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Abstract

Background: Synechocystis sp. PCC6803 is a cyanobacterium considered as a candidate photo-biological

production platform - an attractive cell factory capable of using CO2 and light as carbon and energy source,

respectively. In order to enable efficient use of metabolic potential of Synechocystis sp. PCC6803, it is of importance

to develop tools for uncovering stoichiometric and regulatory principles in the Synechocystis metabolic network.

Results: We report the most comprehensive metabolic model of Synechocystis sp. PCC6803 available, iSyn669,

which includes 882 reactions, associated with 669 genes, and 790 metabolites. The model includes a detailed

biomass equation which encompasses elementary building blocks that are needed for cell growth, as well as a

detailed stoichiometric representation of photosynthesis. We demonstrate applicability of iSyn669 for stoichiometric

analysis by simulating three physiologically relevant growth conditions of Synechocystis sp. PCC6803, and through

in silico metabolic engineering simulations that allowed identification of a set of gene knock-out candidates

towards enhanced succinate production. Gene essentiality and hydrogen production potential have also been

assessed. Furthermore, iSyn669 was used as a transcriptomic data integration scaffold and thereby we found

metabolic hot-spots around which gene regulation is dominant during light-shifting growth regimes.

Conclusions: iSyn669 provides a platform for facilitating the development of cyanobacteria as microbial cell

factories.

Background
Cyanobacteria, which have been model organisms since

the early 70s of the past century [1], are a widespread

group of photoautotrophic microorganisms, which origi-

nated, evolved, and diversified early in Earth’s history

[2]. It is commonly accepted that cyanobacteria played a

crucial role in the Precambrian phase by contributing

oxygen to the atmosphere [3]. All cyanobacteria com-

bine the ability to perform an oxygenic photosynthesis

(resembling that of chloroplasts) with typical prokaryotic

features, like performing anoxygenic photosynthesis by

using hydrogen sulfide (H2S) as the electron donor or

fixing atmospheric dinitrogen (N2) into ammonia (NH3).

Relevance of this phylum covers from evolutionary stu-

dies [4] to biotechnological applications, including bio-

fuel production [5]. Synechocystis sp. PCC6803 is a

cyanobacterium that is considered as a good candidate

for developing a photo-biological cell factory towards

production of a variety of molecules of socio-economic

interest, with CO2 (and/or sugars) as carbon source and

light (and/or sugars) as energy source [6]. The diversity

of potential applications in this sense is broad. Works

have been published on heterologous production of

metabolites such as isoprene [6], poly-beta-hydroxybuty-

rate [7], biofuels [8] and bio-hydrogen [9,10] - an energy

vector of global interest [11].

Synechocystis sp. PCC6803 is capable of growing under

three different growth conditions as marked by the uti-

lized carbon source (/s) [12]. This causes that three dis-

tinct modes of operation are interweaved over the same

metabolic network, viz., i) photoautotrophy, where

energy comes from light and carbon from CO2; ii) het-

erotrophy, where energy and carbon source is a sacchar-

ide, for instance glucose; and, iii) mixotrophy, a

combination of the above two, where light is present as

well as a combination of two carbon sources: glucose

and CO2. Reconstruction of a genome-scale metabolic

model for this model photo-synthetic bacterium is one
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of the main goals of the current study. Genome-scale

metabolic network reconstruction is, in essence, a sys-

tematic assembly and organization of all the reactions

which build up the metabolism of a given organism; and

has been of great interest in the post-genomic era. The

variety of applications of such a metabolic model [13]

includes the possibility of assessing projects for the pro-

duction and optimization of an added value metabolite.

If a model is formulated properly, it is expected to allow

simulating environmental and genetic perturbations in

the metabolic network. Thus, together with appropriate

constraints, a metabolic model would partially represent

a virtual organism - an in silico model that allows prob-

ing possible flux distributions inside the cell under dif-

ferent environmental conditions and for a given genetic

make-up. Towards this end, a variety of tools/algorithms

are available [14], including flux balance analysis (FBA)

[15,16], minimization of metabolic adjustments

(MOMA) [17], regulatory on-off minimization (ROOM)

[18] and metabolic control analysis (MCA) [19,20].

Synechocystis sp. PCC6803 genome was sequenced,

annotated and made publicly available in 1996 [21,22]

and has been the target of some metabolic modeling

effort, especially for central carbon metabolic recon-

structions [23,24]. The work from Yang et al [23]

focused on a metabolic model of glycolysis, tricarboxylic

acid cycle and pentose phosphate pathway that was

simulated under heterotrophic and mixotrophic condi-

tions. Shastri and Morgan [24] studied a metabolic

model with the same pathways under autotrophic condi-

tions and compared their results to the ones from Yang

et al. These two works considered one lumped reaction

for the photosynthesis of the system. More recently, an

uncurated reaction list with a biomass composition

represented by central carbon metabolites has been pub-

lished [25]. This model, however, is not suitable for

simulations due to lack of proper biomass equation,

lumped nature of some key reactions and missing

reactions.

The large quantity of information featured in public

databases, like details about genomes [26], pathways

[27], enzymes [28] or proteins [29] can be used from

different databases to gather all published data for one

specific organism. However, the lack of quality must be

considered as a major drawback of some of the data-

bases: false positives, false negatives as well as wrongly

annotated objects may hinder efforts of collecting accu-

rate data [30]. Consequently, manual reconstruction by

detailed inspection of each and every reaction, biomass

equation based on metabolic building blocks (such as

amino acids and nucleotides), consistency and integrity

of the network is a pre-requisite for creating a high

quality and useful metabolic model [31]. The current

study presents such manually curated reconstruction for

Synechocystis sp. PCC6803 and demonstrates some of its

potential applications.

The present model features a detailed biomass equa-

tion which encompasses all the building blocks that are

needed for a flux distribution simulation that reflects

observed phenotype. No lumped reactions are present

and photosynthesis is described as a set of 19 reactions,

thus enabling the tracing of the corresponding fluxes.

Furthermore, different analyses are performed by using

this metabolic reconstruction, including reaction knock-

out simulations, flux variability analysis and identifica-

tion of transcriptional regulatory hotspots. Overall,

iSyn669 is a valuable tool towards the development of a

photo-biological production platform. The model will

also contribute to the existing set of genome-scale mod-

els with a virtue of being one of the first stoichiometric

models that account for photosynthesis.

Results and Discussion
Genome-scale metabolic network reconstruction

A complete literature examination, including databases,

biochemistry textbooks and the annotated genome

sequence, was needed in order to extract the current

state of the art on known metabolic reactions within the

metabolic network of Synechocystis sp. PCC6803. For a

thorough overview of the process of metabolic model

reconstruction, refer to very instructive work by Forster

et al [32] as well as review by Feist et al [31]. In detail,

the reconstruction started with the annotation and

genomic sequence files of Synechocystis sp. PCC6803

[21,22]. These files were used with Pathway Tools soft-

ware [33] in order to build a database of all the genes,

proteins and metabolites presents in the organism. The

list of reactions was then retrieved from Pathway Tools;

EC numbers and stoichiometry of the reactions were

checked and verified with the help of the Enzyme

nomenclature database [34] and KEGG pathway data-

base [27]. Reactions were elementally balanced except

for protons, so that chemical conversions were coherent.

