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Abstract

Background: The green microalga Dunaliella salina accumulates a high proportion of β-carotene during abiotic

stress conditions. To better understand the intracellular flux distribution leading to carotenoid accumulation, this work

aimed at reconstructing a carbon core metabolic network for D. salina CCAP 19/18 based on the recently published

nuclear genome and its validation with experimental observations and literature data.

Results: The reconstruction resulted in a network model with 221 reactions and 212 metabolites within three

compartments: cytosol, chloroplast and mitochondrion. The network was implemented in the MATLAB toolbox

CellNetAnalyzer and checked for feasibility. Furthermore, a flux balance analysis was carried out for different

light and nutrient uptake rates. The comparison of the experimental knowledge with the model prediction revealed

that the results of the stoichiometric network analysis are plausible and in good agreement with the observed

behavior. Accordingly, our model provides an excellent tool for investigating the carbon core metabolism of D. salina.

Conclusions: The reconstructed metabolic network of D. salina presented in this work is able to predict the

biological behavior under light and nutrient stress and will lead to an improved process understanding for the

optimized production of high-value products in microalgae.
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Introduction
Microalgae received increased attention over recent years

due to their ability to produce high-value compounds

such as polyunsaturated fatty acids and carotenoids

[1–3]. Optimizing microalgal growth and product com-

positions in order to facilitate economically feasible mass

production is still challenging. A better understanding of

the complex algal metabolism is an important prerequisite

overcoming this hurdle. In regards to algal metabolism,

the halophilic unicellular green alga Dunaliella salina is

an excellent model organism to investigate changes in

metabolism [4] as the physiology of the switch from pri-

mary growth to secondary stress metabolismwith glycerol

and carotenoid accumulation is very well known [5–7]. In
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addition, D. salina remains one of the few microalgae cur-

rently being commercialized for β-carotene production

on a large scale [8].

The construction of dynamic-kinetic growth models

using ordinary differential equations (ODEs) is a well-

established formalism in bioprocess engineering. These

models allow for prediction of biomass growth, nutri-

ent uptake and metabolite production and enable the

identification of bottlenecks in the process setup for

both lab-scale and large-scale outdoor cultivation systems

[9–11]. Simplified growth models are robust and compu-

tationally inexpensive. However, they might be only valid

for a certain range of environmental conditions, thus lim-

iting predictive capabilities for extrapolation outside the

experimental region [12].

It is known that metabolic processes are based on com-

plex reaction pathways throughout different subcellular

compartments and its integration into a metabolic model
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is a prerequisite to get insight into the formation and reg-

ulation of metabolites [13]. Several flux-balance models of

different plant and algal species have already been pub-

lished. These includemodels for higher plantsArabidopsis

[14], barley [15], Brassica napus seeds [16] and green

microalgae such as Chlamydomonas [17–21], Chlorella

[22–26] and Ostreococcus [27].

Currently, the productivities of microalgae are still

below their actual potential. However, metabolic network

reconstructions are the basis for stoichiometric model-

ing efforts and they have the ability to provide theoretical

maximal substrate and product yields as well as calcula-

tion of internal metabolic rates. Furthermore, they enable

in silico identification of genetic intervention strategies

that guarantee a specified product yield, e.g. by engineer-

ing of the carotenoid or lipid synthesis pathways [28].

Usually, methods such as flux balance analysis (FBA) are

used to determine the steady-state flux distribution in

a metabolic network under given input conditions by

maximization of an objective function. Moreover, exten-

sions for FBA methods such as dynamic flux balance

analysis (DFBA) exist, accounting for unbalanced growth

conditions and dynamic extracellular effects on intracel-

lular metabolism [21, 29]. This enables exploration of

metabolic flux distributions consistent with stoichiomet-

ric and thermodynamic constraints as well as constraints

formulated according to experimental data [30].

Since D. salina is the richest known source of natural

β-carotene, a metabolic network model is highly benefi-

cial to fully exploit the biotechnological potential of this

alga. So far, for D. salina some metabolic profiling infor-

mation is available [31, 32], and the first growth models

have recently been created [11, 33, 34]. In addition, the

genome of D. salina has been released (http://genome.jgi.

doe.gov/DunsalCCAP1918/DunsalCCAP1918.info.html)

[35]. However, the annotation of the nuclear genome

is challenging since it contains a high number of long

introns and extensive repeats, complicating proper gene

model construction. Therefore, a genome scale metabolic

reconstruction for the industrially relevant microalga

D. salina is still missing. Based on the nuclear genome

of strain CCAP19/18 [35], a manual reconstruction of

a carbon-core metabolic network was performed. The

aim of the reconstructed stoichiometric network is to

describe the metabolic flux distribution leading to the

accumulation of the major biomass constituents in D.

salina under fluctuating light and nutrient conditions.

