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Reconstruction From Random Projections
of Hyperspectral Imagery With Spectral

and Spatial Partitioning
Nam Hoai Ly, Student Member, IEEE, Qian Du, Senior Member, IEEE, and James E. Fowler, Senior Member, IEEE

Abstract—Random projections have recently been proposed to

enable dimensionality reduction in resource-constrained sensor

devices such that the computational burden is shifted to the
receiver side of the system in the form of a reconstruction process.

While a number compressed-sensing algorithms can provide

such reconstruction, the principal-component based compres-
sive-projection principal component analysis (CPPCA) algorithm

has been shown to offer better performance for hyperspectral

imagery. CPPCA is extended to incorporate both spectral and
spatial partitioning of the hyperspectral dataset with experi-

mental results evaluating reconstruction quality not only in terms

of squared-error and spectral-angle fidelity but also via perfor-
mance of the reconstructed data in classification and unmixing

tasks. While experimental results demonstrate that either form

of partitioning yields significantly better reconstruction than the
original, non-partitioned algorithm, CPPCA using both spectral

and spatial partitioning together outperforms either of the two

used alone.

Index Terms—Hyperspectral imagery, principal component

analysis, random projection.

I. INTRODUCTION

T HERE has been significant interest in recent literature
focused on dimensionality reduction using random pro-

jections [1]–[3]. It is anticipated that this random-projection
process would not be explicitly calculated but, instead, im-
plemented directly within the hardware of a sensing device,
thereby providing dimensionality reduction simultaneously
with signal acquisition. Thus, computational burden would
shift from a resource-constrained sensor device to a reconstruc-
tion process implemented on a more powerful receiving device.
Significant attention in recent literature has been devoted to
the design of algorithms to reconstruct datasets from random
projections.
In this paper, we are concerned specifically with the recon-

struction from random projections of hyperspectral imagery.
Consider an -band hyperspectral dataset of consisting vec-
tors , wherein each spectral pixel vector

. The sensor produces random projections of these
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vectors in the form of , where randomly-chosen
matrix forms an orthogonal projection onto a -di-

mensional subspace. The problem at hand is then to design a re-
construction process at the receiver that recovers the dataset
from the projected vectors . The problem
is often recast as recovering transform coefficients for a trans-
form basis from random projections such that

(1)

Typically, the performance of reconstruction algorithms de-
pends on the degree of dimensionality reduction inherent in the
random projections; this quantity is characterized as , the
subrate, of the random projections.
There are several approaches that one can take to perform a

reconstruction of from . The most widely known is perhaps
compressed sensing (CS); see [4] for an overview. However, [1]
proposes an alternative in which reconstruction is based on prin-
cipal component analysis (PCA) performed within the receiving
device. Effectively, this compressive-projection PCA (CPPCA)
recovers, solely from the random projections, approximations
to the PCA eigenvectors of the dataset, using this recovered
PCA basis to reconstruct the dataset. Experimental results in
[1] demonstrated that, for hyperspectral data, CPPCA yielded
much higher-quality reconstructions than CS in the terms of
signal-to-noise ratio (SNR) of the reconstruction at a fixed sub-
rate.
While CPPCA was originally applied in [1] to an entire hy-

perspectral dataset, recent work has shown that reconstruction
quality can be further improved by having the receiver first
segment the random projections into multiple partitions con-
sisting of highly correlated data with the partitions being recon-
structed independently. For example, [2] segments a hyperspec-
tral image into normal and anomaly pixel classes, reconstructing
each pixel class separately. Similarly, [5] employs several forms
of supervised and unsupervised classification to spatially parti-
tion the dataset into multiple classes, applying CPPCA recon-
struction to each spatial class independently.
In this paper, we extend this concept of partitioned recon-

struction to the spectral dimension of a hyperspectral dataset. In
essence, we incorporate into CPPCA the paradigm of segmented
PCA (SPCA) [6], [7] in which a dataset is segmented into mul-
tiple spectral partitions, and PCA is applied in each segment
independently. Because its eigendecompositions are limited to
spectrally neighboring bandswhich are highly correlated, SPCA
tends to outperform traditional PCA. The primary contribution
of this paper is thus the extension of these SPCA advantages to