In some of the reactions present in these databases,

metabolites were reported in a non-specific form (e.g.

‘an alcohol’). This is insufficient for metabolic model

simulation and, so, corresponding organism-specific

metabolites had to be identified [32]. Additionally, in a

large number of reactions cofactors were not completely

clarified: an enzyme being capable of using NADH or

NADPH or both. In the latter, two reactions were

included in the reconstructed metabolic network. Deter-

mination of reversibility of the reactions was assisted by

specific enzyme databases, like BRENDA [28]. If no con-

clusive evidence was reported, reactions were set to be

reversible.

In the reconstruction of the metabolic model, many

reactions (a total of 79 reactions, see Table 1) were
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found to be necessary for the production of the mono-

mers, precursors or building blocks, that are considered

in the biomass equation but which have no correspond-

ing enzyme coding gene assigned. In consequence, many

genes that were not annotated before should be consid-

ered, as they code for enzymes that should be present to

allow the formation of biomass. For instance, enzymes

malyl-CoA lyase and isocitrate lyase were not allocated

in the annotation of the genome albeit their activities

have been measured [35,36] and their presence is neces-

sary to complete the glyoxylate shunt; consequently,

they were included in the model.

The product of this reconstruction process was a set

of reactions that encompass all the known metabolite

conversions that take place in Synechocystis sp.

PCC6803. The resulting network, iSyn669, consists of

882 metabolic reactions and 790 metabolites (see Table

1 for more information). A total of 669 genes were

included, to which 639 reactions were assigned (see

Additional file 1 for details); the difference between the

number of genes and assigned reactions is due to the

presence of considerable number of protein complexes

(e.g. photosynthetic or respiratory activities) and isoen-

zymes. Reactions with no cognate genes are also present

in iSyn669, 20 passive transport reactions and 47 chemi-

cal conversions (not mediated by enzymes) were

included. Additionally, a total of 79 reactions were

included on the basis of biochemical evidence or physio-

logical considerations, but currently with no annotated

Open Reading Frame (ORF). iSyn669 genome-scale

metabolic model is available in Additional file 2 (in Opt-

Gene [37] format).

iSyn669 spans all the biologically relevant flux nodes

in the Synechocystis metabolism. Pyruvate, phosphoenol-

pyruvate (PEP), 3-phosphoglycerate, erythrose-4-phos-

phate and 2-oxoglutarate are main flux nodes for amino

acids biosynthesis. Acetyl-CoA is an important flux

node for fatty acids production, with high relevance for

metabolic engineering towards biofuel production.

Biosynthesis of nucleic acids comes from different meta-

bolites, namely, ribose-5-phosphate, 5-phospho-beta-D-

ribosyl-amine, L-histidine and L-glutamine. Moreover,

with the information publicly available on databases, we

can conclude that Synechocystis sp. PCC6803 bears an

incomplete tricarboxylic acid cycle (TCA cycle), as it

lacks 2-ketoglutarate dehydrogenase (EC 1.2.4.2). It has

been published that glyoxylate shunt completes this

cycle [35], permitting the recycling of TCA metabolites.

Alternatively, aspartate transaminase (reaction 2.6.1.1a

in iSyn669) can interconvert 2-ketoglutarate and oxaloa-

cetate, thus bridging the gap of 2-ketoglutarate dehydro-

genase, but short-circuiting TCA cycle.

From the network topology perspective, iSyn669 dis-

plays the connectivity distribution pattern similar to that

of the other microbial genome-scale networks, e.g. yeast

[32] and Escherichia coli [38] (Table 2). While most of

the metabolites have few connections, few metabolites

are involved in very many reactions and are often

referred to as metabolic hubs. Homeostasis of such

highly connected metabolites will affect globally the

metabolic phenotype (as reflected in metabolite levels

and fluxes) and therefore of interest for studying the

organization of regulatory mechanisms on the genome-

wide scale. Most connected metabolites include those

related to energy harvesting (e.g. ATP, NADP+, oxygen),

a key metabolite in the porphyrin and chlorophyll meta-

bolism (S-adenosyl methionine), a couple of amino acids

Table 1 Distribution of the model reactions as per

cognate genes

Number of reactions 882

-With assigned genes 669

·Protein-mediated transport 78

-With no cognate gene 221

·Chemical conversion 47

·Transport reactions 20

·EC reactions not annotated 79

·Needed for biomass simulation 75

Table 2 Most connected metabolites in the iSyn669

metabolic network

Metabolite Neighbors Neighbors
in E. coli

Neighbors
in yeast

H2O 213 697 -

ATP 144 338 166

phosphate 108 81 113

ADP 103 253 131

diphosphate 97 28 -

H+ 74 923 188

CO2 72 53 66

NADP+ 64 39 61

NADPH 63 66 57

NAD+ 46 79 58

L-glutamate 45 52 56

NADH 42 75 52

AMP 36 86 48

oxygen O2 36 40 31

ammonia 28 22 -

S-adenosyl-L-methionine 25 18 19

glutathione 25 17 10

a malonyl-ACP 23 15 10

L-glutamine 22 18 23

coenzyme A 21 71 39
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and its precursors (L-glutamate, L-glutamine and glu-

tathione) and a key metabolite in the lipid biosynthesis

pathway (malonyl-ACP). High connectivity of these

metabolites hints to their potential central role in the

re/adjustments of fluxes following environmental

changes/perturbations. In order to discover the corre-

sponding regulatory mechanisms, additional studies

should be done - e.g. putative regulatory sequence

motifs associated with the neighbors of these highly

connected metabolites [39]. Furthermore, most con-

nected metabolites with filtered cofactors can be found

in Additional file 3.

Simulations of the three metabolic modes

iSyn669, together with appropriate physiological con-

straints, was used as a stoichiometric simulation model

by using FBA algorithm [40]. The FBA model simulates

steady state behavior by enforcing mass balances con-

straints for the all metabolic intermediates (Methods).

Biomass synthesis, a theoretical abstraction for cellular

growth, is considered as a drain of some of these inter-

mediates, i.e. building blocks, into a general biomass

component. Different studies have reported that the

simulation results do not usually vary drastically when

using a common biomass equation for different growth

condition [15,24]. Nevertheless, experimental efforts

should be directed at the depiction of the best precur-

sors and composition that could characterize, at least,

the three main growth modes, viz., autotrophy, hetero-

trophy and mixotrophy, in the scope of recent results

[41]. Due to the lack of such data, the present work

uses one single biomass equation in the simulations of

all three metabolic states (Table 3). Presence of photo-

synthesis allows iSyn669 to “grow” under the all three

metabolic states (i.e., FBA with biomass formation as an

objective function results in a feasible solution): carbon

dioxide and light (autotrophic), sugars (heterotrophic),

carbon dioxide, light and sugars (mixotrophic).

Growth under pure heterotrophy, or dark heterotro-

phy (in the absence of light) is a subject under study

[42,43], being the regular experimental design to give a

short light pulse prior to the pure heterotrophic phase

(light-activated heterotrophy). Nevertheless, the theoreti-

cal flux distribution under heterotrophic conditions is

interesting by itself - especially in comparison with the

flux distribution in a light-fed energy metabolism. More-

over, fluxes in the heterotrophy mode may help in

obtaining insight into the variations under the mixo-

trophic condition, which is of high relevance for indus-

trial applications [9].

