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Abstract—Automatic road extraction from remote sensing im-
ages plays an important role for navigation, intelligent transporta-
tion, and road network update, etc. Convolutional neural network
(CNN)-based methods have presented many achievements for road
extraction from remote sensing images. CNN-based methods re-
quire a large dataset with high quality labels for model training.
However, there is still few standard and large dataset, which is
specially designed for road extraction from optical remote sensing
images. Besides, the existing end-to-end CNN models for road
extraction from remote sensing images are usually with symmetric
structure, studying on asymmetric structure between encoding and
decoding is rare. To address the above problems, this article first
provides a publicly available dataset LRSNY for road extraction
from optical remote sensing images with manually labelled labels.
Second, we propose a reconstruction bias U-Net for road extraction
from remote sensing images. In our model, we increase the decoding
branches to obtain multiple semantic information from different
upsamplings. Experimental results show that our method achieves
better performance compared with other six state-of-the-art seg-
mentation models when testing on our LRSNY dataset. We also test
on Massachusetts and Shaoshan datasets. The good performances
on the two datasets further prove the effectiveness of our method.

Index Terms—CNN model, dataset, optical remote sensing
image, road extraction.

I. INTRODUCTION

B
ENEFITING from the prosperity and development of

navigation, automatic driving, smart city and intelligent

transportation, etc., road network information plays a more and
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more important role in our daily life. Due to the new road con-

struction, road network information update is always necessary.

There are many kinds of methods for road network information

update, such as manually labeling, tracking the changes of

cars’ driving traces, and automatic road extraction from remote

sensing images, etc. Tracking cars’ driving traces may miss the

appearance information of roads, such as width, border, and so

on. Manually labeling is time consuming and with hard manual

burden. Automatic road extraction from optical remote sensing

images is a more economic and more time saving way compared

with the traditional manual road areas labeling [1]. Because the

attracting of high research values about road extraction from

remote sensing images, much research has focused on automatic

road extraction from remote sensing images [1]–[8].

Most state-of-the-art road extraction methods from remote

sensing images are CNN models-based. Especially, due to the

fast development of end-to-end semantic segmentation CNN

models in natural images, the end-to-end semantic segmentation

CNN models also achieve great success in road extraction from

remote sensing images. However, there are still two aspects that

need to be considered when using CNN segmentation models

for road extraction from remote sensing images. First, CNN

models need a large dataset with labels for training. For now,

there is still few publicly available dataset which is large enough,

well labeled, and specially designed for road extraction from

remote sensing images. Constructing a large dataset for road

extraction from remote sensing images with manually labeled

labels is costly. Second, most current end-to-end CNN seg-

mentation models use symmetric or approximate symmetric

structures between encoding part and decoding part, such as

U-Net [9], PSPNet [10], etc. However, as reconstruction is a

more challenging job compared with feature extraction work,

using neural network parts with similar complexity to finish jobs

with different difficulties seems unreasonable, which may result

to the unbalance between reconstruction capacity and feature

extraction capacity.

To overcome the above two problems of road extraction

from remote sensing images, this article’s work major focuses

on two aspects. First, we cost a major expenditure of time

and effort to label a large dataset for road extraction from

remote sensing images. The dataset is not only well labeled,

but also large enough to train CNN models and obtain sound

test evaluations. To make experiments, which using our dataset

for training and testing, be fair among different CNN models, we

have divided our dataset into constant training, validation, and
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testing parts. Second, we propose a reconstruction bias U-Net

for road extraction from optical remote sensing images. In our

reconstruction bias U-Net, we use multiple operation couples

of upsampling and convolution to increase the reconstruction

ability for each upsampling layer. Finally, through increasing

reconstruction operations, we can strengthen the reconstruction

ability of CNN model and achieve better segmentation results

in the experiments.

The contributions of this article are as follows.

1) We provide a publicly available large dataset with manu-

ally labeled labels for road extraction from remote sensing

images.

