of

sampling pattern used.

B. Reconstruction Algorithms

In the following, we review a number of reconstruction

algorithms that can be used to reconstruct undersampled AFM

images by sparse approximation.

1) Convex Optimization: The classic approach to solving

sparse approximation problems described by (6) is using the

ℓ1 norm convex optimization formulations introduced by (7)

and (9). The constrained convex formulation (9) is also com-

monly found in a regularized form:

α̂ = argmin
β

{

τ‖β‖1 +
1

2
‖Aβ − y‖22

}

(12)

Although (12) appears different from (9) at first glance, they

can produce identical solutions for given pairs of (ǫ, τ) [47].

These convex optimization formulations are also known as

the least absolute shrinkage and selection operator (LASSO)

or basis pursuit de-noising (BPDN) [48], [49].

Equations (7), (9), (12) are formulations of the problem to

solve. However, various different algorithms can be employed

to compute the actual solution [50], [51]. Some solvers for

this type of problems are implemented in for example PyUN-

LocBoX3 [52], SPGL14 [53], YALL15 [54], and TFOCS6.

Another convex optimization method following the ap-

proach in (11) is using total variation (TV) minimization [55].

Proposed for image denoising in the context of image pro-

cessing [56], TV is a measure that quantifies the variation

in some function. In image reconstruction, the TV measure

is used to minimize the variation in the reconstructed image.

That is, this approach takes advantage of the fact that natural

images tend to consist of relatively large smooth regions and

exploits this fact to fill in missing regions between the known

parts of the image. Anisotropic TV can be seen as analysis

co-sparse approximation with a discrete difference operator as

the analysis dictionary, see (10). The anisotropic TV operator

can be found in, e.g. [57]. As an example of analysis-based

sparse approximation, we apply a slightly different variant;

isotropic TV. This has also been applied to AFM image

reconstruction in [7]. A related application is found in [58]

where a slightly different but similar approach known as

heat equation in-painting is used. The isotropic TV convex

optimization problem can be posed as [59]:

x̂ = argmin
x

tv(x) s.t. ‖Φx − y‖2 ≤ ǫ (13)

In (13), we have used vector notation for the image x to sim-

plify the constraint. For the purposes of numerical computation

used in image processing, a discrete approximation of the TV

norm is used since the image is discretized to a pixel grid.

One definition of this discretization can be found in [59]:

tv(X) =

h−2
∑

k=0

w−2
∑

l=0

(

∣

∣X(k+1,l) −X(k,l)

∣

∣

2
+

∣

∣X(k,l+1) −X(k,l)

∣

∣

2
)

1

2

+

h−2
∑

k=0

∣

∣X(k+1,w−1) −X(k,w−1)

∣

∣

2

+

w−2
∑

l=0

∣

∣X(h−1,l+1) −X(h−1,l)

∣

∣

2
(14)

In (14), we have used matrix notation for the image X to

simplify indexing; X(k,l) indexes the (k, l)’th entry in X.

Equation (14) is the isotropic version of the discrete TV norm.

The problem (13) can be solved using different algorithms

such as split Bregman [60] or Douglas-Rachford splitting [52],

[61]. Implementations of algorithms solving TV optimization

can be found in PyUNLocBox, which can solve (13) as

described in [62]. TFOCS6 [63] also implements a solution.

2) Greedy Pursuits: An alternative to the convex optimiza-

tion based reconstruction algorithms is using the class of so-

called greedy reconstruction algorithms. The term greedy is

3Available at https://github.com/epfl-lts2/pyunlocbox.
4Available at http://www.cs.ubc.ca/labs/scl/spgl1.
5Available at http://yall1.blogs.rice.edu/.
6Available at http://cvxr.com/tfocs/.

https://github.com/epfl-lts2/pyunlocbox
http://www.cs.ubc.ca/labs/scl/spgl1
http://yall1.blogs.rice.edu/
http://cvxr.com/tfocs/
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used because these algorithms iteratively take decisions that

are locally optimal in each iteration [64].

Generally, an iteration of a greedy algorithm involves a

greedy selection of support elements (columns of A) followed

by a coefficient update (an update of α̂), see e.g. [64, Algo-

rithm 8.1]. The simplest examples are so-called greedy pur-

suits like Matching Pursuit (MP) [35] or Orthogonal Matching

Pursuit (OMP) [65] that only allow for a continued increase

of the support. Algorithms like Iterative Hard Thresholding

(IHT) [66] or Iterative Soft Thresholding (IST)7 [67] have an

ability to also prune elements from the support. For common

parameter choices, the IHT interchanges the optimization

criterion and the constraint in (9) and uses the ℓ0 pseudo-norm

from (6) instead of the ℓ1 relaxation:

α̂ = argmin
β

‖Aβ − y‖2 s.t. ‖β‖0 ≤ k (15)

In particular the IHT and IST algorithms have a simple

iterative form which can be written (with iteration index k)

as:

β(k+1) = Tµ

(

β(k) + κA⊤
(

y −Aβ(k)
))

(16)

The parameter κ is a step size. The function Tµ is a thresh-

olding operator applied entry-wise to each of the entries v of

a vector v. For IHT the hard thresholding operator [66] is:

Tµ (v) =

{

0 for |v| ≤ µ

v otherwise
(17)

For IST the soft thresholding operator [67] is:

Tµ (v) =

{

0 for |v| ≤ µ

sgn (v) (|v| − µ) otherwise
(18)

Even more advanced algorithms exist such as Subspace Pursuit

[68] or CoSaMP [69] that introduce a two-stage thresholding

scheme with an intermediate support element selection and

coefficient update.