1939-1404/$31.00 © 2012 IEEE



LY et al.: RECONSTRUCTION FROM RANDOM PROJECTIONS OF HYPERSPECTRAL IMAGERY WITH SPECTRAL AND SPATIAL PARTITIONING 467

CPPCA. Additionally, we couple the classification-driven spa-
tial partitioning proposed in [5] to this spectral partitioning, pro-
ducing a spectral-spatial partitioned CPPCA variant. We find
that the combination of spectral and spatial partitioning of this
latter method outperforms not only CPPCA using either form
of partitioning alone, but several forms of CS-based reconstruc-
tion as well.
The remainder of the discussion is organized as follows. We

first briefly overview the process of dimensionality reduction
via random projection as well as CPPCA and CS reconstruction
from such random projections in Section II. Next, we present the
spectrally partitioned and spectral-spatial partitioned CPPCA
approaches in Sections III and IV, following with experimental
results in Section V. Finally, several concluding remarks are
made in Section VI.

II. RECONSTRUCTION FROM RANDOM PROJECTIONS

A. CS

There are numerous CS-based algorithms that can reconstruct
from . Most of these CS algorithms recover a single vector

at a time; for a dataset of multiple, possibly correlated vec-
tors such as arising when is a hyperspectral image, a si-
multaneous, or “multitask,” reconstruction—such as multitask
Bayesian CS (MT-BCS) [8]—is more appropriate.
Inherent to CS reconstruction is a basis which is assumed to

yield a sparse representation of the signal to be reconstructed.
Most frequently, a fixed, known basis , such as a discrete
wavelet transform (DWT), is used. For example, MT-BCS re-
construction is then

(2)

Alternatively, if the reconstruction process has access to a
suitable body of (unprojected) training data, then a variety of
dictionary-learning strategies can be applied to train the spar-
sity basis; often, such a learned basis will be overcomplete. For
CS reconstruction, the learned dictionary is used as the spar-
sity basis for some suitable CS algorithm. For example, [9] cou-
ples learning of an overcomplete dictionary using the K-SVD
learning algorithm [9] with orthogonal matching pursuit (OMP)
[10]—we call the resulting CS reconstruction K-SVD+OMP,

(3)

In subsequent experimental results, we use both the CS recon-
structions of (2) and (3).

B. CPPCA

CPPCA [1] has been shown not only to outperform CS recon-
struction by a substantial margin for hyperspectral imagery, but
also to impose a much lighter computational burden. In essence,
CPPCA uses to project within the sensing device, i.e.,
at the CPPCA sender.1 At the receiver side of the system, the
CPPCA reconstruction, given only random projections and

1Technically, CPPCA uses distinct random projections in order
to enable the eigenvector recovery via projections onto convex sets (see [1]). For
notational simplicity, we drop the superscript on as it does not impact the
spectral-partitioning discussion of Section III, whereas [5] already addresses the
issue for the spatial partitioning discussed in Section IV.

orthonormal matrix , recovers not only the PCA transform co-
efficients , but also approximations to the basis vectors (i.e.,
the eigenvectors) of the PCA transform for the dataset. Using
these PCA eigenvectors, a simple linear least-squares pseudoin-
verse suffices to recover the PCA transform coefficients,

(4)

The CPPCA receiver then simply estimates the original dataset
as .
We note that CS-based reconstruction relies on an assumption

of sparsity in some transform domain, i.e., reconstruction with a
union-of-subspaces paradigm [11] in which the signal is sparse
in a basis yet the pattern of sparsity is unknown. On the contrary,
the CPPCA model is that of the signal residing in single, al-
beit unknown, low-rank subspace, such that the CPPCA eigen-
vector-recovery procedure finds this subspace from the random
projections. We argue that the union-of-subspaces model in-
herent to CS does not match the reality of most hyperspectral
datasets—commonly, a single hyperspectral scene is considered
to consist of a low-rank mixing of a relatively small number of
spectral endmembers (e.g., [12], [13]). Such a mixing model is
ideally suited to spectral decomposition with PCA; CPPCA in-
herits this advantage, while the proposed partitioning further in-
creases the low-rank character of the data.