2) We propose a reconstruction bias U-Net for road extraction

from remote sensing images. Benefiting from increasing

reconstruction ability, our new CNN model performs bet-

ter compared with other state-of-the-art semantic segmen-

tation CNN models.

II. RELATED WORK

In this section, we give a review about datasets of semantic

segmentation at first. In the second part, we give a detail review

about road extraction from remote sensing images.

A. Studies on Datasets for Semantic Segmentation

Since most current state-of-the-art semantic segmentation

methods are CNN models-based, a large enough dataset with

manually labeled labels is rather important for specific target

segmentation research works. Many researchers have paid their

large attention on and taken large efforts for semantic segmenta-

tion dataset construction [11]–[24]. Brostwo et al. proposed first

semantic segmentation video dataset called Cambridge-driving

Labeled Video Database (CamVid) [19]. In this dataset, 32

classes were labeled in the videos with 30 Hz for more than 10

min. Cordts et al. proposed Cityscapes dataset, which includes

5000 street scenes and corresponding exquisite labels from 50

different cities [18]. Usually, the Cityscapes dataset can be split

into 2975 training images, 500 validation images, and 1525 test

images for total 19 classes (including roads in street viewpoint).

Besides, 20 000 street scenes with coarse ground truth are also

provided. Ros et al. proposed SYNTHIA dataset which is a large

scale scene of virtual city, providing pixel-level labeling for 11

classes (including road areas) [20]. As the dataset was produced

based on a virtual city scene, the images vary with different

viewpoints, seasons, and weather. Huang et al. proposed Apol-

loScape for automatic driving research. In ApolloScape dataset,

more than 147 000 frames with pixel-level semantic labeling

are publicly open, covering three different cities. The above

representative datasets are based on ground or street viewpoints,

there are also many semantic segmentation dataset for remote

sensing images. ISPRS dataset [17] provides 38 large aerial

image patches with same size and their corresponding DSM

data. The dataset greatly promote the CNN model research on

the DSM segmentation of remote sensing images. Demir et al.

raised a challenge competition about semantic segmentation

from remote sensing images, including road or street net ex-

traction [15]. Since the competition was over, the download of

the dataset is not available. Nigam et al. provided a semantic

segmentation dataset obtained by aerial planes flying at height

ranging from 5 to 50 m [14]. The dataset contains 3268 images

with 11 labeled classes. Mohajerani et al. provided a dataset

for cloud segmentation study, which include 38 Landsat images

[12]. Each image contains four bands information: red, green,

blue, and NIR. Schmitt et al. proposed a dataset for multispectral

image fusion study based on deep learning [11]. Mnih provided

an aerial image dataset for road extraction from remote sensing

images [25]. Bastani et al. provided a road extraction dataset,

which using aerial images covering 24 sq km around 15 cities

[26]. However, in their provided link, they told readers their

dataset cannot be publicly released due to copyrights. Cheng

et al. told readers they will publicly open their road centerline

extraction dataset [2]. We do not find the dataset download link in

the paper. Zang et al. used Shaoshan dataset for road extraction,

however, their dataset is not publicly available [27].

From the above introduction, we can know that many re-

searchers have spent large energy on dataset construction for

semantic segmentation based on deep learning. However, a

dataset specifically for the study of road extraction from remote

sensing images based on deep learning models is still scarce and

much-needed.

B. Road Extraction From Remote Sensing Images

Road extraction from remote sensing images usually contains

two subtasks: road area extraction and road centerline extraction

[28], [29]. Road area extraction methods produce pixel-level

labeling of roads [1], [4], [29]–[38], while skeletons of roads are

extracted for road centerline extraction [8], [27], [28], [39]–[46].