Although some of the greedy algorithms can be shown to

have theoretical recovery guarantees that match those of the

ℓ1 based convex relaxation methods [64], empirical evidence

suggests that they do not perform as well as ℓ1 optimiza-

tion [70], [71]. The greedy algorithms are, however, worth

considering due to their low computational complexity. The

computational cost in an iteration of e.g., MP, IHT, or IST

is dominated by the computation of matrix-vector products

involving A and A⊤, thus, having complexity O(n2). If fast

transforms are available, as is the case when using e.g. the

DCT as described in Section III-A, the computational cost

is O(n log(n)). This has a significant impact on the time it

takes to do the reconstruction for large problem sizes such as

a 256× 256 = 65536 pixels AFM image.

3) Approximate Message Passing: Probabilistic Message

Passing (MP) algorithms based on graphical belief models

are known from Bayesian inference used in machine learning

[72]. This is an advanced method of reconstruction, which

takes into account prior information the user may have on

7IST can also solve a variant of the ℓ1 minimization problem and as such
is not completely distinct from them.

signal characteristics [73]. It unfortunately suffers from severe

computational load and may also show poor convergence

properties if the algorithmic assumptions are not fulfilled

[74]. The Approximate Message Passing (AMP) algorithm

is derived as a first order approximation, which reduces

the computational burden significantly [72], [75]–[77]. AMP

exists in several variants allowing different signal priors [78],

inclusion of parameters as variables [79] etc. The following is

based on a reasonably simple AMP method using a Bayesian

framework for probabilities. Maleki and Baraniuk [80] showed

links between AMP and Iterative Soft Thresholding (IST)

in terms of identical convergence properties, and it has also

been shown that the AMP algorithm can solve the LASSO

(Least Absolute Shrinkage and Selection Operator) problem

formulated in (12) [79].

The Minimum Mean-Square Error (MMSE) signal recon-

struction estimate for xn can be found from a marginal

Bayesian mean of the posterior marginal estimate as [81]:

x̂MMSE
n =

∫

x∗

xn ℘X|Y (xn|y) dxn (19)

where ℘X|Y (xn|y) is the conditioned posterior pdf (probabil-

ity density function), and x∗ is the space of xn. To compute the

MMSE estimate in (19) we need to determine the conditioned

posterior probability ℘X|Y (xn|y), which can be done via

Bayes’ rule [81]:

℘X|Y (x|y) =
℘Y |X(y|x)℘X(x)

℘Y (y)
(20)

=
℘Y |X(y|x)℘X(x)

∫

x∗
℘Y |X(y|x)℘X(x) dx

(21)

For the sparse input signal x we assume all components to be

i.i.d. Bernoulli-Gaussian with marginal pdf:

℘X(xn) = ρN (xn; µx, σ
2
x) + (1− ρ) δdirac(xn) (22)

where ρ ∈ [0; 1], δdirac(·) is the Dirac δ-function [82], and the

general Gaussian function is:

N (xn; µx, σ
2
x) =

1√
2π σx

exp

(−(xn − µx)
2

2σ2
x

)

(23)

The noise in (8) is modeled as additive white Gaussian noise

with a pdf given by:

℘E(en) = N (en; 0, σ
2
e ) (24)

The Message Passing (MP) is then included to describe the

steps:

α → z = Aα → y = z+ e = Aα+ e (25)

remembering that x = Φα. When ℘X(x) is unknown, the ex-

pression above represents an assumption of the pdf. Other pdfs

may be used such as Laplace and Bernoulli-Gaussian Mixture

models [79]. The output can be based on any separable

distribution. In the special case of a Laplace pdf, the algorithm

can be reduced to a simple thresholding algorithm similar

to (16) with an additional correction term in the argument

to the threshold operator (18). The algorithmic complexity of

the AMP algorithm based on Bernoulli-Gaussian input prior

and Gaussian output prior is O(mn).
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4) Reference Method: Interpolation: Interpolation using

irregularly spaced samples is a widely studied topic and

used in diverse disciplines such as signal processing [83],

[84], computational geometry [85], and geoscience [86]. Here

The computationally simplest approaches to interpolation are

nearest neighbor interpolation, where the nearest known pixels

are simply copied to the unknown pixel locations, and linear

interpolation, where nearby pixels are linearly combined to

provide the values for the missing pixels. The weights used

in the linear combination are often empirically chosen such

that an average of the neighboring pixels is obtained or they

depend upon the distance between the pixels as is the case

with Kriging linear interpolation [86]. The weights can also

be analytically chosen to satisfy e.g., well-established sam-

pling theorems in shift-invariant spaces such as non-uniform

interpolation with b-splines [87] and sinc kernels [88]. Another

common approach is to use Delaunay triangularization, where

the surface area is subdivided into non-overlapping triangles.