III. SPECTRAL PARTITIONING

PCA applied spectrally to a hyperspectral image is very ef-
fective when the spectral bands are highly correlated, permitting
a close approximation of spectral signatures by retaining only a
few principal components. CPPCA capitalizes on this same phe-
nomenon, using random projections to recover principal eigen-
vectors and their corresponding PCA coefficients to reconstruct
the dataset. Like PCA, CPPCA relies on a high degree of cor-
relation among spectral bands to produce a reconstruction that
closely approximates the original spectral signatures. However,
it has been observed [6] that, commonly, neighboring bands in
hyperspectral data are much more correlated than bands that are
spectrally distant from one another.
To improve the performance of PCA in such a case of low

correlation between spectrally distant bands, SPCA [6] parti-
tions the dataset spectrally into a number of distinct spectral
partitions, each of which contains a number of highly correlated
bands. Subsequently, PCA is applied on each spectral parti-
tion independently. As a consequence, SPCA not only provides
an exponential reduction in the computational burden required
for the eigendecomposition central to PCA, but it also tends to
improve the representational efficacy of PCA since each PCA
decomposition is applied to only the highly correlated bands
within each partition.
We adapt the spectral-partitioning paradigm of SPCA to the

CPPCA framework by partitioning the dataset spectrally and ap-
plying CPPCA in each spectral partition independently. On the
sensing side of the system, this is tantamount to the projection
matrix of the CPPCA sender having a block-diagonal struc-
ture with matrices along the diagonal, where is the index
of the spectral partition. In effect, this projects the spec-
tral bands of partition into a -dimensional subspace; thus,
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has size , where and .
That is,

(5)

where is an vector of the spectral bands in par-
tition , and has size . On the receiver side of the
system, CPPCA reconstruction is applied in partition using

and independently of the other
partitions. That is, in this spectrally-partitioned CPPCA, we re-
cover an approximation to the principal eigenvectors of parti-
tion along with the corresponding PCA coefficients; these are
used to produce a reconstruction of the bands of spectral
partition , i.e., . Concatenating the
reconstructions from the individual partitions produces the
final reconstruction of the -band dataset .
We assume that, given a specific hyperspectral sensor, the par-

titioning of the spectral bands, and hence , is fixed and deter-
mined in advance by the typical correlation structure expected
for the sensor. As a consequence, given an overall subrate ,
we must select for each partition such that the target subrate
is met. The straightforward approach would be to set such
that the same subrate is used across all partitions, i.e., so that

, . However, we adopt a more sophisticated
solution that permits to reflect the fact that certain bands are
anticipated to have a more complex signal content; thus, their
partitions should receive a higher subrate relative to the others.
Specifically, we use a weighted sampling procedure based

on the concept of loading factors that has been used previously
in band prioritization [14], [15]. Loading factor associated
with eigenvector and eigenvalue
is

(6)

whereas the variance of spectral band is

(7)

Given the target subrate, , or, equivalently, a budget
number of measurements for the entire dataset, , the number
of measurements for partition is then

(8)

where is the set of spectral bands in partition .
In experimental results that follow, we use data from two hy-

perspectral sensors, AVIRIS and HYDICE. Using a correlation
matrix typical to these sensors, sensor-specific spectral parti-
tioning is as indicated in Table I—for both sensors, four spectral
partitions have been used. For various subrates, the number of
measurements used in each partition, , again a sensor-spe-
cific value, is tabulated in Table II.

TABLE I
SPECTRAL BANDS IN EACH SPECTRAL PARTITION

TABLE II
NUMBER OF MEASUREMENTS, , IN SPECTRAL PARTITION FOR AVIRIS

( ) AND HYDICE ( )

TABLE III
EFFECTS OF SPECTRAL AND/OR SPATIAL PARTITIONING ON ECCENTRICITY

IV. SPECTRAL-SPATIAL PARTITIONING

Different from the spectral partitioning proposed above, [5]
adapts CPPCA to exploit spatial classification. Specifically, in
the spatial-partitioning CPPCA variant of [5], the receiver first
classifies each projection vector into one of several spatial
partitions using either a supervised classifier or an unsuper-
vised clustering algorithm. After spatial partitioning, CPPCA
reconstruction is employed independently within each spatial
partition. We note that, in this spatial-partitioning approach to
CPPCA, partitioning occurs only at the reconstruction side of
the system; i.e., the spatial partitions in [5] are formed only
during reconstruction while the sender side of the system is
identical to that of the original CPPCA. As a consequence,
spatial partitioning as proposed in [5] is sensor-independent.
This stands in contrast to the spectral partitioning proposed
in Section III which is sensor-specific and present at both the
sender and receiver sides of the CPPCA system.
Although several spatially partitioned CPPCA reconstruc-

