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Reconstruction in Diffraction Ultrasound Tomography
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Abstract—We show an iterative reconstruction framework
for diffraction ultrasound tomography. The use of broad-band
illumination allows significant reduction of the number of pro-
jections compared to straight ray tomography. The proposed
algorithm makes use of forward nonuniform fast Fourier trans-
form (NUFFT) for iterative Fourier inversion. Incorporation of
total variation regularization allows the reduction of noise and
Gibbs phenomena while preserving the edges. The complexity of
the NUFFT-based reconstruction is comparable to the frequency-
domain interpolation (gridding) algorithm, whereas the recon-
struction accuracy (in sense of the 2 and the norm) is better.

Index Terms—Acoustic diffraction tomography, image recon-
struction, nonuniform fast Fourier transform (NUFFT).

I. INTRODUCTION

ULTRASOUND tomography with diffracting sources is
an important type of acoustic imaging. Since the used

wavelengths are comparable to the object feature dimensions,
wave phenomena such as diffraction become significant.
Consequently, the straight ray tomography theory is no longer
applicable.

The analog of the Fourier Slice Theorem used in straight ray
tomography is the Fourier Diffraction Theorem [1]–[5]. Using
this theorem, image reconstruction in diffraction tomography
can be considered as a problem of signal reconstruction from
nonuniform frequency samples.

Reconstruction methods used previously addressed the
problem as a straightforward approximation of the inverse
nonuniform Fourier transform (NUFT) and involved frequency
interpolation [2], which is liable to introduce significant inac-
curacies. More accurate and computationally efficient methods
[6]–[9] were proposed for forward and inverse one-dimensional
(1-D) NUFT. Fast forward NUFT algorithms can be generalized
to higher dimensions, whereas the generalization of the inverse
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Fig. 1. Acquisition of a single projection in ultrasound diffraction tomo-
graphy [2].

ones is not trivial. For this reason, we limit our work to the use
of the forward nonuniform fast Fourier transform (NUFFT).

Recently, fast and accurate approximation of the forward
nonuniform Fourier transform was introduced by Fessler and
Sutton [10]. Inverse NUFFT can be achieved iteratively in
this framework [11]. We adopt this approach for iterative
reconstruction in diffraction tomography, combining it with
total variation regularization [12]–[17] in order to suppress
noise while preserving the sharpness of edges.

Simulation studies with the Shepp–Logan phantom show that
the proposed algorithm significantly outperforms the frequency
interpolation methods.

II. PRINCIPLES OFDIFFRACTION TOMOGRAPHY

Diffraction tomography allows reconstructing the refractive
index of a scattering object by processing the data obtained
in scattering experiments [18]. In the classical configuration,
shown in Fig. 1, the object is illuminated with a plane acoustic
wave with wave number and temporal frequency

( denotes the wavelength), propagating in direc-
tion

(1)

The resulting field satisfies the reduced wave equation

(2)
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where denotes the Laplacian operator. can be written
as a superposition of theincident field , computed under
the assumption of a homogeneous medium, and thescattered
field , attributed solely to the inhomogeneities [2]. The
scattered field is measured along a line of detectors.

Equation (2) can be rewritten in an integral form, known as
the Lippmann–Schwinger integral equation

(3)

where is the appropriate Green function [19].
Reconstruction is possible by linearization of (3). The

Born approximationis obtained by assuming weak scattering
. The inverse problem in this case implies the

solution of the integral equation

(4)

which is a direct generalization of the Radon transform [19].
Under the assumption of the Born approximation, a possible

alternative is solving the inverse problem in the frequency do-
main. The Fourier Diffraction Theorem relates the Fourier trans-
form of the measured scattered field projection with the Fourier
transform of the object.

Fourier Diffraction Theorem

Given a projection of the forward scattered field
obtained by illuminating an object with a plane wave, the
following equation holds:

(5)

where

(6)

and and denote the 1-D and two-dimensional (2-D)
Fourier transforms, respectively.

In other words, the Fourier transform of the projection gives
the values of the 2-D Fourier transform of the object along a
semicircular arc in the spatial frequency domain, as depicted in
Fig. 2 [2].