As roads have outstanding shape feature compared with other

ground targets, the morphological features are utilized for road

extraction [4], [28], [31], [47]. With the development of machine

learning methods, such as support vector machine (SVM), many

researchers used machine learning methods combining with

artificial designed features for road extraction from remote sens-

ing images and obtained many achievements [34], [36]. Poullis

proposed a no threshold framework which called Tensor-Cuts,

and applied the framework for preprocessing of road extraction

from satellite images since the framework is particularly suitable

for linear features extraction [36]. Movaghati et al. proposed

a road extraction method from satellite images using particle

filtering (PF) and extended Kalman filtering (EKF) [48]. The

PF is combined with EKF to find best continuation of the

road after an obstacle or junction, which achieved satisfactory

results. Leninisha et al. presented a semiautomatic framework

based on geometric active deformable model for road network

extraction from high spatial remote sensing images. Different

road junctions shape types were extracted using water flow

technique, and they achieved good results on test images [49].

Lv et al. proposed an adaptive multifeature (which containing

color, local entropy, and HSC features) sparsity-based model

for road area extraction, and they achieved good results in the

experiments [33].

Recently, deep convolutional neural networks (CNN) have led

a series of breakthroughs for computer vision tasks [50]–[59].
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CNN models also have achieved many success in road extraction

from remote sensing images [8], [38], [46], [60]–[64]. Alshehhi

et al. proposed a single patch-based CNN for extraction of roads

and buildings from high-resolution remote sensing data [31].

Experiments were conducted on two challenging datasets to

demonstrate the performance of the proposed network architec-

ture. Cheng et al. used a cascaded end-to-end CNN for automatic

road detection and centerline extraction, which obtained the

state-of-the-art results in the experiments [28]. Zhang et al.

used a semantic segmentation neural network, which combines

the strengths of residual learning and U-Net [65] for road area

extraction from remote sensing images [29]. They achieved

better results compared with other state-of-the-arts approaches.

Chen et al. proposed a road extraction approach from remote

sensing images, which combines Dirichlet mixture models and

CNN modes and achieved good results [1]. Ren et al. proposed a

DA-CapsUNet for road extraction from remote sensing images

[37]. In their approach, they used a capsule U-Net architecture

to extract and fuse multiscale capsule features. They achieved

quite good results in the experimental results.

III. METHOD

In this section, we show the CNN architecture of our recon-

struction bias U-Net first. Then, we give a detail introduction

about reconstruction bias part in our CNN model. Finally, we

illustrate the loss training of our model.

A. Model Architecture of Reconstruction Bias U-Net

Fig. 1 shows the model architecture of our reconstruction bias

U-Net. The major backbone of our network is based on the U-Net

[9], consisting of encoding and decoding two parts. The initial

input of our network is a 256 × 256 remote sensing image. In

the encoding part, we use five groups of convolution, ReLU, and

maxpooling operations. In the fourth and fifth groups, dropout

operation is added to reduce the activated neuron weights,

avoiding the over fitting of the network. In the decoding part, we

first use four operation couples of upsampling, convolution, and

ReLU to obtain four upsampling results. It should be emphasized

that the kernel sizes of the four convolution operations are differ-

ent, learning the reconstruction ability of using different sizes of

context information. Then, we concatenate the four upsampling

results of first upsampling layer with the output of max-pooling

in the fourth operation couple of encoding part, followed by

two operation couples of convolution and ReLU. In the second

upsampling layer, we use five operation couples of upsampling,

convolution, and ReLU. In the next, the five upsampling results

and the output of max-pooling in the third operation couple of

encoding part are concatenated and followed by two operation

couples of convolution and ReLU. The operations of the third

upsampling layer are just same with the operations in the first

upsampling layer. The outputs of third upsampling layer and

the output of max-pooling in the second operation couple of

encoding part are concatenated and followed by two operation

couples of convolution and ReLU. In the fourth upsampling

layer, three operation couples of upsampling, convolution, and

ReLU are used. The outputs of fourth upsampling layer and the

max-pooling output in the first operation couple of encoding

part are concatenated and followed by five operation couples of

convolution and ReLU. In the final two operations, convolution

and classification with sigmoid activation function are used.

The output of final classification operation is the road area

segmentation result with a size of 256 × 256.