The vertices of the triangles are assigned the measured points,

and any point within a triangle can be obtained by (non)-

linear interpolation methods such as linear, cubic, and nearest-

neighbor interpolation between its three vertices [85]. In this

study we use the latter interpolation method as a reference to

compare the sparse approximation methods against.

IV. EXPERIMENTS

In order to give an overview of the possibilities of image re-

construction from sparsely sampled images we have conducted

an extensive set of experiments to showcase the capabilities

of different reconstruction approaches presented in Section III.

The experiments cover basic variants of the involved recon-

struction algorithms, i.e., no attempts were made to exploit

special structure in the images or apply dictionary learning etc.

It is therefore also likely that specialization of the algorithms

may offer further reconstruction quality improvements or mit-

igation of some of the impairments described in Section II-C.

A. Quality Indicators

In order to assess the reconstruction quality in the exper-

iments, we apply two standardized image quality indicators.

The first is peak signal-to-noise ratio (PSNR):

PSNR = 10 log10







P 2

∑h−1
k=0

∑w−1
l=0

(

X(k,l) − X̂(k,l)

)2







(26)

The value P is the maximum possible value of a pixel in

X, i.e. P = 1 according to the numeric representation of the

images described in Section IV-C.

The second metric is the structural similarity (SSIM) index

which we use according to the definition in [89]. In particular,

we use: window size 7, K1 = 0.01, K2 = 0.03, C3 = C2

2 ,

and α = β = γ = 1, cf. [89, Eq. (13)].

All reconstructed images are scaled to have pixel values in

the range [0, 1] prior to application of the PSNR and SSIM

indicators.

The color map referred to as “cool-warm” in [90] (exem-

plified in Figure 1a) is used for visualizing the ground truth

images in Figure 2 as well as the reconstructed images. We

have found through perceptual evaluation of the ground truth

images that this color map is better for discerning image details

otherwise lost in the color map traditionally applied in AFM

imaging which is exemplified in Figure 1b.

(a) “Cool-warm” color map.

(b) Traditional AFM color map.

Fig. 1. Color maps for visualization of images.

B. Sampling Pattern

We investigate reconstruction performance under varying

density of the applied sampling pattern. The density of the

sampling pattern is expressed in terms of an undersampling

ratio defined as follows: the undersampling ratio is measured

with respect to the length of the scan path as this can reason-

ably be assumed proportional to the amount of time required

to scan the image. We take as reference scan path length the

length of the dense raster pattern used to scan the original

images in Figure 2. This reference length is approximated as:

Lref = 2w h (27)

That is, the length of each horizontal line w times the number

of lines h, expressed in pixels. The multiplication by 2

stems from the fact that the probe is scanned both back and

forth once in each direction for each line counted. This in

principle results in two images; one composed of the left-to-

right-scanned samples and one composed of the right-to-left-

scanned samples. Only one of these images is used as they are

usually equivalent (but not completely identical) for practical

purposes. The undersampling ratio δ is finally calculated as

δ =
L

Lref
(28)

The length L is the length of the applied sampling pattern

in units of pixels. In reconstruction experiments involving the

spiral sampling pattern, we have simulated a scan path that

scans beyond the square region of the original image until

the spiral pattern fills the corners of the square as can be

seen in Figure 2h. In calculating the resulting undersampling

ratio, we also include the parts of the spiral scan path outside

the square image region for fairness of comparison. This is

done because the AFM equipment would have to traverse

these unused regions outside the image region in order not

to introduce scanning artifacts by deviating from the smooth

curve of the spiral path. Note that (28) is not equal to the

undersampling ratio measured in image pixels and (28) reflects

the fact that we wish to focus on the potential time savings in

applying sparse sampling patterns in AFM.
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(a) Chinese hamster ovary cells. (b) Chinese hamster ovary cells. (c) Human bladder carcinoma
cells.

(d) Human bladder carcinoma
cells.

(e) Chinese hamster ovary cells. (f) Chinese hamster ovary cells. (g) Chinese hamster ovary cells. (h) Sampling pattern example.

Fig. 2. (a)–(g) The seven ground truth images used in reconstruction experiments here shown before de-tilting; (h) shows an example of the spiral sampling
pattern with δ = 0.1.

C. Image Material

As examples of cell images we have selected the seven

images shown in Figure 2. The images have originally been

scanned for a size of 512× 512 pixels, but have been sub-

sequently decimated to 256× 256 pixels to reduce the com-

putational complexity of the reconstruction8. The images are

stored and processed as double precision (64-bit) floating point

values in the interval [0, 1]. Images (a), (c), (e), and (f) have

been acquired in acoustic AC mode; images (b), (d), and (g)

have been acquired in contact mode. The images have been

acquired on Keysight Technologies ILM6000 and 7500 AFM

equipment. The original image files are available along with

this paper9.
We demonstrate the performance of the reconstruction al-

gorithms on images sampled using raster-, respectively, spiral-

shaped scanning paths. In the experiments, we did not have

access to images scanned along a spiral scan path. For this

reason, the measurements used in the reconstruction experi-

ments were constructed as follows: the original images were

acquired using a dense raster scan path with one line per line

of pixels in the resulting image; spiral-scanned measurements

were simulated by picking pixels from the original images in

a spiral-shaped pattern as illustrated in Figure 2h; for fairness

of comparison, the raster-scanned measurements used in the

experiments were similarly picked as horizontal lines–joined

at the ends by vertical segments–of pixels from the original

8Most of the tested algorithms can actually handle images of size
512× 512, but the Bernoulli-Gaussian AMP algorithm described in Sec-
tion III-B3 was unable to handle larger images on the available hardware
due to memory requirements.