All FBA simulations were carried out under the

appropriate constraints so as to match an autotrophic

specific growth rate of 0.09 h-1. This growth rate corre-

sponds to a light input of 0.8 mE gDW
-1 h-1 and to a net

carbon flux of 3.4 mmol gDW
-1 h-1 into the cell, with

HCO3
- and CO2 as carbon sources. For the sake of

comparison across the different conditions, uptake rates

for the corresponding carbon sources were matched

based on normalization per number of carbon atoms

(this does not affect mono-carbon compounds like car-

bon dioxide and carbonic acid, but has importance in

glucose feeding). Results of the subsequent FBA simula-

tions for the three different growth conditions are pre-

sented in the following. Some of the reactions that are

physiologically relevant for each of the conditions are

summarized in Table 4 and Figure 1. Flux values for the

rest of the reactions, including the upper and lower

bounds are provided in Additional file 4.

Heterotrophy

Heterotrophy was simulated by considering glucose as

the sole carbon source with uptake rate of 0.567 mmol

gDW
-1 h-1, entering the system through glcP glucose

transporter (reaction TRANS-RXN59G-152 in iSyn669).

With the purpose of having a pure heterotrophic state,

Table 3 iSyn669 Biomass composition

Metabolite mmole/g
DCW

Metabolite mmole/g
DCW

Amino acids
[38]

Deoxyribonucleotides
[58]

Alanine 0.499149 dATP 0.0241506

Arginine 0.28742 dTTP 0.0241506

Aspartate 0.234232 dGTP 0.02172983

Asparagine 0.234232 dCTP 0.02172983

Cysteine 0.088988 Ribonucleotides [1]

Glutamine 0.255712 AMP 0.14038929

Glutamate 0.255712 UMP 0.14038929

Glycine 0.595297 GMP 0.12374585

Histidine 0.092056 CMP 0.12374585

Isoleucine 0.282306 Lipids [59]

Leucine 0.437778 16C-lipid 0.20683718

Lysine 0.333448 (9Z)16C-lipid 0.01573412

Methionine 0.149336 18C-lipid 0.00351776

Phenylalanine 0.180021 (9Z)18C-lipid 0.03188596

Proline 0.214798 (9Z,12Z)18C-lipid 0.03568367

Serine 0.209684 (9Z,12Z,15Z)18C-lipid 0.01797109

Threonine 0.246506 (6Z,9Z,12Z)18C-lipid 0.05031906

Tryptophan 0.055234 (6Z,9Z,12Z,15Z)18C-lipid 0.01448179

Tyrosine 0.133993 Antenna chromophores
[60]

Valine 0.411184 Chlorophyll a 0.02728183

Carbohydrates [61] Carotenoids 0.00820225

Glycogen 0.01450617

Biomass composition description with references where the information was

retrieved from. All this building blocks with their respective stoichiometric

coefficient is converted into one gram of dry cell weight. Biomass equation is

reaction Biomass in Additional files 2 and 4.
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Table 4 Comparison of selected fluxes across different growth conditions

Reaction
name

Autotrophy Minimum
flux

Maximum
flux

Mixotrophy Minimum
flux

Maximum
flux

Dark
Heterotrophy

Minimum
flux

Maximum
flux

Light
Heterotrophy

Minimum
flux

Maximum
flux

Reaction description

2.7.1.2a 0 0 0 0.567 0.566 0.567 0.567 0.566 0.567 0.567 0.566 0.567 beta-D-glucose + ATP ®

beta-D-glucose-6-
phosphate + ADP

4.2.1.2 12.67 12.667 +∞ 14.67 14.657 +∞ 0.905 0.884 +∞ 2.148 1.836 +∞ malate ↔ fumarate + H2O

5.3.1.6 1.201 1.2 +∞ 1.269 1.269 +∞ -0.054 -0.051 -0.055 0.066 0.067 +∞ D-ribose-5-phosphate ↔
D-ribulose-5-phosphate

_UQ 0.8 0 0.8 0.8 0 0.8 0 0 0 0.8 0 0.8 PSII* + UQ + 2 H+ ® PSII
+ UQH2

_1.6.5.3 0 0 +∞ 0 0 +∞ 2.134 0 +∞ 0 0 +∞ NADH + UQ + 7 H+ ®

NAD+ + UQH2 + 4 H
+_peribac

_3.6.3.14 38.348 15.7 +∞ 21.727 21.7 +∞ 4.98 4.95 +∞ 6.292 6.281 +∞ 3 H+_peribac + phosphate
O4P + ADP ↔ 3 H+ +

H2O + ATP

6.2.1.1 0.008 -∞ +∞ -30.017 -∞ +∞ -2.124 -∞ +∞ -4.635 -∞ +∞ coenzyme A + acetate +
ATP ↔ acetyl-CoA +
diphosphate + AMP

Units in mmol gDW
-1 h-1. 2.7.1.2a, glucokinase, is the reaction that phosphorylates beta-D-glucose upon entrance in the cell, marking the start of the glycolysis. The flux direction changes can be seen in reaction

4.2.1.2, fumarate hydratase, from TCA cycle and 5.3.1.6, ribose-5-phosphate isomerase, from the pentose phosphate pathway. _UQ and _1.6.5.3 are reactions that reduce UQH2 from photosystem II or NADH

oxidation, respectively, causing a pumping of protons to the thylakoid. _3.6.3.14 is the ATP synthase that forms ATP shuttling protons from the thylakoid to the cytosol. 6.2.1.1, acetate-CoA ligase, is the reaction that

generates acetyl-CoA from acetate and coenzyme A, that would be a major flux hub in an ethanol-producing strain, standing as the first step of fermentation.
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photon uptake rate was constrained to 0; this caused

photosynthesis fluxes to be shut down. In this case, glu-

cose will be the source for the formation of carbon

backbones for the building blocks of the cell, depicted

in the biomass equation. The glycolytic and the oxida-

tive mode of the pentose phosphate pathway were found

to be active. Oxidative pentose phosphate pathway is the

major pathway for glucose catabolism as was reported in

reference [44]. PEP carboxylase (reaction 4.1.1.31 in

iSyn669) is the main anaplerotic flux to the TCA cycle.

Carbon fixation efficiency is around 60%, the rest being

released in the form of CO2, as reported in our previous

work [9].

In contrast to dark heterotrophy, if a light-activated

heterotrophy simulation is run, light enters the system

and RuBisCO enzyme is active (reaction 4.1.1.39), fixing

all the CO2 that was released in dark heterotrophy,

boosting carbon efficiency to a theoretical 100%. In this

case, global flux distribution as well as flux ranges

resemble that of autotrophy more than that of the dark

heterotrophy. Carbon skeletons are still produced

through glycolysis and NAD(P)H is reduced along the

glycolysis, pyruvate metabolism and TCA cycle. On the

other hand, pentose phosphate pathway has shifted to

the reductive mode due to RuBisCO activation and the

corresponding flux is increased in magnitude. Carbon

fixation happens at the RuBisCO level, thereby assimilat-

ing the CO2 produced by the glucose metabolism, and

the production of ATP and NADPH through photo-

synthesis relieves the oxidative phosphorylation from

draining NADPH to generate ATP.