B. Details of Decoding Architecture

In the reconstruction bias U-Net, we use multiple operation

couples of upsampling and convolution to increase the recon-

struction ability. Table I shows the detail information of inputs,

outputs, filters, and strides in each layer. From Table I, we

can see that through increasing the multiple operation couples

of upsampling and convolution, our decoding part occupies

much more parameters than encoding part. For each upsampling

operation, the upsampling size is fixed at 2 × 2. There are 4, 5,

4, and 3 upsampling operations in the first, second, third, and

fourth upsampling layer, respectively. We design the four upsam-

pling layers from the considering that middle layers need more

upsampling operations to learn and joint more reconstruction

information. The detail numbers are selected according to the

ability of our GPU. If one has a more powerful GPU, he can add

the upsampling numbers for each layer. In the first upsampling

layer, the followed convolution operations have filter sizes of 2

× 2, 4 × 4, 8 × 8, and 16 × 16, respectively. The convolutional

filter numbers are 512, 128, 64, and 32, respectively. The output

size of first concatenation operation is 32× 32× 1248, followed

by two convolutions with 512 filters having a 3 × 3 size. In the

second upsampling layer, we use five couples of upsampling and

convolution. The convolution operations have 256 2 × 2, 64 4 ×
4, 32 8× 8, 16 16× 16, 832× 32 filters, respectively. The output

size of second concatenation operation is 64 × 64 × 632. In the

third upsampling layer, we use four couples of upsampling and

convolution. The convolution operations have 128 2 × 2, 32 4

× 4, 16 8 × 8, 264 × 64 filters, respectively. The output size of

third concatenation operation is 128 × 128 × 306. In the final

upsampling layer, we use three couples of upsampling and con-

volution. The convolution operations have 64 2× 2, 16 4× 4, 88

× 8 filters, respectively. The output size of fourth concatenation

operation is 256 × 256 × 152. To further convert the output into

256 × 256 × 1, the output of fourth concatenation is followed

by five couples of convolution and ReLU. The five convolution

operations have 64 3 × 3, 64 3 × 3, 33 × 3, 31 × 1, and 31

× 1 filters, respectively. In the final layer, we use a sigmoid to

obtain the final segmentation result. It should be noted that the

numbers of upsampling and convolution operations in decoding

part can be increased according to the GPU memory size.

C. Loss Function

Given a set of training images and the corresponding road area

segmentation labels (I , G), the target function of the network

can be represented as follows:

Min E (I,G,W ) =
N
∑

i=1

| |Ii ∗W −Gi| |
2 (1)

where N is the number of training images and W is the parameters

of network. In our network training, we use binary cross entropy
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Fig. 1. Architecture of our reconstruction bias U-Net.
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TABLE I
DETAIL NETWORK ARCHITECTURE OF RECONSTRUCTION BIAS U-NET

as the loss function:

LNetw (I) = −
N
∑

i=1

M
∑

j=1

L
∑

k=1

Gi (j, k) · logNetw(Ii (j, k))

+ (1−Gi (j, k)) · log (1−Netw (Ii (j, k)))
(2)

where (M, L) represents the shape size of images I and

Netw(Ii(j, k)) represents the network output of position (j, k)
in image Ii. We use the Adam (adaptive moment estimation)

and accuracy metrics to train our network. Other loss functions

(such as mean squared error, pixel-wise cross entropy, etc.) and

model training methods (such as stochastic gradient descent) are

also can be used for training the network.
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Fig. 2. Division strategy of our original large image. After division, the dataset
is divided into training, validation, and test datasets.

IV. RESULTS AND DISCUSSION

In this section, we will first give an introduction about the

dataset used in experiments. Then, the detail experimental im-

plementations are introduced. Third, we present and analyze the

experimental results on the tested datasets.

A. Dataset

In this article, we provide a publicly available road extraction

dataset from high-resolution remote sensing images. The orig-

inal image is a 37949 × 35341 high-resolution remote sensing

image, covering a center part of New York City and with a

resolution of 0.5 m. We cut the original large image into pieces

with a size of 1000 × 1000, generating 1368 images. The 1368

images are further divided into training, validation, and test

images. The training, validation, and test images contain 716,

220, and 432 images, respectively.