tions are described in [5], for the work here, we adopt the
technique called “unsupervised class-dependent CPPCA”
which is conceptually the most simple. In this approach, the
entire dataset is first reconstructed using conventional (i.e.,
non-partitioned) CPPCA; unsupervised clustering is applied to
partition the dataset into spatial classes; and finally CPPCA
reconstruction is applied again, only this time it is applied in
each spatial partition independently. Here, we use -means
for the spatial clustering. As in [5], the subrate for all spatial
partitions is identical and equal to the overall subrate, .
The spatial partitioning of [5] and the spectral partitioning of

Section III are not mutually exclusive; it is straightforward to
combine the two to effectuate a variant of CPPCA with spec-
tral-spatial partitioning. In such a system, the sender applies
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TABLE IV
SNR (DB) USING VARIOUS -MEANS DISTANCEMEASURES FOR CPPCA RECONSTRUCTION USING SPATIAL AND SPATIAL-SPECTRAL PARTITIONING

random projection in each spectral partition using a sensor-spe-
cific spectral partitioning and number of measurements (i.e.,
Tables I and II). The receiver then reconstructs the dataset from
the random projections using the following procedure:
1) Apply CPPCA reconstruction in each spectral partition in-
dependently, concatenating the reconstructed partitions to
yield an initial CPPCA reconstruction of the dataset.

2) Apply -means clustering on the initial reconstruction,
yielding a spatial partitioning of the dataset.

3) Couple the spatial partitioning with the spectral parti-
tioning, producing spectral-spatial partitions within the
random projections.

4) Apply CPPCA reconstruction in each spectral-spatial par-
tition independently, producing the final reconstruction of
the dataset.

V. EXPERIMENTAL RESULTS

A. Reconstruction Results

We use two popular AVIRIS hyperspectral images, “Jasper
Ridge” scene 1 and “Moffett” scene 1, both of which have
224 spectral bands and a spatial size of 512 512 pixels;
after removal of noisy and water-absorption bands, we have

spectral bands. Spatial clustering uses classes;
this number of classes is estimated using the procedure based
on the Bayesian information criterion (BIC) as described in [5].
We also test using a popular HYDICE dataset, “Washington
DC-Mall.” This image has 191 highly correlated spectral bands
and a spatial size of 300 300 pixels. Using the same BIC
approach to estimate the number of spatial classes, we choose

.
We now examine the effectiveness of the various parti-

tioning strategies proposed above; we use the implementation
of CPPCA available from its website.2 In [1], it is argued
analytically that, fundamentally, CPPCA depends on the data
distribution being sufficiently eccentric, meaning that the
principal eigenvalues are widely separated from one another.
Theoretical results in [1] suggest that the accuracy of CPPCA
reconstruction is directly proportional to the eccentricity of
dataset; thus, increasing data eccentricity can lead to improved
performance. Table III presents the eccentricity of the various
hyperspectral datasets using the various partitioning strategies
considered above. Here, eccentricity is measured as the ratio
of the first and second eigenvalues; in Table III, eccentricity is
calculated in each partition (i.e., using the eigendecomposition
for just that partition) and then averaged over all partitions.

2http://www.ece.msstate.edu/~fowler/CPPCA/

Table III also reports the global eccentricity as calculated over
the entire, non-partitioned dataset. Table III indicates that,
although both spatial and spectral partitioning when used alone
increase the average eccentricity with respect to the non-par-
titioned dataset, the combined spectral-spatial partitioning
results in the greatest degree of eccentricity.
We now explore the performance at reconstruction from

random projections. In all cases, an orthonormalized Gaussian
random matrix is used to project each pixel vector into a
lower-dimensional space. Reconstruction quality is measured
with a vector-based SNR in dB that is averaged over the dataset;
i.e., for original vector and its corresponding reconstruction
,