Autotrophy

Photoautotrophy was initially simulated considering an

illumination of 0.15 mE m-2 s-1. Assuming that the mass

of a typical Synechocystis sp. PCC6803 cell is 0.5 pg [45]

and its radius is 1.75 μm [46], we estimated that the

theoretical maximum illumination is 41563.26 mE gDW
-1

h-1. An additional optimization step was performed in

order to estimate physiologically meaningful photon

uptake values that are closer to the experimental mea-

surements [24]. First, carbon uptake rate was found that

resulted in a specific growth rate of 0.09 h-1, while the

light intake was unconstrained. Next, the growth rate

was constrained to this value and the second optimiza-

tion problem was solved where light uptake was mini-

mized. This minimization resulted in photon uptake for

photosystem I (reaction _lightI) and photosystem II

(reaction _lightII) being 0.8 mE gDW
-1 h-1. Carbon

sources used in simulating photoautotrophy conditions

were carbon dioxide and carbonic acid, and its entrance

to the system was mediated by RuBisCO (reaction

4.1.1.39 in iSyn669) and carbonic anhydrase (reaction

4.2.1.1b) respectively. As iSyn669 biomass equation

encompasses all essential metabolite precursors, these

will be the sinks of our network, while photons, carbon

dioxide and/or carbonic acid will be the sources. Thus

4.2.1.2

_3.6.3.14 _1.6.5.3

amino acid

lipid

cofactor

nucleic acid

metabolite

6.2.1.1

acetyl-CoA + 

diphosphate + AMP

acetate + 

coenzyme A + ATP 

fumarate + 

H2O

malate

ADP + 3 H+_thylac + 

phosphate

ATP + 3 H+ + H2O

NADH + UQ + 7 H+

NAD+ + UQH2 

+ 4 H+_thylac

beta-D-glucose + ATP

beta-D-glucose-6-

phosphate + ADP

2.7.1.2a

D-ribose-5-

phosphate

D-ribulose-5-

phosphate

5.3.1.6

12.67

14.67

2.148

0.905

autotrophy

mixotrophy

light heterot

dark heterot

0

0.567

0.567

0.567

PSII PSI

0.008

-30.02

-4.635

-2.124

38.35

21.73

6.292

4.98

1.201

1.269

0.066

-0.054

0

0

0

2.134

Figure 1 Selected reactions in iSyn669 network that display flux changes across the four studied growth modes. Flux values (in mmol

gDW
-1 h-1) for selected reactions in the Synechocystis sp. PCC6803 metabolism. These reactions mark changes across four growth modes, viz.,

autotrophy, mixotrophy and light and dark heterotrophy. Corresponding flux ranges can be found in Table 4 and in Additional file 4 for all the

reactions in iSyn669.
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autotrophic fluxes will flow in the gluconeogenic direc-

tion and through the Calvin cycle, which is the reductive

mode of the pentose phosphate pathway. PEP carboxy-

lase is the main anaplerotic flux to the TCA cycle and

glyoxylate shunt is inactive.

Mixotrophy

Photons, carbon dioxide and glucose are independent

feed fluxes in this simulation. These fluxes entered the

system through the same reactions as described for the

previous growth modes. Carbon source presents, in

this case, one more degree of freedom than in the rest

of the conditions. In order to keep a comparative cri-

terion across conditions, we normalized CO2 and glu-

cose inputs to the same carbon uptake flux as in the

case of the autotrophy and the heterotrophy. Photon

uptake rates were also normalized in a similar manner

to match the autotrophic state. Having the same meta-

bolic sinks as the two previous modes and the sources

from the both of them, it is logical to think that the

resulting flux distribution will be a mixture of the

autotrophic and heterotrophic simulations. Indeed, we

observed that the mixotrophic flux distribution lies in-

between the previous two states, being a bit closer to

the heterotrophy. Glycolysis is present and glyoxylate

is shut down; an active photosynthesis is present, oxi-

dative phosphorylation is less stressed than in hetero-

trophy as the energy can be produced from the photon

uptake; and Calvin cycle is active, as carbon sources

are CO2 and glucose.

Flux variability analysis

Flux balance analysis presented above guarantees to

find the optimal objective function value (biomass for-

mation rate). However, the predicted intra-cellular

flux distribution is not necessarily unique due to the

presence of multiple pathways that are equivalent in

terms of their overall stoichiometry. Thus, often the

system exhibits multiple optimal solutions and further

elucidation requires additional constraints based on

experimental evidences (e.g. carbon labeling data).

Alternatively, physiological insight can be still

obtained by studying the variability at each flux node

given the objective function value - a procedure

referred to as flux variability analysis. In order to gain

insight into the flux changes underlying the changes

in the Synechocystis metabolism due to (un)availability

of light, we have compared the autotrophic growth

with the other two by using flux variability analysis

(Figure 2). Interestingly, autotrophy permits an overall

broader flux landscape than heterotrophy (let it be

dark or light-activated). On the other hand auto-

trophic flux ranges are in general narrower than the

mixotrophic ranges. Figure 1 and Table 4 depict some

of the physiologically relevant reactions for which the

feasible flux range differs across conditions. These

include glucokinase from glycolysis, fumarate hydra-

tase from TCA cycle, ribose-5-phosphate isomerase

from pentose phosphate pathway, NADH dehydrogen-

ase from oxidative phosphorylation or photosystem II

oxidation. These reactions mark the key nodes in the

metabolism network that must be appropriately regu-

lated in order to adapt in response to the available

energy/carbon source. Mechanisms underlying such

changes will be of particular interest not only for bio-

technological applications but also from the biological

point of view. As a glimpse of the detailed flux (re-)

distributions in each of the studied growth conditions,

Additional file 5 describes fluxes in the pyruvate

metabolism.
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Figure 2 Overview of the flux adjustments between different

growth conditions. Comparison of flux variability between

autotrophy vs. mixotrophy, autotrophy vs. dark heterotrophy and

autotrophy vs. light-activated heterotrophy. Minimum and maximum

flux ranges were compared for each reaction, 378 reactions were

found blocked in all the studied conditions.

no growth constrained growth wild type growth

35%

5%

60%

Synechocystis

15%

5%

80%

E. coli

11%

4%

85%

S. cerevisiae

34%

2%

64%

15%

5%

80%

10%
2%

88%

F
B

A
M

O
M

A

Figure 3 Essential genes in Synechocystis sp. PCC6803 .

Distribution of gene knock-out results for three model organisms,

simulated by using FBA and MOMA algorithm, classified as wild-

type growth, constrained growth and no growth.
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Gene/Reaction knock-out analysis

The comprehensive set of reconstructed biochemical

equations of iSyn669 and FBA simulations enabled us to

further analyze the characteristics and potential of the

Synechocystis metabolic network. This can be oriented

towards the study of the reactions (and thereby the cor-

responding genes) that are necessary for the growth, or

to in silico metabolic engineering for identification of

targets for maximization of a given metabolite of socio-

economic interest.