Compared with Massachusetts Roads Dataset,1 our dataset

has a much higher resolution. The dataset size of our dataset is

comparable with Massachusetts Roads Dataset. Massachusetts

Roads Dataset contains 1108 training images, and each image

has a size of 1500 × 1500. However, Massachusetts Roads

Dataset only has 14 validation images and 49 test images.

Compared with Cheng’s road extraction dataset [2], our dataset

is much larger. For Deepglobe road extraction dataset,2 the

download was not available since the competition was over.

To maintain the position distribution balance of our dataset,

we use a dividing strategy which iteratively assign training,

validation, and test images at column level. For example, given

an image which are cut into 8 × 8 pieces, as shown in Fig. 2.

Then, the pieces lay on first, fourth, sixth, and eighth columns

are divided into training set. The pieces lay on second, fifth,

1[Online]. Available: http://www.cs.toronto.edu/∼vmnih/data/
2[Online]. Available: https://competitions.codalab.org/competitions/18467

and seventh columns are assigned to test set. The pieces lay on

third column are assigned to validation set. Through the above

dividing strategy, we can guarantee the position distribution

balance of different kinds of image sets. It should be noted that

several validation images have small overlap areas with training

images. The rest piece images at edge area of the original large

image are usually not 1000× 1000. To utilize the rest edge areas,

we fill the pieces into 1000 × 1000 using small overlaps with

nearby column pieces (in our dataset are training pieces). The

test images have no overlaps with training and validation images.

We manually label the ground truth of road areas in the

original large image and implement the division as the same

as the original image. Thus, it is one-to-one correspondence

between the original image pieces and the ground truth label

pieces. Because it will put a lot of pressure on the GPU memory

size if we use training images with a size of 1000 × 1000, so

we resize the images in our dataset into a size of 256 × 256.

Although we only use training, validation, and test images with

a size of 256 × 256 in this article, the images with a size of 1000

× 1000 are also reserved and publicly available in our dataset.

Fig. 3 shows several images and their corresponding ground

truth in our dataset, including training, validation, and test

datasets. From Fig. 3, we can see that the images in our dataset

are rather challenging, as many road areas are occlude by trees,

buildings, and cars, etc. It should be noted that we use white

color (255, 255, 255) and black color (0, 0, 0) to respectively

represent the road areas and background areas in our labeling

images. Besides, because the training, validation, and test im-

ages have been divided and are constant, our dataset can be

easily used for performance comparison. To make our dataset

be easy to remember, we call our dataset as LRSNY (Large Road

Segmentation Dataset from Optical Remote Sensing Images of

New York). Our dataset can be download from the following

website: ftp://154.85.52.76/LRSNY/.

To further verify the performance of the proposed reconstruc-

tion bias U-Net, we also compared the reconstruction bias U-Net

with other methods on other two datasets: Massachusetts road

extraction dataset and Shaoshan dataset [1].

For Massachusetts dataset, we divide the original training,

validation, and test images into 256× 256 without overlappings,

generating 27 700 training images, 350 validation images, and

1225 test images, respectively.

Shaoshan dataset is a Pleiades optical image covering parts

of Shaoshan with an image size of 11 125 × 7918. We follow

the processing in [1], using 29 and 20 images for training and

test, respectively. Each image has a size of 1589 × 1131. To suit

the input size of 256 × 256, we further divide each image into

256 × 256. For training images, the division between generated

neighbor 256 × 256 images has a overlap. We generate 256 ×
256 training images with a skip step of 10 pixels in both row

and column directions. Finally, we have 14 580 training images

and 456 test images.