Results
Reconstruction of a stoichiometric network for the

carbon-core metabolism

By linking the annotated genetic information from

[35] with bioinformatic knowledge from databases (e.g.

KEGG, Kyoto Encyclopedia of Genes and Genomes), a

stoichiometric network for the carbon-core metabolism

with interfaces to the amino acid metabolism of D. salina

CCAP19/18 that comprises 221 reactions and 213

metabolites in three different compartments (chloro-

plast, cytosol and mitochondrion) was reconstructed. A

comprehensive list of reactions and compounds in the

metabolic network can be found in the Additional file 1.

All entries in the list of reactions carrying an EC number

(Enzyme commission number) and KEGG ID are anno-

tated enzymes of the D. salina genome. Although more

extensive metabolic networks exist for a variety of unicel-

lular algae [20, 36, 37], the purpose of our work was to

create the first reduced network that would still be capable

of predicting biomass composition and productivities.

Figure 1, 2 and 3 show the network maps for the cytosol,

the chloroplast and the mitochondrion respectively. To

create the metabolic map with subcellular localization

of enzymes, the prediction program PredAlgo was used.

The prediction tool had been developed and designed to

determine the subcellular localization of nuclear-encoded

enzymes in C. reinhardtii [38]. Consequently, PredAlgo

distinguishes between the following three compartments:

the mitochondrion, the chloroplast, and the cytosol. The

study of [38] showed that the application of PredAlgo

led to an improved discrimination between plastidal and

mitochondrial-localized proteins. As stated by its authors,

PredAlgo works most accurately for the genus of Chlamy-

domonas and related green algal species (Chlorophyta).

Algae of the genus Dunaliella and Chlamydomonas are

closely related, because they both belong to the order

of Volvocales [39], a comparison of annotated enzymes

for the calvin cycle, the carbon-core metabolism and

the isoprenoid biosynthesis of D. salina and C. rein-

hardtii showed a high degree of similarity [40]. In addi-

tion, there is a broad consensus that the carbon core

metabolisms of green microalgae are conserved along

several lineages since almost 90% of the functional anno-

tated proteins of C. reinhardtii and of other microalgal

proteins are homologs of Arabidopsis thaliana proteins

[41]. For instance, similar to C. reinhardtii, the enzyme

triose-phosphate isomerase (EC 5.3.1.1) is only present

as one gene within the genome of D. salina. PredAlgo

predicted a chloroplast localization, thus confirming the

expected localization with the Calvin-Benson-Bassham

cycle for carbon acquisition in the plastid of photosyn-

thetic organisms. Moreover, multiple green algal species

(Chlorophyta) share the presence of a glycolytic enolase

(EC 4.2.1.11) with cytosolic localization rather than a

plastid-localized enolase enzyme [42].

A major difference between the model alga C. rein-

hardtii and D. salina is the adaptation of D. salina to

life under high salinities, whereas C. reinhardtii exclu-

sively lives in soil and freshwater. Therefore, metabolism

of D. salina was expected to reveal not only similarities,
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Fig. 1 Network map of carbon core metabolism in the cytosol and mitochondrion. For reasons of simplicity linear reactions were merged. The

arrows display the direction and reversibility of the reactions. The blue font color refers to metabolites modeled as biomass compounds and the red

font color refers to key reaction components such as energy and reduction equivalents

but also differences in subcellular localization of some

of the annotated enzymes. For example, the enzyme the

carbonic anhydrase (CA, EC 4.2.1.1) was included in the

network to ensure carbon acquisition under high salt

conditions. The genome of C. reinhardtii contains three

α-type, six β-type and three γ -type CAs [43]. In con-

trast to freshwater species, [44] identified five α-type CAs

and three γ -type CAs, but no β-type CAs in D. salina

CCAP19/18. The newly identified α-type CA (DsCA2b)

is suggested to improve CO2 assimilation under hyper-

saline conditions [44]. Based on results of [45], a plasma

membrane localization acting on the extracellular side was

assumed. Although a variety of genes code for different

classes of carbonic anhydrases [44], we only considered

the extracellular version in our model, because it is spe-

cific to Dunaliella.