Essential Genes

iSyn669 network consists of 790 metabolites and 882

reactions. Among these, 350 genes (36% of the total,

Figure 3) were found to be necessary for the formation

of the biomass under the mixotrophic growth conditions

by using FBA and MOMA algorithms. This set of genes

can be divided in to two categories: i) essential genes,

deletion of which completely inhibits biomass growth

(304 genes, 34% of the total, with FBA): and ii) genes

deletion of which causes a reduced growth rate

(46 genes, 2% of the total, with FBA). The set of 304

essential genes can be understood as the core of the

metabolism, as deleting them would produce an unvi-

able organism. The results based on MOMA algorithm

essentially tally these numbers: 311 essential genes, 35%

of the total, and 45 that cause a reduced growth rate,

5% of the total, (Additional file 6).

Interestingly, if we compare the proportion of the

essential genes under FBA simulation in the metabolic

networks of E. coli (187 genes, 15% of the total) [38]

and Saccharomyces cerevisiae (148, 10% of the total)

[32] with iSyn669, we find that Synechocystis has a sig-

nificantly larger fraction of metabolic genes whose dele-

tion obliterates biomass formation (304 genes, 34% of

the total). One possible explanation for the difference in

the relative proportion of essential genes in these three

organisms would be an incomplete/incorrect annotation

of the genome of Synechocystis sp. PCC6803. For exam-

ple, if only one of the isoenzymes corresponding to a

reaction is annotated, the corresponding in silico knock-

out will result in a false negative prediction. It is impor-

tant to note that the computational predictions of gene

essentiality based on FBA are highly dependent on the

growth medium used for the simulations. Thus, the

comparison across different species may not be straight-

forward. Moreover, it is also possible that the natural

growth conditions of Synechocystis may have dictated

selection for a relatively high proportion of essential

genes. Such hypotheses need careful consideration of

several factors and are beyond the scope of this work.

Production of value-added compounds

Synechocystis sp. PCC6803 is considered as a candidate

photobiological production platform - it can potentially

produce molecules of interest by using CO2 and light

[6]. To this end, iSyn669 can be used to perform simu-

lations, not only for assessing the feasibility of producing

a given compound, but also to identify potential meta-

bolic engineering targets towards improved productivity.

For example, FBA simulations can help in estimating

maximum theoretical yields for the products/intermedi-

ates of interest. A product of obvious interest is hydro-

gen. In our previous work [9], we have estimated

maximum theoretical hydrogen production values that

are far from the current state of experimental reports.

In silico studies can direct the efforts and counsel the

scientists towards a hydrogen producing cyanobacteria

that could be of impact. iSyn669 predicts, in autotrophic

conditions, a theoretical H2 evolution rate of 0.17 mmol

gDW
-1 h-1 obliterating biomass growth. Else, the stoi-

chiometry permits the evolution of 0.156 mmol gDW
-1 h-

1 of hydrogen with a biomass growth of 10% of the wild

type (0.007 mmol gDW
-1 h-1).

Succinate is an important metabolite for its biotechno-

logical applications as well as for being a metabolite that

bridges the TCA cycle with the electron transfer chain.

As an example of the usefulness of the present meta-

bolic model we have designed an in silico metabolic

engineering strategy to improve the production of succi-

nate. The underlying idea is to design a succinate over-

producing metabolic network (through reaction knock-

out simulations), whereas the intracellular fluxes are dis-

tributed so as to maximize the biological objective func-

tion (e.g. growth) [47]. To this end, OptGene algorithm

[37] was used together with Minimization Of Metabolic

Adjustment (MOMA) [17] as a biological objective func-

tion. MOMA has been reported to provide better

description of flux distributions in mutants or under

un-natural growth conditions as opposed to FBA. A

design objective function which copes with the metabo-

lite of interest, succinate, has been determined maintain-

ing the biological objective function as the biomass

formation.

OptGene simulations for single, double and triple

knock-out strategies were performed to obtain solutions

with improved succinate production, but without drasti-

cally diminishing the biomass production. We used mix-

otrophic conditions, for which wild type optimal growth

rate was 0.17909 mmol gDW
-1 h-1. The best single

knock-out was found to be the mutant of pyruvate

kinase (reaction 2.7.1.40c in iSyn669 and genes sll0587

and sll1275) that has a succinate evolution of 0.5695

mmol gDW
-1 h-1 with a growth rate of 0.0714 mmol

gDW
-1 h-1. Blocking this reaction, preventing pyruvate

and phosphoenolpyruvate from using GTP and GDP

would drive a high increase in succinate production.

The flux between pyruvate and phosphoenolpyruvate

can still be accomplished with reactions 2.7.1.40a and

2.7.9.2, but using ATP and ADP as cofactors. Double
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deletion did not improve the results from the single

knock-out strain, evolving the same succinate produc-

tion with the same growth rate. The best triple knock-

out was found to be the combination of pyruvate kinase

(reaction 2.7.1.40c in iSyn669 and genes sll0018 and

sll0587), fructose-bisphosphate aldolase (reaction

4.1.2.13b in iSyn669 and genes slr0943 and sll1275) and

succinate dehydrogenase (reaction _1.3.99.1 in iSyn669

and genes sll0823, sll1625 and slr1233). This simulated

strain has a succinate evolution of 0.6999 mmol gDW
-1

h-1 with a growth rate of 0.0688 mmol gDW
-1 h-1. This

design combines the blocking of the oxidation of succi-

nate on the electron chain transfer through succinate

dehydrogenase with the prevention of using GTP

between pyruvate and phosphoenolpyruvate and the

lack of an aldolase needed in the reductive mode of the

pentose phosphate pathway. This leads to a situation

where flux is directed to TCA cycle in order to meet

with an overproduction of succinate.

These studies on knock-outs are reaction centered,

even though the in vivo knock-out building will ulti-

mately be through gene manipulations. This is the rea-

son underlying the fact that we found 2.7.1.40c knock-

out as the best result. This design would hint at the idea

of selection of a mutated pyruvate kinase protein speci-

fic for ATP cofactor. This may be difficult to achieve on

the bench, but has high biotechnological expectations.

iSyn669 as a data integration scaffold

Apart from the flux simulations, another important pro-

blem in the field of metabolic systems biology that can

be addressed by using reconstructed genome-scale mod-

els is the integration of the different genome-wide bio-

molecular abundance datasets, i.e. omics datasets, such

as transcriptome and metabolome. An example of algo-

rithms for carrying out such an integrative analysis

through the use of genome-scale metabolic networks is

Reporter Features [48,49]. Reporter algorithm allows

integration of omics data with bio-molecular interaction

networks, thereby allowing identification of cellular reg-

ulatory focal points (i.e. reporter features), for instance

reporter metabolites as regulatory hubs in the metabolic

network.

In this work, Reporter Features software was used to

integrate transcriptional information over the recon-

structed Synechocystis sp. PCC6803 network allowing us

to infer regulatory principles underlying metabolic flux

changes following shifts in growth mode. In particular,

we analyzed the data from a work [50] that reports the

transcriptional changes caused in Synechocystis sp.