B. Experimental Implementation Detail

We train our model on a computer with Intel Core i9-9900X

3.5 GHz and 128 GB memories. The computer has two GPUs,

http:&sol;&sol;www.cs.toronto.edu&sol;&sim;vmnih&sol;data&sol;
https:&sol;&sol;competitions.codalab.org&sol;competitions&sol;18467
ftp://154.85.52.76/LRSNY/
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Fig. 3. Training, validation, test images, and the corresponding ground truth exhibition of our dataset.

which type is RTX 2080 Ti with 11 GB GPU memories. During

training and test, we use only one GPU. When training our

model, we set the training epoch as 200 and the learning rate

as 0.0001. Our training batch size is 2. For model saving, we

save the model with minimum loss within 200 epochs.

Our implementation is based on Python, Tensorflow,3 and

Keras.4 To further strengthen the training stage and avoid the

over fitting problem of model training, we utilize the data aug-

mentation for training images. The rotation, zoom, shift, shear,

and flip operations are all used in our training data augmentation.

In our experiment, the rotation range is set at 0.9, the width shift

range and height shift range are set at 0.1. And the shear range

and zoom range are also set at 0.1.

C. Evaluation Criteria

In this part, we give a brief introduction about the performance

evaluation criteria used in our experiment. To comprehensively

evaluate the performance of models, we use four evaluation

criteria which are widely used for evaluating road segmentation

3[Online]. Available: https://www.tensorflow.org/
4[Online]. Available: https://keras.io/

performance. The first three criteria are completeness, correct-

ness, and quality, the representations are as follows:

completeness =
TP

TP + FN

correctness =
TP

TP + FP
,

quality =
TP

TP + FN + FP
(3)

where TP, FN, and FP denote true positive, false negative, and

false positive, respectively.

The fourth evaluation criterion is PRI (Probabilistic Rand

Index), which can be computed as follows:

PRI (Sseg, Sgt) =
1

C2
n

∑

i

∑

j(i �=j)

[ψ(li = lj& l′i = l′j )

+ ψ
(

li �= lj&l′i �= l′j
)

] (4)

where ψ is a discrimination function, li and lj are the labels of

Sseg , l′i and l′j are the labels of Sgt, and cn is the total pixel

numbers of Sseg.

https:&sol;&sol;www.tensorflow.org&sol;
https:&sol;&sol;keras.io&sol;
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TABLE II
THE COMPARISON RESULTS AMONG OUR METHOD AND OTHER SIX

STATE-OF-THE-ART SEGMENTATION METHODS TESTED ON OUR

LRSNY DATASET

Fig. 4. PRI comparison among our method and other six state-of-the-art
methods tested on LRSNY dataset.

D. Experimental Results

In this section, we first present the comparison results among

our model and other state-of-the-art segmentation methods on

LRSNY dataset. The compared methods include the original

U-Net [9], SegNet [66], PSPNet [10], Residual U-Net [67],

DeepLabV3 [68], and DANet [69]. For each method, we train

the model 200 epochs, which is the same as our model training

setting. Besides, to make the comparison fair, the training images

augmentation operation and augmentation parameter settings

are also just the same with our method for all the other comparing

methods.

Table II shows the comparison results among our method and

other six state-of-the-art segmentation methods tested on our

LRSNY dataset. From Table II, we can see that our method

obtains best performance according to the quality scores, which

proves the effectiveness of our reconstruction bias U-Net. It can

be seen that our method obtains about 0.4%, 1.4%, 0.4%, 4.2%,

2%, 1% higher quality scores than the original U-Net, SegNet,

PSPNet-50, Residual U-Net, DeepLabV3, DANet, respectively.

Fig. 4 shows the PRI comparison among our method and other

six state-of-the-art methods tested on LRSNY dataset. From

Fig. 4, we can clearly see that our method obtains highest PRI

score among all the methods, which further proves the good

performance of our method.

Fig. 5 shows the visual segmentation results of different

methods tested on our LRSNY dataset. The first to eighth

columns are the original images, ground truth, results of original

U-Net, SegNet, Residual U-Net, DeepLabV3, DANet and ours,

TABLE III
COMPARISON RESULTS AMONG OUR METHOD AND OTHER SIX

STATE-OF-THE-ART SEGMENTATION METHODS TESTED ON

MASSACHUSETTS DATASET

TABLE IV
COMPARISON RESULTS AMONG OUR METHOD AND OTHER FIVE METHODS

TESTED ON SHAOSHAN DATASET

respectively. From the figure, we can see that the segmentation

results of our method obtain a better balance and stable perfor-

mance when dealing with different images. The reason is due

to our reconstruction bias part in our model, resulting to better

performance.