Since wave phenomena obey the superposition principle, il-
luminating the object with a wave consisting of a set of fre-
quencies (referred to asbroad-band illumination), rather than a
monochromatic wave, will produce samples along a set of semi-
circular arcs with different radii. Hence, a single projection po-
tentially contains much more information about the object than
a single projection in straight ray tomography. By taking advan-
tage of this fact, one can achieve sufficient image quality with
fewer projections.

Two main reconstruction strategies in diffraction tomography
are interpolation in the frequency domain (analogous to the di-

Fig. 2. Illustration of the Fourier Diffraction Theorem.

rect Fourier inversion in straight ray tomography) and interpola-
tion in the space domain (analogous to the filtered backprojec-
tion), usually termedbackpropagation[4], [20]. However, un-
like straight ray tomography, interpolation in the space domain
is computationally extensive, and thus the majority of efficient
algorithms are based on frequency-domain interpolation.

A common method of image reconstruction in the frequency
domain is the gridding algorithm [2], [21]. The nonuniform data
is interpolated to a uniform Cartesian grid using, for example,
polynomial interpolation. Afterwards, the inverse Fourier trans-
form is efficiently computed using FFT. However, this approach
is liable to introduce inaccuracies and is sensitive to the config-
uration of the sample points.

In the next section, we introduce an iterative reconstruction
method which allows the reconstruction of the image from
nonuniform samples in the frequency domain without using
gridding.

III. NUFT

The heart of iterative image reconstruction from nonuniform
frequency samples is the forward NUFFT. To define the NUFFT
problem, we first consider a 1-D case.

Let : be a vector of nonuni-
formly distributed frequencies and :

be a vector of samples of a signal. The nonuniform
Fourier transform is defined by

(7)

In matrix notation

(8)

where ( ) is a full column rank matrix
containing discrete exponent functions in its rows

(9)



BRONSTEINet al.: RECONSTRUCTION IN DIFFRACTION ULTRASOUND TOMOGRAPHY USING NONUNIFORM FFT 1397

Fig. 3. Example of 1-D forward NUFFT usingp neighbors. Discrete Time
Fourier TransformD(�) of the signal (solid line) is sampled atqN uniform
points (dotted lines). Transform value in the nonuniform grid point� (large
dot) is approximated usingp uniform neighbors (crosses).

Fast approximation of the NUFT operator can be achieved
by projecting the signal on some oversampled uniform Fourier
basis using standard FFT, with consequent effi-
cient interpolation

(10)

where denotes the interpolation operator, which makes use
of neighboring uniform samples for approximation of each
nonuniform sample andis the oversampling factor (see Fig. 3).
The overall complexity of such an algorithm is

.
Selecting the interpolation coefficients is a problemper

se,and there are many ways of doing it (see, for example, [22]).
Recently, Fessler and Sutton [10], [11] proposed obtaining such
interpolation coefficients that minimize the maximum approx-
imation error at a given point of the nonuniform grid over all
signals with unit norm. This approach can be formulated as a

– problem

(11)

where is the nonzero part of theth row of the interpolation
matrix , and is a part of the overcomplete discrete Fourier
transform (DFT) basis , containing nearest neighbors of the
nonuniform basis element .

Substituting explicit expression for the maximum

(12)

we reduce (11) to the following least squares formulation:

(13)

which has an analytic solution

(14)

corresponding to the coefficients of the best approximation of
in (superscript denotes Hermitian transpose). In prac-

tice, the interpolation coefficients can be precomputed. Efficient
computation of the adjoint operator , crucial for it-
erative optimization algorithms, is possible as well.

Fig. 4. Frequency-domain sampling corresponding to 8 broad-band
projections (normalized spatial frequency).

IV. I TERATIVE SOLUTION OF THE INVERSEPROBLEM

A. Formulation of the Optimization Problem

A straightforward solution of the inverse problem of (8)
is a computationally extensive operation. It is given by the
Moore–Penrose pseudoinverse

(15)

However, such a solution is practically impossible whenis
large, since it requires inversion of a matrix in the 1-D
case and of a matrix in the 2-D case ( and

operations, respectively).
Alternatively, (8) can be reformulated as an optimization

problem

(16)

It is possible to add a penalty on some kind of signal irregu-
larity to the object function

(17)

where is a parameter controlling the influence of the penalty.
Such a penalty approach is usually referred to as Tikhonov reg-
ularization [17].