PCC6803 by shifts from darkness to illumination condi-

tions and back. As it can be understood from the ratio-

nale beneath the metabolic capabilities of this

cyanobacterium, the presence or absence of light drives

big changes in the flux distribution through the net-

work, as discussed in the previous sections. We have

focused our study on the relationship between the tran-

scription of Synechocystis sp. PCC6803 genes and the

reactions of the metabolic network. Associations

between genes and reactions were identified, listing all

the genes that performed or were involved in a specific

reaction. With this information and the metabolic

model, Reporter Features analysis was carried out. In

brief, the analysis helped to identify metabolites around

which the transcriptional changes are significantly con-

centrated. These metabolites are termed reporter meta-

bolites as they represent key regulatory nodes in the

network.

Gill et al [50] designed the experiment so that Syne-

chocystis was grown to mid-exponential phase (A730 =

0.6 to 0.8). Then, the lights were extinguished and RNA

samples were taken after 24 h in the dark (full dark).

Illumination was then turned back on for 100 min (tran-

sient light), followed immediately by an additional 100

min in the dark (transient dark).

We were interested in two aspects of this study: i) to

identify metabolites around which regulation is centered

during the light regime transitions; and ii) to find the

metabolic genes that were collectively significantly co-

regulated across these transitions [49].The analysis was

divided in three parts: an analysis of the data arrays

from the whole experimental profile ("all time points”),

an analysis of the shift from darkness to a light environ-

ment ("dark to light”) and from light back to dark ("light

to dark”). For a study of the overall genome and its light

regulation, refer to Gill et al [50]. In this study, as the

relationship between the metabolism and this regulation

was investigated, genes with no direct relationship to a

metabolic reaction were not considered. Distributions of

the genes across KEGG Orthologies related to the meta-

bolism altered with the light shift are depicted in Table

5.

All time points

When all seven arrays were used, reporter metabolites

were found to be quite scattered across the metabolism

spanning several metabolic pathways, and thus offering

a global view of the transcriptional response in the

metabolic network (see Figure 4a and Table 6a). Pre-

sence of some amino acids (L-tyrosine, L-isoleucine),

nucleic acids and its precursors (GTP, dihydroorotate),

carbon metabolism metabolites (D-ribulose-5-phosphate,

succinyl-CoA), lipids precursors (myo-inositol, D-myo-

inositol 3-monophosphate), cofactors (thioredoxin,

p-aminobenzoate) and photosynthesis metabolites (plas-

tocyanin) pictures a scenario of a global regulation

throughout the different metabolic pathways.

By using the metabolic sub-network search algorithm,

we found 212 genes that have their expression changed
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across the arrays and that have a relationship with the

metabolites of iSyn669 network. Furthermore, 50 genes

were identified that are strongly co-regulated all along

the profile of the experiment (Additional File 7, section

a). This set of genes is characterized in two groups. The

first set consists of the genes from photosynthesis

(93.85%) and oxidative phosphorylation (6.15%). The

second set is representative of a variety of genes from

different pathways such as amino acid metabolism

(39%), carbohydrate metabolism (22%), nucleotide meta-

bolism (13%), nitrogen metabolism (13%) and metabo-

lism of cofactors (9%) that globally regulates the entire

metabolic network (see Table 5 for further details).

It can be expected that an experimental design like the

one we have based our work on, which combines a shift

from dark to light with a shift back to darkness, will

encompass an important part of the regulatory changes

the cell is undergoing in its natural habitat. In a glu-

cose-deficient environment, the presence or absence of

light is the main condition around which the Synecho-

cystis metabolism gravitates [9]. Indeed, one of the

co-regulated sets consists of the genes coding for the

proteins that work on, and around, the thylakoid mem-

brane, let it be photosynthesis or oxidative phosphoryla-

tion genes.

Dark to light

Next, we considered the arrays that represent the shift

from darkness to light, the first three arrays (from “24

hours of darkness” array to “60 minutes of light” array).

Reporter metabolites were found to be largely within the

nucleotide and amino acid metabolism (Table 6b). Some

cofactors were also identified as regulation hubs like tet-

rahydrofolate, thioredoxin and adenosylcobinamide.

Sub-network search yielded set of 247 genes that have

their expression changed across the first three arrays

and that are related with iSyn669 reactions. Further-

more, 84 genes were identified that are strongly co-

regulated across the three arrays (Additional File 7, sec-

tion b). This set of genes cover photosynthesis (25%),

oxidative phosphorylation (24%), amino acid metabolism

(11%), carbohydrate metabolism (11%), nucleotide meta-

bolism (10%) and metabolism of cofactors (10%).

This set of data arrays are indeed a good example of

a cell’s metabolic machinery starting up. After a 24

hour period in darkness where cell density did not

Table 5 KEGG orthology groups for the metabolic genes altered with the light shift.

All time points Dark to Light Light to Dark

Number
of genes

% Number
of genes

% Number
of genes

%

Energy Metabolism 128 60.38 128 51.82 127 61.65

Amino Acid Metabolism 25 11.79 31 12.55 24 11.65

Carbohydrate Metabolism 24 11.32 28 11.33 23 11.16

Metabolism of Cofactors and Vitamins 13 6.13 26 10.53 12 5.83

Nucleotide Metabolism 12 5.66 23 9.32 12 5.83

Lipid Metabolism 7 3.3 5 2.02 6 2.91

Membrane Transport 3 1.42 4 1.63 2 0.97

Biosynthesis of Secondary
Metabolites

0 0 1 0.4 0 0

Biosynthesis of Polyketides
and Nonribosomal Peptides

0 0 1 0.4 0 0

Total 212 100 247 100 206 100

a)

50 hours of light 

cultivation

24 hours of darkness 100 min of

light

100 min of

darkness

: whole-genome array

L-isoleucine

L-tyrosine

dihydroorotate

D-ribulose-5-

phosphate

GTP

plastocyanin

PSII PSI

b)

amino acid

lipid

cofactor

nucleic acid

metabolite

reporter

metabolite

Figure 4 Reporter metabolites under light/dark regime . a)

Reporter metabolites for all time points set of arrays depicted on the

iSyn669 network. b) Light/dark-shift profiles and localization of the

genome arrays for the work from Gill et al. [47].
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change (see Figure 1 in Gill et al [50]), light enters the

system and the cell starts to synthesize new bio-mole-

cules, mostly nucleotides so it can copy its genetic

material and amino acids to build up proteins.

Light to dark

Finally, we considered the arrays that represent the shift

from light to dark, data from “90 minutes of light” array

to “60 minutes of dark” array. Similar to the previous

case study, reporter metabolites were found to be

focused on the nucleotide and amino acid metabolism

(Table 6c). Additionally, the presence of metabolite a

1,4-alpha-D-glucan_n and its cognate a 1,4-alpha-D-glu-

can_n1 also stands out as they are involved in carbon

reserves catabolism and anabolism.

With the help of the sub-network search, 133 genes

were identified as being significantly co-regulated across

those three arrays (Additional File 7, section c). This set

comprises of the genes from photosynthesis (34%), oxi-

dative phosphorylation (26%), amino acid metabolism

(12%), carbohydrate metabolism (12%), nucleotide meta-

bolism (7.5%) and metabolism of cofactors (4.5%).