In the next part of this section, we present the comparison

results among our reconstruction bias U-Net with other six meth-

ods on Massachusetts road extraction dataset. In the experiment,

the compared methods are the same as the six methods compared

in the prior part. The training implementation parameters are

also the same as the parameters in the prior experiment, except

that we set training epoch as 20, steps per epoch as 27 700, and

validation steps as 350.

Table III shows the comparison results among our method

and other six state-of-the-art methods on Massachusetts dataset.

In the table, we can see that our method achieved a quality

score of 0.65059, which is the highest in all the compared

methods. The original U-Net, SegNet, PSPNet-50, Residual U-

Net, DeepLabV3, and DANet obtain quality scores of 0.64873,

0.62477, 0.6271, 0.64271, 0.6141, and 0.6334, respectively. We

think the superior performance of our method is due to the more

powerful reconstruction ability.

In the third part of this section, we compared our method

with other five methods on Shaoshan dataset. The five methods

include Zang et al. [27], Residual U-Net, PSPNet-50, ESPNet

[70], and Chen et al. [1]. For these five methods, we just follow

the results in [1].

Table IV shows the comparison results among our method

and other five methods on Shaoshan dataset. From the table,

we can see that our method also achieves the highest quality

score in all the methods, obtaining a quality score as high as

0.7328. Compared with other five methods, we improve the

performance about 14%, 4%, 7%, 6%, and 2%, respectively.
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Fig. 5. Visual segmentation results’ exhibition of different methods tested on our LRSNY dataset.

Fig. 6. Comparison results of our method with different reconstruction bias
increased layers tested on LRSNY dataset.

This experimental results further prove the good performance

of our method.

In the final part of this section, we analyze the effectiveness of

reconstruction bias layers. Fig. 6 shows the comparison results

of our method with different reconstruction bias layers tested

on LRSNY dataset. U-Net with our first one upsampling layer

means that the model only use the first enforced upsampling

layer to replace the original first upsampling layer in original U-

Net. From Fig. 6, we can see that for better performance the more

enforced upsampling layers are used. This experiment proves the

effectiveness of our reconstruction bias strategy.

V. CONCLUSION

In this article, we proposed a reconstruction bias U-Net for

road extraction from high-resolution optical remote sensing

images. Our reconstruction bias U-Net consisted of two parts:

Encoding and Decoding. In the Encoding part, we used five

operation couples of convolution, ReLU and max pooling. In the

fourth and fifth operation couples, the drop out was also applied.

In the Decoding part, we used four layers for upsampling. In

each upsampling layer, multiple upsampling operation couples,

which contain upsampling, convolution, and ReLU, were set up.

Every upsampling filter size was fixed at 2 × 2, but the convo-

lutional filter sizes are different among one upsampling layer,

obtaining multiple reconstruction information. Each upsampling

layer was followed by an operation couple of concatenation,

convolution, ReLU, convolution, and ReLU. The final of our

network was a sigmoid layer. The input and output sizes were

256 × 256 × 3 and 256 × 256 × 1, respectively. Besides, we

proposed a publicly available dataset about road extraction from

remote sensing images, called LRSNY. In the experimental part,

we compared our method with other six state-of-the-art image

segmentation method on LRSNY. Experimental results showed

the good performance of our method and proved the effective-

ness of our reconstruction bias part in our model. To further ver-

ify the performance of our model, we also compared our method

with other methods on another two datasets: Massachusetts and

Shaoshan Datasets. The experimental results on the two datasets

both prove the effectiveness of our reconstruction bias model, as

our model achieved the best performance among the compared

methods on the both two datasets.
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