(9)

where is the variance of the components of vector ,
and the mean squared error (MSE) is

(10)

We then average the vector-based SNR over all vectors of
the dataset. Alternatively, we measure the quality of a recon-
structed hyperspectral dataset using an average spectral angle,
where the spectral angle in degrees between the reconstructed
hyperspectral pixel vector and its corresponding original vector
is averaged over the dataset; i.e., where

(11)

In our spatial-clustering implementation, we use -means
with city-block (or ) distance after comparing several sim-
ilarity metrics: Euclidean, cosine, city-block, and correlation.
The results are tabulated in Table IV, revealing that the city-
block and Euclidean distances for -means yield the best re-
construction for both CPPCA variants considered.
For the AVIRIS datasets, we see from Figs. 1 and 2 that

CPPCA with spectral-spatial partitioning yields average SNR
substantially higher than that of the original, non-partitioned
CPPCA; additionally, spectral-spatial partitioning marginally
outperforms spatial or spectral partitioning alone except at the
lowest subrate. Fig. 3 indicates that similar gains are achieved
for the HYDICE dataset for which spectral-spatial partitioning
consistently outperforms the other partitioning strategies by
typically 1–5 dB. Similar conclusions are reached by consid-
ering average spectral angle as tabulated in Table V. There, we
see that spectral-spatial partitioning consistently yields lower
average spectral angle than the other partitioning strategies.
Overall, these results indicate that the combination of spatial
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Fig. 1. Reconstruction for AVIRIS dataset “Jasper Ridge”.

Fig. 2. Reconstruction for AVIRIS dataset “Moffett”.

and spectral partitioning yields the best reconstruction per-
formance in terms of not only average SNR but also average
spectral angle between pixels.
We also compare the partitioned variants of CPPCA to sev-

eral competing CS-based reconstruction strategies. Figs. 1–3
and Table V present SNR and SAM results for MT-BCS [8]
as described in Section II-A. Additionally, we compare also to
K-SVD+OMP [9]. MT-BCS uses a Daubechies length-8 DWT
as the fixed sparsity basis; on the other hand, K-SVD+OMP
learns an overcomplete sparsity basis ( )
from training data. For this latter approach, we use the orig-
inal “Moffett” dataset as training data when reconstructing the
“Jasper Ridge” dataset, and vice-versa. Lacking a second HY-
DICE dataset that we can use for training, though, we provide
K-SVD+OMP results for only the AVIRIS datasets (Figs. 1 and
2). We use implementations available from the respective au-
thors of MT-BCS3 and K-SVD+OMP.4

3http://people.ee.duke.edu/~lcarin/BCS.html. Note: due to excessivememory
requirements of this implementation, the 512 512 datasets are split spatially
into sixteen 128 128 partitions to which MT-BCS is applied independently.
4http://www.cs.technion.ac.il/~elad/software/

Fig. 3. Reconstruction for HYDICE dataset “Washington DC Mall”. The
curves for the CPPCA class are the results of averaging 100 trials using
different random matrices . The corresponding standard deviations are
illustrated with vertical bars.

TABLE V
AVERAGE SPECTRAL ANGLE IN DEGREES

Finally, as an alternative, albeit simplistic, “dictio-
nary-learning” strategy, we propose to “learn” a dictionary of
PCA eigenvectors by simply calculating the covariance matrix
and its eigendecomposition for the training dataset, employing
the resulting eigenvectors to yield a linear least-squares recon-
struction of the randomly projected dataset. We see from Figs. 1
and 2 that, while K-SVD+OMP significantly outperforms the
fixed-basis MT-BCS, the “learned-PCA” reconstruction does
even better. However, all of the CPPCA-based reconstruc-
tions—which derive their PCA basis directly from the random
projections of the dataset in question rather than from a separate
body of training data—provide the best performance.
In order to examine the variability in reconstruction perfor-

mance that is inherent due to the fact that the projectionmatrix
is randomly chosen, the SNR performance illustrated in Fig. 3 is
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TABLE VI
RECONSTRUCTION TIME IN SECONDS FOR “MOFFETT,” SUBRATE OF 0.3

Fig. 4. Classification accuracy for HYDICE dataset “Washington DC Mall.”
using SVM.