This last set of data array is a scenario where metabo-

lism is being shut down, as a consequence of the dark-

ness and lack of carbohydrate source. Without light,

photosynthesis is blocked and carbon fixation is nearly

obliterated. Cells strive to build up carbon reserves

(hence the presence of a 1,4-alpha-D-glucan_n as a

reporter metabolite) and oxidative phosphorylation is the

Table 6 Reporter metabolites for the light shift experiment.

a) b) c)

Metabolite Number of
neighbors

Metabolite Number of
neighbors

Metabolite Number of
neighbors

All time points Dark to Light Light to Dark

L-tyrosine 4 N-carbamoyl-L-aspartate 3 5-phosphoribosyl-N-formylglycineamidine 3

N-carbamoyl-L-
aspartate

3 dihydroorotate 3 diphosphate 76

dTDP 4 5-phosphoribosyl 1-
pirophosphate

9 a 1,4-alpha-D-glucan_n 2

L-isoleucine 3 L-valine 3 a 1,4-alpha-D-glucan_n1 2

D-ribulose-5-
phosphate

4 5-phospho-ribosyl-
glycineamide

3 UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-
diaminoheptanedioate

2

D-myo-inositol (3)-
monophosphate

2 O-phospho-L-
homoserine

2 pyridoxine-5’-phosphate 2

myo-inositol 2 peptidylproline (omega
= 180)

4 (E, E)-farnesyl diphosphate 3

L-valine 3 peptidylproline (omega
= 0)

4 GMP 6

succinyl-CoA 3 indole-3-glycerol-
phosphate

2 phosphoribosylformiminoAICAR-phosphate 2

adenosine 2 5-aminoimidazole
ribonucleotide

3 L-aspartyl-4-phosphate 2

GTP 13 tetrahydrofolate
cofactors

8 pantothenate 2

thioredoxin 11 GTP 13 undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-
glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine

2

thioredoxin
disulfide

11 L-glutamate gamma-
semialdehyde

2 MurAc(oyl-L-Ala-D-gamma-Glu-L-Lys-D-Ala-D-Ala)-
diphospho-undecaprenol

2

p-aminobenzoate 2 inosine-5’-phosphate 5 undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-
glutamyl-L-lysyl-D-alanyl-D-alanine

2

acetylphosphate 2 pantetheine 4’-
phosphate

2 L-aspartate-semialdehyde 2

glycine 7 UDP-N-acetylmuramoyl-
L-alanyl-D-glutamate

2 5-phospho-ribosyl-glycineamide 3

succinate 7 phytoene 2 5’-phosphoribosyl-N-formylglycineamide 4

dihydroorotate 3 thioredoxin 11 sulfur 2

PC 12 thioredoxin disulfide 11 glycine 7

Reporter metabolites for each set of arrays analysed with Reporter Features software.
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main energy pathway that remains present. Regulation is

centered on the energy metabolism shift (60% of the

total co-regulated sub-network), withholding amino

acids and nucleotide precursors and keeping the cofac-

tors available in a low-profile metabolism.

Conclusions
We have successfully reconstructed a genome-scale

metabolic network for Synechocystis sp. PCC6803, called

iSyn669, which allows simulating production of all the

metabolic precursors of the organism. The metabolic

reconstruction represents an up-to-date database that

encompasses all knowledge available in public databases,

scientific publications and textbooks on the metabolism

of this cyanobacterium.

From the annotation publicly available, our metabolic

network includes 882 metabolic reactions and 790 meta-

bolites, as well as the information from 669 genes that

have some relationship with the metabolic reactions.

This model is the most complete and comprehensive

work for Synechocystis sp. PCC6803 to date, which has

its potential as the photosynthetic model organism.

Interestingly, the reconstruction identified 79 reactions

that should be present in the metabolism but with no

cognate gene discovered yet; this should direct experi-

mental work at the discovery of these genes. Topological

characteristics of the network resemble those of other

reconstructed microbial metabolic networks and thus

provide an additional input for the analysis of their

structural and organizational properties from evolution-

ary perspective.

Applicability of iSyn669 metabolic model was demon-

strated by using a variety of computational analyses.

Flux balance analysis was applied in order to simulate

the three physiologically important growth conditions of

cyanobacteria, viz., heterotrophic, mixotrophic and auto-

trophic. Our metabolic model was capable of simulating

the production of the monomers or building blocks that

build up the cells, in the range that is in agreement with

the reported growth experiments. Our photosynthetic

metabolic model includes all of the central metabolic

pathways that previous works [23-25] considered.

Regarding the parts from our model that overlap with

the previous works (part of the central carbon metabo-

lism), the predictions for the flux directionality changes

following light shift match between those models and

iSyn669. In fact, iSyn669 expands the flux study to all

the pathways described in the Synechocystis sp.

PCC6803 genome annotation. Further work should be

directed at the definition of a detailed and descriptive

biomass cell composition, so as to have a better repre-

sentation of the biomass equation for simulation

purposes.

Single reaction/gene knock-out simulations revealed

311 genes that are essential for the survival. Bearing in

mind the distance from the efforts taken in the annota-

tion of the genome of the bacteria and yeast models to

that of the cyanobacterium, our study shows that Syne-

chocystis sp. PCC6803 has a larger fraction of genes that

are essential for producing biomass, as opposed to

Escherichia coli and Saccharomyces cerevisiae. Further

investigation of the causes for this difference will be of

definite interest in understanding the genome annota-

tion and/or the evolution of the metabolic network of

Synechocystis.

Evaluation of the theoretical potential of this organism

to produce hydrogen was assessed, in support of the

efforts directed to this direction from several groups and

scientific council initiatives. Present hydrogen produc-

tion projects are far from the theoretical potential, but

efforts in this field can trigger a very significant increase

of the present hydrogen evolution rates in Synechocystis

sp. PCC6803 or other photobiological production plat-

forms candidates, e.g. Chlamydomonas reinhardtii, Nos-

toc punctiforme and Synechococcus species.

Suitability of the presented model for performing in

silico metabolic engineering analysis was demonstrated

by using OptGene software framework. Furthermore, we

also show that iSyn669 can be used as a scaffold to inte-

grate network-wide omics data. As a case study, we

identified key reporter metabolites around which regula-

tion during light shifts is organized, as well as gene sub-

networks that were co-regulated across the light

conditions.

Altogether, the genome-scale metabolic network of

Synechocystis sp. PCC6803 (iSyn669) will be a valuable

tool for the applied and fundamental research of Syne-

chocystis sp. PCC6803, as well as for the broad field of

metabolic systems biology. iSyn669 represents an impor-

tant step for the integration of tools and knowledge

from different disciplines towards development of

photo-biological cell factories.

Methods
Metabolic network reconstruction

Pathway Tools software [33] was used to construct a

Synechocystis-specific database of genes, proteins,

enzymes and metabolites. Synechocystis sp. PCC6803

genome and annotation files were downloaded from

NCBI Entrez Genome repository as of date 10 of Sep-

tember of 2008 [51]. Pathway tools retrieved a first ver-

sion of the network, which had to be checked with

different kinds of databases depending on the informa-

tion they bear. Databases used towards this purpose

included Enzyme nomenclature database [34], KEGG

pathway database [27], BioCyc genome database [26],
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BRENDA Enzyme database [28] and UniProt protein

database [29].