9http://dx.doi.org/10.5281/zenodo.17573

images. The undersampling ratio defined in Section IV-A is

varied among the following values:

δ ∈ {0.1 + n · 0.025 | n = 0, 1, . . . , 8} (29)

In the reconstruction experiments, the images have been de-

tilted prior to reconstruction. This is done by least-squares-

fitting a plane through the available measurements according

to the applied sampling pattern. The fitted plane is then

subtracted from the measurements. When evaluating PSNR or

SSIM of the reconstructed images, the reconstructed images

are compared to the de-tilted original.

There was not sufficient information available regarding the

physical experimental set-up used in producing the images in

Figure 2 to analyze and estimate the amount of measurement

noise in the images as described in, e.g. [19]. When available,

such estimates of measurement noise should be included

appropriately in the reconstruction algorithms. For example,

in the cases of (13) and (9) the estimated noise variance can

be used to determine ǫ.

D. Algorithm Implementations

For each of the sampling patterns (raster or spiral) and

each of the undersampling ratios, we reconstruct each of the

seven images using the following reconstruction algorithms:

ℓ1-minimization (Section III-B1), AMP – with Laplace prior

and with Bernoulli-Gaussian prior (Section III-B3), IST and

IHT (Section III-B2), TV minimization (Section III-B1), cubic

interpolation via Delaunay triangulation (Section III-B4). The

simulation code has been implemented in Python, which is a

popular, open and suitable ecosystem for scientific computing

http://dx.doi.org/10.5281/zenodo.17573
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(b) Raster sampling pattern

Fig. 3. Comparison of reconstruction PSNR, SSIM, and run-time across the tested reconstruction algorithms, at 256× 256 pixels.

[91], [92]. Python also supports the ideas of reproducible

research which are considered important in the present simu-

lation rich context [93], [94]. The complete Python code used

to conduct the reconstruction experiments is available along

with its results10. Interaction with the data files from the AFM

equipment, generation of sampling patterns, measurement and

dictionary matrices (for the algorithms utilizing the latter) as

well as evaluation of quality indicators and visualization of

reconstruction results are handled through the Magni software

package11 described in [95]. Some of the applied reconstruc-

tion algorithms are provided as part of the Magni package

while others are available in other packages; see details in the

following:

1) ℓ1-minimization For reconstruction via ℓ1 minimization,

we solved (9). Reconstructions using ℓ1-minimization

were performed using an orthogonal DCT dictionary

as well as over-complete DCT dictionaries. The over-

complete dictionaries applied 2 and 3 times oversam-

pling along each dimension of the frequency domain.

This amounts to a total of 4 and 9 times oversam-

pling, respectively. The over-complete DCT dictionaries

were implemented by applying zero-padding in the

10http://dx.doi.org/10.5281/zenodo.32959 and . . . /zenodo.32958.
11http://dx.doi.org/10.5278/VBN/MISC/Magni

image domain. Additionally, reconstructions using ℓ1-

minimization were performed using orthogonal DWT

dictionaries with three different types of wavelets:

Meyer, Daubechies, and symlets. All three wavelet

types were used in their longest available form in the

PyWavelets toolbox for Python12. Wavelets with the

longest available filters were chosen to mitigate possible

problems with measurement-dictionary coherence and

non-empty null-space discussed in Section III-A.

The solver iterates until the constraint in (9) is met or a

limit of 2000 iterations has been reached. Other settings

in the solver may influence the stopping conditions;

these have been left at their standard values.

2) Approximate Message Passing For reconstruction via

AMP, we have implemented the algorithm in Python for

a Laplace as well as a Bernoulli-Gaussian (BG) prior.

The code is included in the software accompanying this

paper. The algorithms are iterated until they reach an

upper limit of 300 iterations or if the residual:

‖y −A α̂‖2 < ǫ‖y‖2, ǫ = 10−3 (30)

Our current implementation of Bernoulli-Gaussian AMP

(BG-AMP) cannot handle images in 256 × 256 pix-

12https://github.com/PyWavelets/pywt

http://dx.doi.org/10.5281/zenodo.32959
http://dx.doi.org/10.5281/zenodo.32958
http://dx.doi.org/10.5278/VBN/MISC/Magni
https://github.com/PyWavelets/pywt
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(a) Spiral sampling pattern
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(b) Raster sampling pattern

Fig. 4. Comparison of reconstruction PSNR, SSIM, and run-time across the tested reconstruction algorithms, at 128 × 128. This figure serves to compare
BG-AMP to the other algorithms.

els due to severe memory requirements. Therefore our

experiments with this particular algorithm have been

conducted with the images in Figure 2 decimated to

128 × 128 pixels. All experiments with the other al-

gorithms have additionally been repeated at this image

size for the purpose of comparison with this algorithm.

Reconstructions using AMP were only performed using

an orthogonal DCT dictionary.