averaged over 100 trials, each using a different . Fig. 3 also in-
dicates the standard deviation over the trials in the form of error
bars.5 We see that, not only does CPPCA with spectral-spatial
partitioning yield higher average SNR over the trials, the vari-
ability in reconstruction quality due to the randomness of is
much smaller than that of the other techniques.
The execution time for the reconstruction algorithms under

consideration is presented in Table VI. The results reveal that
spectral partitioning is faster than the original non-partitioned
CPPCA, while spectral-spatial partitioning is nearly five times
as fast as spatial partitioning used alone. This speed up is as ex-
pected, since spectral clustering reduces the dimensionality of
the CPPCA-reconstruction process, and CPPCA runs faster for
smaller-dimensional datasets. Compared to other reconstruction
algorithms, spectral-spatial CPPCA is nearly 20 and 600 times
faster than K-SVD+OMP and MT-BCS reconstruction, respec-
tively. We note also that the spectral partitioning and spectral-
spatial partitioning could both be further expedited by imple-
menting reconstruction in each spectral partition in parallel.

B. Supervised-Classification Results

We now investigate the class separability of the reconstructed
data using supervised classification. Due to the availability
of ground truth, we use the Washington DC Mall dataset,
randomly choosing 10% of the labeled pixels in each class
as training data while saving the remainder as testing data.

5Note that, due to the excessive run time of MT-BCS, Fig. 3 depicts the re-
construction from only one trial for MT-BCS.

Fig. 5. SAD (in radians) for “Cuprite” using VCA.

The popular kernel-based pattern-recognition algorithm,
pixel-based support vector machine (SVM), is employed with
a radial-basis (RBF) kernel. The SVM and RBF parameters are
set to via five-fold cross validation while
the SVM-optimization problem is solved via the open-source
LIBSVM package.6 The accuracy of classification is evaluated
using the Cohen- coefficient which is computed by weighting
the measure accuracies and which shows a robust measure of
the degree of agreement. We plot the classification accuracy,
Cohen- coefficient, corresponding to various subrates in
Fig. 4. As reported in Fig. 4, the spectral-spatial partitioned
CPPCA consistently outperforms (higher value) the other
partitioning strategies as well as MT-BCS except at the lowest
subrate.

C. Linear-Unmixing Results

Vertex component analysis (VCA) [16] is one of the most
popular methods for the linear unmixing of hyperspectral
imagery. We apply VCA to evaluate the affect of the proposed
method (spectral-spatial CPPCA) on unmixing. The Cuprite
dataset with size of 250 181 pixels and 188 bands is con-
sidered in this section—water-absorption and noisy bands
(including bands 1, 2, 104–113, 148–167, and 221–224) have
been removed from the original 224-band dataset. We note that
this same cropping of Cuprite was also used in [16] wherein
the number of endmembers was set to . We apply
various partitioning strategies coupled with CPPCA as well
as MT-BCS, extracting endmembers from the original as
well as reconstructed images using VCA. Similar to [17], we
calculate the average spectral-angle distance (SAD) between
the endmembers obtained from the original image and those
obtained from the reconstructed images. The results in Fig. 5
indicate that the proposed method (spectral-spatial CPPCA)
gives better performance (smaller SAD) compared with other
methods, except at the lowest subrate.

VI. CONCLUSIONS

In this paper, we have considered the use of both spectral and
spatial partitioning in a system in which random projections are

6http://www.csie.ntu.edu.tw/~cjlin/libsvm
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used at a sensor device to effectuate dimensionality reduction,
while reconstruction takes place in a receiving device using
CPPCA. Experimental results evaluated the quality of recon-
struction not only in terms of SNR and spectral-angle fidelity,
but also via performance of the reconstructed data in classifica-
tion and linear-unmixing tasks. The results demonstrated that,
although CPPCA with either spectral or spatial partitioning
achieved significantly higher reconstruction quality than the
original, non-partitioned CPPCA, the combination of the two
outperformed either form of partitioning used alone and is
far better than CS reconstruction using either fixed or learned
bases. Additionally, the introduction of spectral partitioning
was seen to significantly reduce the computational complexity
of CPPCA reconstruction due to a much lower vector dimen-
sionality in each spectral partition.
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