Parts that characterize Synechocystis network, like the

incomplete TCA cycle [52,53], the presence of the

glyoxylate shunt [35], the interconnected photosynthesis

and oxidative phosphorylation [54] or the cyclic and

non-cyclic electron transport related to these latter pro-

cesses [55-57], were accounted for in detail.

At the end of the reconstruction process, four kinds of

relationships were present in the database: reaction with

cognate genes, reactions that needed to be included in

the model in order to have metabolic precursors in the

network (with no assigned genes), non-enzymatic reac-

tions that have no related gene, and genes described in

the annotations but with no assigned function. For an

overview of the underlying process, please refer to Fort-

ser et al [32] work on the reconstruction of Saccharo-

myces cerevisiae metabolic network.

Linear programming for Flux Balance Analysis

The set of biochemical reactions of the genome-scale

metabolic model were formulated as a steady state stoi-

chiometric model:

S v⋅ = 0

The details are described elsewhere, for example in Ste-

phanopoulos et al [40]. This model describes cellular

behavior under pseudo steady-state conditions, where S is

stoichiometric matrix that contains the stoichiometric

coefficients corresponding to all internal (balanced) meta-

bolites. v is flux vector that corresponds to the columns of

S. Given a set of experimentally-driven constraints, former

equation was solved by using linear programming, the

approach known as flux balance analysis, or FBA [16].

Since the number of reactions is typically larger than

the number of metabolites, the system becomes under-

determined. In order to obtain a feasible solution for the

intracellular fluxes, an optimization criterion on meta-

bolic balances has to be imposed. This can be formu-

lated by maximizing one of the biochemical reactions, e.

g. biomass equation, subject to the mass balance and

the capacity constraints.

For instance,

Max subject to    N

R

R

R

 







i j

j irr

j rev

j const

S j( ) = ∀ ∈

∈

∈

∈

+

·

,

,

,

0

,,

,

,

, ,

v v

v v

min j const max

j uptake min j uptake max

< <

∈ < <



  R

where vj is the rate of the jth reaction. The elements of

the flux vector v were constrained for the definition of

reversible and irreversible reactions, vj, rev and vj, irr,

respectively. Additionally, two set of equations were estab-

lished, νj, const, constrained metabolic reactions, and νj,

uptake, uptake reactions, which were bound by experimen-

tally determined values from the literature. Biomass synth-

esis was considered as a drain of precursors or building

blocks into a hypothetical biomass component. Flux

through biomass synthesis reaction, being the biomass for-

mation rate, is directly related to growth of the modeled

organism [40]. Table 3 shows the biomass composition

that was considered in the iSyn669 metabolic model.

Simulations were performed with the OptGene soft-

ware [37]. Some capacity constraints had to be added in

order to have a feasible solution for the linear program-

ming problem. As an example, maximum uptake rates

were determined as follows: maximum glucose uptake

rate under heterotrophic conditions was found to be 0.85

mmol glucose gDW
-1 h-1 [23]. Maximum CO2 uptake rate

was found to be 3.7 mmol CO2 gDW
-1 h-1 [24]. Addition-

ally, we fixed the maintenance requirement for the het-

erotrophic case to be 1.67 ATP moles per mole of

glucose consumed as was determined by ref [24], and

was maintained for autotrophic and mixotrophic growth.

MOMA algorithm

Segre et al [17] introduced the method of minimization

of metabolic adjustment (MOMA) to better understand

the flux states of mutants. MOMA is based on the same

stoichiometric constraints as FBA, but relaxes the

assumption of optimal growth flux for the mutants, test-

ing the hypothesis that the corresponding flux distribu-

tion is better approximated by the flux minimal

response to the perturbation than by the optimal one.

MOMA algorithm searches for a point in the feasible

space of the solutions space of the knock-out (Fj) that has

minimal distance from a given flux vector w. The goal is

to find the vector x ÎFj such that the Euclidean distance

D w x w xi i

i

N

( , ) ( )= −

=

∑ 2

1

is minimized. For details, please address to Segre et al

[17].

Reporter Features algorithm

Reporter Features software [48] works on three kinds of

information - network, omics data and association

between genes and the nodes in the network. We have

used Reporter Features for a transcriptomic analysis, so

our three files were p-values file, resulting from a Stu-

dent t-test run on transcriptomic data, interaction file,

where reactions are connected to the corresponding

substrates and products, and association file, where gene
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are associated to reactions they are involved in, either by

coding for the enzyme or by regulating the gene that

codes for the enzyme.

In brief, Reporter algorithm converts the p-value for a

given node to a z-score by using the inverse normal

cumulative distribution function (cdf-1).

z cdf 1 pgene i
1

gene i= ( )− –

After scoring each non-feature node in this fashion,

we need to calculate the score of each feature j, zfeature j.

We used the scoring method based on distribution of

the means, which is a test for the null hypothesis “genes

adjacent to feature j display their normalized average

response by chance”. In particular, the score of each fea-

ture j is defined as the average of the scores of its neigh-

bour Nj nodes (genes), i.e.:

z
N

zfeature j
j

gene k

k

N j

=

=

∑
1

1

To evaluate the significance of each zfeature j, this value

should be corrected for the background distribution of z

scores in the data, by subtracting the mean (mN) and

dividing by the standard deviation (sN) of random aggre-

gates of size N.

z
z m

s
feature j
corrected feature j N

N

=
−( )

Additional material

Additional file 1: iSyn669 reactions to gene connections. Excel file

with the list of iSyn669 reactions and its cognate list of genes.

Additional file 2: iSyn669 genome-scale metabolic model in

OptGene format. Text file with the stoichiometric model, in OptGene

[37] format, with all the constraints needed for its simulation with FBA

algorithm.

Additional file 3: Most connected metabolites with filtered

cofactors. Supplementary table with most connected metabolites once

the cofactors have been filtered.

Additional file 4: iSyn669 metabolic fluxes simulated under four

conditions. Excel file with all the reactions simulations and resulting flux

ranges from the model simulated under four growth conditions:

autotrophy, dark o pure heterotrophy, light-activated heterotrophy and

mixotrophy.

Additional file 5: Fluxes of reactions around pyruvate. Flux values (in

mmol/g DCW/h) for reactions that produce or drain pyruvate in

Synechocystis sp. PCC6803 metabolism. Negative sign in bidirectional

reactions means pyruvate consumption. Reactions names can be traced

in reaction list in Additional files 2 and fluxes can be found in Additional

file 4.

Additional file 6: FBA and MOMA simulation values for biomass

growth in Synechocystis sp. PCC6803, Escherichia coli and

Saccharomyces cerevisiae genome-scale metabolic models. Excel file

with the growth values under MOMA simulation for Synechocystis sp.

PCC6803, Escherichia coli and Saccharomyces cerevisiae. Data for

Synechocystis is original from present work, data for Escherichia coli has

been obtained from metabolic model from reference 18 and data for

Saccharomyces cerevisiae is from reference 30.

Additional file 7: iSyn669 groups of correlated genes in the three

sets of arrays of light shift experiments. Word file with the list of

iSyn669 correlated genes in “All time points”, “Dark to light” and “Light to

dark” analyses.
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