In contrast, multiple green algal species (Chloro-

phyta) share the presence of a glycolytic enolase (EC

4.2.1.11) with cytosolic localization rather than a plastid-

localized enolase enzyme [42]. The glycerol cycle is ini-

tiated by the formation of glycerol-3-phosphate from

dihydroxyacetone-phosphate, either provided through

glycolytic reactions in the cytosol or through the reductive

pentose phosphate pathway in the chloroplast [46]. This

reversible reaction is catalyzed by the glyceraldehyde-3-

phosphate dehydrogenase (GPDH), which exists as two

different enzymes, Nicotinamide-adenine dinucleotide

(NAD+)-dependent enzyme (EC 1.1.1.8) with plastidal
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Fig. 2 Network map of carbon core metabolism in the chloroplast. For reasons of simplicity linear reactions were merged. The arrows indicate the

direction and reversibility of the reactions. The gray boxes indicate shuttling of metabolites between the considered compartments. The blue font

color refers to metabolites modeled as biomass compounds and the red font color refers to key reaction components such as energy and reduction

equivalents

and cytosolic localization and the ubiquinone-dependent

enzyme (EC 1.1.5.3) with cytosolic localization bound

to the mitochondrial membrane. The following forma-

tion of glycerol from glycerol-3-phosphate was considered

to be performed by the glycerol kinase (EC 2.7.1.30).

The presented hypothesis of the glycerol cycle within

the cytosol also includes the removal of glycerol by con-

version to dihydroxyacetone via the dihydroxyacetone

reductase (EC 1.1.1.156) and subsequent phosphorylation

to dihydroxyacetone-phosphate by the glycerone kinase

(EC 2.7.1.29), thus connecting the glycerol cycle back

to the glycolysis. Another option for cells to dispose of
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Fig. 3 Network map of the fatty acid and nucleic acid metabolism. The arrows indicate the direction and reversibility of the reactions. For reasons of

simplicity linear reactions were merged. The gray boxes indicate shuttling of metabolites between the considered compartments. The blue font

color refers to metabolites modeled as biomass compounds and the red font color refers to key reaction components such as energy and reduction

equivalents

glycerol may be through general alcohol dehydrogenases

(EC 1.1.1.2/1.1.1.21). This is a novel finding, indicat-

ing that glycerol could be connected to the carbon core

metabolism in more ways than previously proposed, pos-

sibly providing a second glycerol cycle in D. salina.

Regarding carotenoid biosynthesis, genes coding for all

of the enzymes of the plastid localized isoprenoid biosyn-

thesis referred to as the Methyl-Erythritol-Phosphate

(MEP) pathway were identified [35]. In addition, genes for

all prenyl transferases needed to synthesize phytoene were

found in the genome and all genes coding for enzymes

required for reactions leading to β-carotene were identi-

fied.

Flux balance analysis of low and high-light scenarios under

nutrient repletion and depletion

The reconstructed network was implemented in the

MATLAB toolbox CellNet Analyzer and checked for

consistency and feasibility by using the function Check

feasibility of flux scenario. Additionally, a

FBA was carried out to analyze the plausibility of the flux

distribution under varying light and nutrient conditions.

The input fluxes for light (Ex01) and nutrients (Ex06) in

the FBA scenarios were fixed according to experimentally

obtained values for cultivations in a flat-plate bioreac-

tor setup. For the nitrogen uptake rate, a maximal rate

of 0.19 mmol/(g dw · h) for the nitrogen-replete scenarios

and 0.001 mmol/(g dw · h) for the nitrogen-limited sce-

narios were calculated. Additionally, the maximal uptake

rate for light (Ex01) was adapted to 800 mmol/(g dw · h)

according to experimental values obtained in flat-plate

bioreactor experiments under high light conditions [29].

The maintenance ATP requirement (Reaction R192) was

calculated by dynamic modeling from chemostat experi-

ments conducted in a laboratory flat-plate bioreactor and

was fixed to 0.92 mmol/(g dw · h).