3) Iterative Soft and Hard Thresholding For reconstruction

via IST as well as IHT, we have implemented these

algorithms in Python. The code is included in the

software accompanying this paper. The algorithms are

iterated until they reach an upper limit of 300 iterations

or meet the condition in (30).

Reconstructions using IHT and IST were only performed

using an orthogonal DCT dictionary.

4) Total Variation For reconstruction via TV minimization,

we solved (13) using Douglas-Rachford splitting. We

used the solver implemented in the PyUNLocBox pack-

age for Python, referenced in Section III-B1. The solver

iterates until the constraint in (13) is met or a limit of

2000 iterations has been reached. Other settings in the

solver may influence the stopping conditions; these have

been left at their standard values.

5) Interpolation For reconstruction via interpolation, we

used cubic Bezier polynomial interpolation over trian-

gles formed by triangulating the available measurements

Φx as implemented in the scipy.interpolate

Python module [96].

For the convex optimization-based reconstruction approaches

(items 1 and 4 above) we have repeated the reconstructions

over a wide range of the regularization parameter ǫ and se-

lected the reconstructions with highest PSNR/SSIM, averaged

over all images for each algorithm and undersampling ratio

δ. Similarly for the IHT and IST algorithms, we repeated the

reconstructions over a wide range of the sparsity parameter k

and selected the reconstructions with highest PSNR/SSIM, av-

eraged over all images for each algorithm and undersampling

ratio δ. This was done in order to provide a fair basis for

comparison between the different algorithms since the mea-

surement noise is unknown and thus unavailable to estimate

ǫ, as explained in Section IV-C. Also, the images are not truly

sparse – merely well approximated as such. There is thus no

true parameter k available and this parameter is very problem-

dependent. This choice of regularization parameters is not

feasible in practice since the original image is unavailable for
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PSNR: 13.34 dB / SSIM: 0.08

(a) Image 2a: IHT, spiral.

PSNR: 17.36 dB / SSIM: 0.31

(b) Image 2b: IST, spiral.

PSNR: 20.02 dB / SSIM: 0.41

(c) Image 2f: ℓ1-min., raster.

PSNR: 15.50 dB / SSIM: 0.20

(d) Image 2g: Laplace AMP, raster.

Fig. 5. Examples of low-quality reconstructions at δ = 0.1. Images
reconstructed from measurements of the ground truth images 2 (a), (b), (f),
and (g). 256× 256 pixels.

evaluating the reconstruction quality. It was however chosen

in order to compare the mentioned algorithms on an equal

footing.

For each reconstruction experiment we have measured the

reconstruction time as a practical indicator of the run-time

complexity. Reconstruction time can of course vary depending

on the specific algorithm and the implementation of it used to

reconstruct the image. Our reconstruction results could thus

possibly be reproduced with different measured run-times.

However, the measured reconstruction times provide a useful

indicator of what is practically achievable.

V. RESULTS

For each of the reconstruction approaches, the performance

in terms of both PSNR and SSIM at 256 × 256 pixels is

plotted in Figure 3 along with reconstruction time against the

tested undersampling ratios, δ. All three panels display results

from the reconstructions resulting in the best PSNR among

the tested regularization parameters. Figure 3a shows results

for the spiral sampling pattern and 3b shows results for the

raster sampling pattern, cf. Section IV-B.

As expected, reconstructed image quality in terms of PSNR

as well as SSIM decreases as δ decreases. At the low un-

dersampling end, δ = 0.1, this results in reconstructions of

very low PSNR/SSIM, a few examples of which are shown in

Figure 5.

Figure 3 shows that interpolation and TV minimization

reconstruct the images best among the tested algorithms,

both in terms of PSNR and SSIM. As shown in Figure 3b,

interpolation results in the highest PSNR as well as SSIM

averaged over the seven ground truth images, for the raster

sampling pattern. TV reconstruction with the raster pattern

results in slightly lower PSNR than interpolation, 0.6 dB on

average. The spiral sampling pattern results in lower PSNR

for both interpolation and TV minimization, 4.9 dB worse on

average for interpolation while only 1.7 dB worse for TV. This

also means that reconstruction by TV minimization results in

2.5 dB higher PSNR than interpolation for the spiral sampling

pattern.

Reconstruction by ℓ1-minimization with DCT dictionaries

and the spiral sampling pattern results in the highest PSNR

performance after TV optimization, where 2×2 and 3×3 over-

complete DCT result in PSNR performance close to that of

TV optimization. For the spiral sampling pattern, interpolation

only performs comparable to ℓ1-minimization with orthogonal

DCT dictionary. The ℓ1-minimization with DWT dictionary

performs substantially worse than for DCT dictionary with

the spiral sampling pattern. Here the Meyer wavelet is slightly

better than the symlet, which is again slightly better than the

Daubechies wavelet. Laplace AMP exhibits a trend in PSNR

performance that deviates from that of the other algorithms,

deteriorating severely for δ > 0.2. This is not intuitive as the

algorithms have more information available for higher δ. This

is likely due to unfavorable configuration of this algorithm’s

parameters. IST performs substantially worse than the above

algorithms for δ < 0.2 but comparable to ℓ1-minimization

with DWT dictionary for δ ≥ 0.2. Finally, IHT reconstructs

at the lowest PSNR among all of the algorithms at more than

10 dB below ℓ1-minimization with DWT dictionary.