This problem can be solved iteratively using various large-
scale optimization techniques, which require efficient computa-
tion of the objective function and its gradient [23]. Computation
of the gradient of the cost function in (17), given by

(18)

exploits the fast forward operator, and its adjoint .
In this paper, we used the conjugate gradient (CG) method

with Fletcher–Reeves update formula and cubic line search to
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Fig. 5. (a) Original band-unlimited phantom. (b) Reconstruction by gridding. (c) Iterative least squares reconstruction. (d) Iterative reconstruction with total
variation penalty (� = 100).

solve the optimization problem (see [23] for the algorithm de-
scription).

B. Total Variation Regularization

Empirical observations show that the majority of images that
occur in nature, and particularly in medical imaging applica-
tions, belong to the class of functions of bounded total variation
(defined as the integral of the gradientnorm) [24].

The penalty term for total variation can be used in (17). For a
discrete image, the total variation is given by

(19)

where is the estimated discrete image being found during the
iterative process and , are its discrete directional deriva-
tives.

Since this function is not smooth, which can be an obstacle
for smooth optimization techniques, by adding a small positive
smoothing parameter, we finally get the smoothed total vari-
ation penalty

(20)

The gradient of the total variation penalty term is given by

(21)

where

(22)

Total variation regularization removes small oscillations re-
sulting from noise and Gibbs phenomena, without significantly
affecting the edges.

V. IMPLEMENTATION

A. Stopping Condition

Consider a vector of samples in the fre-
quency domain contaminated by additive Gaussian noise

. We assume that the noiseless data are consistent, i.e.,
there exists such an optimal imageso that .
Hence

(23)

The stopping condition of the optimization algorithm is derived
from (23). Assuming the noise variance to be known, the
algorithm should be stopped when

(24)
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B. Selection of the Regularization Parameter

The unconstrained problem (17) can be formulated as a con-
strained problem

s.t. (25)

where is the maximum allowed discrepancy between the given
and the reconstructed data. Assuming as previously that the data
is contaminated by additive Gaussian noise, and an estimate for
the noise variance , a good selection would be .

The optimal value for the regularization parameteris the re-
ciprocal of the Lagrange multiplier in the constrained problem
(25). This value can be obtained by finding the optimum
of (17) with different and selecting the value of so that

. In practice, one can find the regular-
ization parameter empirically, depending on the noise level and
the image contrast [16].

C. Complexity Analysis

For simplicity, we analyze the nonregularized version of the
NUFFT algorithm. We assume that the iterations are carried out
by the CG algorithm.

Given an image, each iteration requires the cost func-
tion and its gradient to be computed, exploiting the operators

and . Each of these operators is applied once per iteration,
hence, the complexity of each iteration is ,
where is the oversampling constant (usually about 2) andis
the number of neighbors used for interpolation (usually about
6–8).1

Assuming iterations carried out, the overall complexity is
. Practically, is small (about 5–10)

since only a few iterations are required for algorithm conver-
gence.

For comparison, the gridding method requires
operations, attributed to the 2-D inverse fast Fourier trans-

form (IFFT) computation and frequency-domain interpolation
( is a constant depending on the interpolation method, usually
about 3–6). The complexity of backpropagation is higher, about

[2], [25].
For 256 256 images, gridding would require about

1.3 10 operations and a single NUFFT iteration about
5 10 , whereas backpropagation would require about
250 10 operations. Direct Fourier inversion by computing
the pseudoinverse requires over 210 operations and is not
practical.

VI. SIMULATIONS

A. Shepp–Logan Phantom

In order to avoid forward-projection errors, we used an ana-
lytic Shepp–Logan phantom. The advantage of such a phantom
is that its Fourier transform has a simple analytical expression.

The choice of the number of projection and frequencies was
guided mainly by sampling regularity and completeness of the
nonuniform Fourier basis. Since scan time is proportional to
the number of projections, the goal was to select the minimal

1In the regularized version of the algorithm, the iteration complexity increases
about three times due to the use of linear search.