The results of the FBA for the defined scenarios (A-

H) are listed in Tables 1 and 2. In the scenarios A
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Table 1 Input conditions and predicted growth rates for the defined scenario A-C

Scenario A B C D

Light LL HL LL HL

Nutrients nutrient-replete nutrient-depleted

Input conditions:

Light (Ex01) 320 800 320 800

Nutrients (Ex06, NO3
−) 0.19 0.19 0.001 0.001

Objective function max(µ)

Calc. growth rate in 1/h 0.1287 0.7934 0.0007 0.0007

Calc. β-carotene production in mmol/(g dw · h) 0 0 0 0

and B, the nitrogen source represented by the metabo-

lite nitrate (NO3
−) was set to the maximal reaction rate

of 0.19 mmol/(g dw · h) to simulate autotrophic growth

under nitrogen-replete conditions for low and high light

conditions. For the scenarios C and D, the nitrate flux

(Ex06) was set to 0.001 mmol/(g dw · h) to simulate

autotrophic growth under nitrogen-limited conditions.

The objective function was defined to maximize biomass

growth under autotrophic conditions (represented by the

biomass-forming reaction µ) and the internal fluxes were

calculated.

The simulations for the scenarios E -G were carried out

under the same nitrogen-replete and depleted conditions

as A -D with the only difference that the maximization

of the β-carotene flux (Car14) was added to the objec-

tive function to test whether the flux distribution enables

a growth-coupled accumulation of secondary pigments.

The objective function for these scenarios is defined as

follows: maximization of biomass growth (reactionµ) and

β-carotene production (reaction Car14).

The resulting growth rates µ for the biomass-

maximizing scenarios A -D revealed a nitrogen lim-

ited growth regime. Under nitrogen-replete conditions,

growth rates of 0.1287 h-1 and 0.7934 h-1 were predicted

for the low light and high-light input flux (Ex01). The pre-

dicted growth rate under low-light conditions (3.09 d-1)

is only slightly higher than previously published growth

data for D. salina CCAP19/18 where a maximal growth

rate of 1.71 d-1 was predicted by dynamic-kinetic model-

ing of batch cultivation data [47]. In the nutrient-depleted

scenarios C and D, no biomass growth (µ=0.0007 h-1)

occured neither under low light nor high light conditions.

In scenario A -D, biomass production occurred with-

out any formation of β-carotene as a side product,

meaning that the β-carotene flux Car14 is always 0

mmol/(g dw · h) (Table 1). Since the objective function

did only include the biomass growth (µ) under nitrogen-

replete conditions it is biologically plausible that β-

carotene formation was suppressed in the flux scenarios

A -D. As described by [6] and [11] oversaturating light

conditions and nutrient repletion led only to moderate β-

carotene accumulation, whereas oversaturating light com-

bined with nutrient stress is the most potent inducer of

secondary carotenoids in D. salina.

The tested scenarios E -H (Table 2) were similar to

A -D despite the extension of the objective function to

maximize the β-carotene flux (Car14). The same growth

rates as in scenarios A -D were calculated (0.1287 h-1 and

0.7934 h-1 for nutrient-replete conditions and 0.0007 h-1

for nutrient-depleted conditions). However, the predicted

β-carotene flux was different compared to scenarios A -D.

For the nutrient-replete scenarios E and F, the lowest β-

carotene accumulation of 0.6962 mmol/(g dw · h) was pre-

dicted under low light conditions whereas a β-carotene

Table 2 Input conditions and predicted growth rates for the defined scenario E-H

Scenario E F G H

Light LL HL LL HL

Nutrients nutrient-replete nutrient-depleted

Input conditions:

Light (Ex01) 320 800 320 800

Nutrients (Ex06, NO3
−) 0.19 0.19 0.001 0.001

Objective function max(µ,Car14)

Calc. growth rate in 1/h 0.1287 0.7934 0.0007 0.0007

Calc. β-carotene production in mmol/(g dw · h) 0.6962 1.2972 0.7556 1.5359
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flux (Car14) of 1.2972 mmol/(g dw · h) was predicted

under high light conditions. Under nutrient-depleted

conditions, the predicted β-carotene flux (Car14) was

0.7556 mmol/(g dw · h) under low light and 1.5359

mmol/(g dw · h) under high light conditions (Table 2).

Discussion
The reconstruction of a stoichiometric network for the

carbon-core metabolism of D. salina CCAP19/18 was

performed from annotated genetic information of with

knowledge from bioinformatic databases such as KEGG.