The raster sampling pattern performs much worse than the

spiral sampling pattern for all of the DCT dictionary-based

methods (ℓ1-minimization with DCT dictionaries, Laplace

AMP, IHT and IST). IHT, IST, and Laplace AMP with the

raster sampling pattern benefit very little from increased δ. The

described tendencies in PSNR figures are reflected similarly

in the SSIM figures. On the other hand, ℓ1-minimization with

DWT dictionaries results in PSNR as well as SSIM figures that

are very close the corresponding figures for the spiral sam-

pling pattern. Finally, both TV minimization and interpolation

perform similar and best among all of the studied algorithms

for the raster sampling pattern. PSNR of the latter two ranges

from approximately 35 dB at δ = 0.1 to approximately 45 dB
at δ = 0.3.

As mentioned in Section IV-D, reconstruction experiments

using Bernoulli-Gaussian AMP have only been performed on

images at 128 × 128 pixels. Figure 4 displays results of the

same experiments as in Figure 3 at 128 × 128 pixels for

comparison to BG-AMP. Data plotted in Figure 4 stems from

the reconstructions resulting in the highest PSNR among the

tested regularization parameters13. The performance of BG-

AMP in terms of PSNR and SSIM lies between that of IHT

and IST for the spiral sampling pattern and even slightly

below IHT for the raster sampling pattern. Laplace AMP

was observed to perform substantially better than BG-AMP

13The corresponding regularization parameter values are not necessarily the
same as the values resulting in Figure 3.
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PSNR: 35.87 dB / SSIM: 0.97

(a) Interp., spiral, δ = 0.1.

PSNR: 32.18 dB / SSIM: 0.96

(b) TV, spiral, δ = 0.1.

PSNR: 36.49 dB / SSIM: 0.94

(c) Laplace AMP, spiral, δ = 0.15.

PSNR: 30.49 dB / SSIM: 0.89

(d) IST, spiral, δ = 0.225.

Fig. 6. Examples of reconstructions for the lowest δ yielding SSIM > 0.9.
All images reconstructed based on measurements of the image in Figure 2d.
256× 256 pixels.

in terms of both PSNR and SSIM. A likely reason for this is

that the DCT coefficients of the images have been observed

to follow a probability distribution resembling the Laplace

distribution rather than the Bernoulli-Gaussian. The remaining

algorithms exhibit the same trends as for the 256×256 pixels

images in Figure 3, except for Laplace AMP which has a much

less outspoken tendency to degrade for larger values of δ than

for the 256× 256 pixels images.

The different reconstruction algorithms require different

amounts of samples to reconstruct images satisfactorily. As

examples of reconstructions of reasonable quality, we display

an image reconstruction for each of the algorithms for the

lowest δ that achieves a SSIM > 0.9 in Figures 6 and 7.

These images represent reconstructions of somewhat degraded

quality compared to the original where reconstruction artifacts

typical of the tested reconstruction algorithms are evident. IHT

is left out in Figures 6 and 7 since it reconstructs the image

at SSIM < 0.9. BG-AMP is likewise left out since it has

only been run for images at 128 × 128 pixels. Interpolation

(Figure 6a) tends to produce artifacts that appear as if small

regions of the image are smeared radially outwards from the

center. Figure 6b demonstrates how TV reconstruction tends

to produce reconstructions of piece-wise constant value – here

particularly concentrated around the lines of the raster sam-

pling pattern. The sparse approximation methods (Figures 6c-

6d and 7a-7f) tend to leave traces of the sampling pattern in

the reconstructed image, which is particularly visible in the

reconstructions with DWT dictionaries: Figures 7d-7f.

To exemplify the best performance of the tested algorithms,

PSNR: 35.08 dB / SSIM: 0.96

(a) ℓ1-min. DCT, spiral, δ = 0.15.

PSNR: 41.67 dB / SSIM: 0.97

(b) ℓ1-min. DCT (2 × 2), spiral,
δ = 0.1.

PSNR: 41.88 dB / SSIM: 0.97

(c) ℓ1-min. DCT (3 × 3), spiral,
δ = 0.1.

PSNR: 31.29 dB / SSIM: 0.91

(d) ℓ1-min. DWT (Daub.), spiral,
δ = 0.125.

PSNR: 29.43 dB / SSIM: 0.91

(e) ℓ1-min. DWT (Meyer), spiral,
δ = 0.1.

PSNR: 29.43 dB / SSIM: 0.91

(f) ℓ1-min. DWT (symlet), spiral,
δ = 0.1.

Fig. 7. Examples of reconstructions for the lowest δ yielding SSIM > 0.9.
All images reconstructed based on measurements of the image in Figure 2d.
256× 256 pixels.

the best reconstruction in terms of PSNR of the image in

Figure 2a is shown for each algorithm in Figure 8. All

of the algorithms reconstruct the image at a legible quality

but preserve finer details with varying success; interpolation

and TV result in the best reconstruction quality both in

terms of PSNR and SSIM (Figures 8g and 8h) while the

ℓ1 minimization algorithms with DCT dictionaries perform

slightly worse (Figures 8a-8c). ℓ1 minimization algorithms

with DWT dictionaries (Figures 8d-8f) perform somewhat

worse than with DCT dictionaries, producing visible edge

artifacts in the reconstructed images. IHT (Figure 8k) is the

only algorithm among these specific examples which leaves

clearly visible sampling pattern artifacts in the reconstructed

image and results in low quality.