Fig. 6. Magnitude of error in the frequency domain of an image reconstructed
(a) using gridding, and (b) using NUFFT.

number of projections possible that gives sufficiently regular
coverage of the frequency domain. The number of samples
must be sufficiently large so the data is complete or overcom-
plete, i.e., for real images and for
complex ones. 64 64 images were reconstructed from eight
simulated broad-band projections. Each projection contained
ten frequencies ; (where

rad/s is the Nyquist frequency, typical for med-
ical acoustic imaging). Frequency-domain sampling is shown in
Fig. 4.

For comparison, in similar conditions, a conventional filtered
backprojection (FBP) would require about 100 straight ray pro-
jections for good reconstruction of a 6464 image [26].

B. Comparison Between Gridding and Iterative Reconstruction

The standard gridding algorithm [1] involving frequency in-
terpolation was compared to iterative reconstruction. Nonuni-
form frequency samples were interpolated on a 6464 uniform
Cartesian grid using cubic polynomial interpolation and then in-
verted by IFFT.

Fessler’s NUFFT,2 given by (10) and (14), was used as the
forward operator in iterative reconstruction carried out by the
CG algorithm. Initial image was set to zero. Sufficient image

2The MATLAB code is available from http://www.eecs.umich.edu/~fessler,
courtesy of J. Fessler.
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Fig. 7. Iterative reconstruction in presence of noise. (a), (b) Signal-to-noise ratio is 20 dB. (c), (d) signal-to-noise ratio is 10 dB. Total variation penalty (b), (d)
� = 100 and (a), (c) without penalty.

quality was obtained after eight iterations, using about three
computations of and per iteration.

Fig. 5 depicts the reconstruction results. It can be seen that
unlike iterative reconstruction, the use of gridding introduces
artifacts.

Interpolation in the frequency domain appears to be highly
influenced by the irregularity of the frequency sampling (see
Fig. 4). Since computation of the Cartesian grid points is done
by interpolating the neighbor points of the nonuniform grid,
sparse coverage of some regions of the frequency domain re-
sults in inaccurate interpolation. The consequences of this fact
can be seen in Fig. 6, which depicts the frequency-domain error
magnitude.

Iterative reconstruction appeared to be more accurate than
gridding. Root-mean-square (rms) error in the frequency
domain of the iterative algorithm (with respect to the analytic
phantom) was about five times lower compared to gridding.

C. Influence of Total Variation Regularization

Tests were performed to study the influence of total varia-
tion regularization. Fig. 5 shows the results of the reconstruc-
tion without the regularizing term [Fig. 5(c)] and with total
variation regularization [Fig. 5(d)]. In the image reconstructed
without regularization, Gibbs phenomena are notable. These ef-
fects are inevitable, since the phantom has an infinite support in

the frequency domain, whereas the image is reconstructed from
band-limited sampling.

When introducing the total variation penalty term, small ar-
tifacts of oscillatory nature are first to disappear. However, a
too-strong penalty is liable to affect small features in the image.

The influence of total variation regularization is especially
significant in the presence of noise. Fig. 7 shows images re-
constructed from data contaminated by additive Gaussian noise
with different variance. One can observe that the total varia-
tion penalty improves the image quality, while preserving the
edges.

VII. CONCLUSION

We showed an iterative reconstruction algorithm for ultra-
sound tomography with diffracting sources based on–
NUFFT. The presented method is capable of taking advantage
of broad-band illumination and requires fewer projections for
image reconstruction. It appeared significantly more accurate
compared to the common gridding method (in sense of the
and the norm of the frequency-domain error magnitude).
On the other hand, the asymptotic complexity of the NUFFT-
based reconstruction is similar to gridding (
operations).

Total variation regularization has an effect of edge-preserving
denosing. It allows suppression of noise and Gibbs phenomena
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without significantly affecting the edges. Simulation results
showed that incorporation of the total variation penalty im-
proves the reconstruction quality in presence of noise.

Possible developments of the iterative approach can be gen-
eralization of the regularizer for other classes of signals, incor-
poration of different NUFFT implementations, and nonsmooth
optimization techniques for efficient minimization of functions
with nonsmooth penalty terms.
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