The size of the metabolic network for D. salina (221

reactions and 213 metabolites in three different compart-

ments: chloroplast, cytosol and mitochondrion) is in the

range of previously published reduced networks for green

microalgae (e.g. for C. reinhardtii with 160 reactions, 164

metabolites in two compartments by [48] or with 259

reactions, 267 metabolites in 6 compartments by [49]).

With respect to the carotenoid synthesis, it was essen-

tial that all enzymes of the isoprenoid biosynthesis were

identified, because under environmental stress cells of D.

salina de-novo synthezise up to 10% of their dry weight as

the isoprenoid molecule β-carotene [5]. Furthermore, the

sequencing of various green algal species was an impor-

tant prerequisite to study their different accumulation

patterns of TAGs and carotenoids. [50] proposed that the

pattern of carbon flow towards TAG or carotenoids is reg-

ulated by the NAD(P)H reduction state and the presence

of bypass mechanisms such as pyruvate dehydrogenase

(PDH). In the case of D. salina, the downregulation of

PDH induced by high NAD(P)H levels under abiotic stress

conditions favors β-carotene hyperaccumulation rather

than massive TAG accumulation [50].

The results of the predicted β-carotene fluxes shown

in Table 2 are supported by experimental observations

for bioreactor cultivations of D. salina CCAP19/18 where

low light and nutrient depletion led to the lowest β-

carotene fraction of 30 mg/g dw followed by high light

without nutrient stress with 43 mg/g dw. The highest

experimentally observed β-carotene fractionwas detected

under high light coupled with nutrient stress, namely 80

mg/g dw [47]. This is in line with the biological function

of β-carotene acting as a metabolic sink under conditions

where growth is limited by excess light or nutrient stress

[51]. The absence of biomass production in scenarios C-

D and G-H is plausible, since nitrogen depletion leads to

inhibition of protein biosynthesis which is a prerequiste

for growth.

Conclusion
This work presents a metabolic network reconstruction

of the carbon-core metabolism of D. salina CCAP19/18

based on the recently announced annotated genome

[35]. The network comprises 221 reactions with 212

metabolites in three compartments (chloroplast, cytsol

and mitochondrion). The network was implemented in

the MATLAB toolbox CellNetAnalyzer and a flux

balance analysis was carried out under various light and

nutrient scenarios. The simulation results were compared

with experimental observations of D. salina cultivated

under nutrient repletion and depletion in a flat-plate

photobioreactor [47]. All model predictions could be con-

firmed by experimental data and biological knowledge of

D. salina metabolism. In conclusion, the metabolic net-

work reconstruction is suitable to gain a better under-

standing of the flux distribution in the carbon core

metabolism during carotenogenesis in D. salina. The

ongoing experimental and computational advances will

thereby accelerate the engineering of industrially valuable

strains and provides the basis for effective biotechnology

with photosynthetic microorganisms.

Methods
Reconstruction of the stoichiometric network

The stoichiometric model of D. salina CCAP19/18

carbon-core metabolism was reconstructed using a tra-

ditional (bottom-up) approach, which relied on manual

reconstruction. It is based on the assignment of all anno-

tated genes in the nuclear genome of D. salina CCAP19/18

to their proteins and the corresponding reactions sup-

ported by biological databases such as KEGG [35]. The

complete reaction list is given in the Additional file 2. The

graphical representation of the network was created in the

vector graphics editor Inkscape (Version 0.92), which is

based on [48].

Some metabolites in our stoichiometric network model

may have one or more designations denoting their pres-

ence in different cellular compartments. Exchange reac-

tions were added allowing the import and export between

the considered cellular compartments.

Implementation and validation of the network

The complete set of reaction equations was imple-

mented in the MATLAB toolbox CellNetAnalyzer

and checked for feasibility [52]. Unless otherwise stated

(e.g. for the nutrient uptake flux or the light flux) the

lower and upper bounds for irreversible reactions were

fixed to 0 - 100 mmol/(g dw · h), whereas reversible reac-

tion bounds were fixed to -100 - 100 mmol/(g dw · h).

The maximum flux boundaries of 100 mmol/(g dw · h)

rely on biologically realistic values and are commonly

used in FBA. For example, [53] categorized fluxes as low

(<5 mmol/(g dw · h)), medium, (>5–10 mmol/(g dw · h)),

and high (>10 mmol/(g dw · h)). The FBA was carried

out for different objective functions as well as light

and nutrient uptake rates by using the function Flux

optimization. The network implementation and the

values for the flux scenarios are provided in the Additional

file 3.
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