The results indicate that reconstruction methods favoring
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1

PSNR: 38.60 dB / SSIM: 0.95

(a) ℓ1-min. DCT, spiral, δ = 0.3.

PSNR: 39.44 dB / SSIM: 0.95

(b) ℓ1-min. DCT (2 × 2), raster,
δ = 0.3.

PSNR: 39.57 dB / SSIM: 0.96

(c) ℓ1-min. DCT (3 × 3), raster,
δ = 0.3.

PSNR: 31.90 dB / SSIM: 0.92

(d) ℓ1-min. DWT (Daub.), spiral,
δ = 0.3.

PSNR: 35.28 dB / SSIM: 0.93

(e) ℓ1-min. DWT (Meyer), raster,
δ = 0.3.

PSNR: 34.75 dB / SSIM: 0.93

(f) ℓ1-min. DWT (symlet), raster,
δ = 0.3.

PSNR: 42.93 dB / SSIM: 0.98

(g) Interp., raster, δ = 0.25.

PSNR: 42.15 dB / SSIM: 0.98

(h) TV, raster, δ = 0.3.

PSNR: 35.68 dB / SSIM: 0.90

(i) Laplace AMP, spiral, δ =

0.225.

PSNR: 37.45 dB / SSIM: 0.94

(j) IST, spiral, δ = 0.3.

PSNR: 24.83 dB / SSIM: 0.67

(k) IHT, spiral, δ = 0.3.

Fig. 8. Examples of reconstructions with the highest PSNR for each algorithm. All images reconstructed based on measurements of the image in Figure 2a.
256× 256 pixels.

image smoothness (interpolation and TV) work slightly better

than methods based on sparse approximation with DCT or

DWT dictionaries. It is particularly favorable for interpolation

that this method was also the fastest to compute among

the tested algorithms: approximately 0.3 s-1 s depending on

δ (Figure 3, right panel).
Although BG-AMP was demonstrated to work particularly

poorly in the examples studied here, this type of algorithm

has potential. As the Laplace variant demonstrated, selecting

a more appropriate prior (Laplace) distribution of the im-

age transform coefficients can result in better reconstruction.

Furthermore, this family of algorithms can be adapted more

specifically to different measurement noise distributions than

for example the ℓ1 minimization approaches and may be able

to address the impairments described in Section II-C.
We stress here that the sparse approximation reconstruction

algorithms were selected to show an overview of the basic

form of some popular algorithms. These sparse approximation

algorithms can be specialized further to for example take

advantage of image structure [97], [98], dictionary learning

[40], or sparsity (ℓ1) in an ensemble of several different

dictionaries can be combined [99]. In summary, there is

potential for further advances in AFM image reconstruction

using sparse approximation methods.

VI. CONCLUSION

We have proposed to reduce the critical scanning time

and probe-specimen interaction by AFM measurement via

undersampling achieved through the use of a sparse sampling

pattern. In the present study we investigated the raster sam-

pling pattern as well as an undersampling spiral pattern; both
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of varying densities. We studied the performance of a num-

ber of image reconstruction algorithms applied to measured

AFM images of cell material via numerical experiments and

evaluated their reconstruction performance in terms of PSNR

and SSIM. We compared the central algorithms on a best-

case basis over a range of different regularization parameters

in order to reduce the effect of the choice of regularization

parameters on the reconstruction results.

The studied algorithms include sparse approximation meth-

ods with discrete cosine transform and discrete wavelet trans-

form dictionaries as well as total variation. These algorithms

were compared to a reference method – cubic interpolation.

The experimental results showed that most of the basic forms

of sparse approximation algorithms studied could not quite

match the reference interpolation method in terms of PSNR

and SSIM. Only total variation minimization resulted in com-

parable PSNR and SSIM. Furthermore, interpolation was the

fastest method at 0.3 s-1 s depending on undersampling ratio.

Based on the tested algorithms and images, it was found that

the scan time or probe-specimen interaction can be reduced

by a factor of 10 compared to dense raster scanning while

retaining a reconstruction PSNR ≃ 36 dB, or by a factor of

4 for a reconstruction PSNR ≃ 44 dB. These reductions in

scan time / probe-specimen interaction are attainable on any

existing AFM hardware capable of varying the line density of

a horizontal-line raster pattern.
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[93] P. Vandewalle, J. Kovačević, and M.Vetterli, “Reproducible research

in signal processing [what, why, and how],” IEEE Signal Processing

Magazine, pp. 37–47, May 2009.
[94] M. Schwab, M. Karrenbach, and J. Claerbout, “Making scientific com-

putations reproducible,” Computing in Science & Engineering, vol. 2,
no. 6, pp. 61–67, 2000.

[95] C. S. Oxvig, P. S. Pedersen, T. Arildsen, J. Østergaard, and T. Larsen,
“Magni: A Python Package for Compressive Sampling and Reconstruc-
tion of Atomic Force Microscopy Images,” Journal of Open Research

Software, vol. 2, no. 1, p. e29, Oct. 2014.
[96] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific

tools for Python,” 2001–, [Online; accessed 2015-02-25].
[97] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-

Based Compressive Sensing,” IEEE Transactions on Information Theory,
vol. 56, no. 4, pp. 1982–2001, Apr. 2010.

[98] M. F. Duarte and Y. C. Eldar, “Structured Compressed Sensing: From
Theory to Applications,” IEEE Transactions on Signal Processing,
vol. 59, no. 9, pp. 4053–4085, Sep. 2011.

[99] J. Yang, Y. Zhang, and W. Yin, “A fast alternating direction method for
tvl1-l2 signal reconstruction from partial fourier data,” IEEE Journal of

Selected Topics in Signal Processing, vol. 4, no. 2, pp. 288–297, Apr.
2010.

Thomas Arildsen (S’03–M’04–S’06–M’10) re-
ceived the M.Sc.E.E. and Ph.D. degrees from Aal-
borg University, Aalborg, Denmark, in 2004 and
2010, respectively. From 2004 to 2006, he worked
as project engineer at RTX Telecom A/S in Aalborg,
Denmark. He has been a visiting Ph.D. student at
University of Miami, United States in 2007. He
has worked at Aalborg University since 2010, as
associate professor since 2014. His research inter-
ests include compressed sensing, image processing,
analog-to-information conversion, scientific comput-

ing, statistical signal processing, estimation, communication signal processing.

Christian Schou Oxvig (S’14) received the B.Sc.
and M.Sc. degrees in electrical and computer engi-
neering from Aalborg University in 2011 and 2013,
respectively. He is currently a Ph.D. student in the
Signal and Information Processing Section, Depart-
ment of Electronic Systems, Aalborg University.
His research interests include scientific computing,
statistical signal processing, and reproducibility in
computer and simulation experiments.

Patrick Steffen Pedersen (M’15) received the B.Sc.
and M.Sc. degrees in electrical and computer engi-
neering from Aalborg University in 2011 and 2013,
respectively. He is currently pursuing the Ph.D.
degree at the Signal and Information Processing
Section of the Department of Electronic Systems
at Aalborg University. His current research interests
lie in the area of signal processing and compressed
sensing.

Jan Østergaard (S’98–M’99–SM’11) received the
M.Sc.E.E. from Aalborg University, Aalborg, Den-
mark, in 1999 and the PhD degree (cum laude)
from Delft University of Technology, Delft, The
Netherlands, in 2007. From 1999 to 2002, he worked
as an R&D Engineer at ETI A/S, Aalborg, Denmark,
and from 2002 to 2003, he worked as an R&D
Engineer at ETI Inc., Virginia, United States. Be-
tween September 2007 and June 2008, he worked
as a post-doctoral researcher at The University of
Newcastle, NSW, Australia. From June 2008 to

March 2011, he worked as a post-doctoral researcher/Assistant Professor at
Aalborg University. Since 2011 he has been an Associate Professor at Aalborg
University. He has been a visiting researcher at Tel Aviv University, Tel Aviv,
Israel, and at Universidad Técnica Federico Santa María, Valparaíso, Chile.
He has received a Danish Independent Research Council’s Young Researcher’s
Award, a best PhD thesis award by the European Association for Signal Pro-
cessing (EURASIP), and fellowships from the Danish Independent Research
Council and the Villum Foundation’s Young Investigator Programme. He is
an Associate Editor of EURASIP Journal on Advances in Signal Processing.

Torben Larsen (S’88–M’99–SM’04) received the
M.Sc.E.E. and Dr.Techn. degrees from Aalborg Uni-
versity, Aalborg, Denmark, in 1988 and 1998, re-
spectively. Since 2001, he has been a Full Professor
at Aalborg University in electronic circuits, signals
and systems theory. He has industrial experience
working as senior engineer at Bosch Telecom and
Siemens Mobile Phones. He was member in 2005-
2010 and vice-chairman in 2009-2010 of the Danish
Research Council for Technology and Production
Sciences. In 2011 he was appointed director of

the doctoral school at The Faculty of Engineering and Science, Aalborg
University, with more than 650 enrolled PhD students. He has authored
or co-authored over 130 peer-reviewed journal and conference papers and
contributed to four internationally published books. He received the Spar Nord
Research Prize in 1999 and “Aalborg University Teacher of the year 2013”.
Since 2007 he has been member of the Academy of Technical Sciences,
Denmark. He has supervised approx. 25 PhD students. He has been Vice Dean
at the Faculty of Engineering and Science, Aalborg University since 2015.
His recent research interests mainly include scientific computing, compressive
sensing, numerical algorithms etc. in the areas of signals and systems theory.


	Introduction
	Notation and Framework
	Introduction to AFM
	Image acquisition
	Acquisition impairments
	Discretization

	Sparse Approximation
	Measurement and Dictionaries
	Reconstruction Algorithms
	Convex Optimization
	Greedy Pursuits
	Approximate Message Passing
	Reference Method: Interpolation


	Experiments
	Quality Indicators
	Sampling Pattern
	Image Material
	Algorithm Implementations

	Results
	Conclusion
	References
	Biographies
	Thomas Arildsen
	Christian Schou Oxvig
	Patrick Steffen Pedersen
	Jan Østergaard
	Torben Larsen


