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Abstract—The labeled stochastic block model is a random
graph model representing networks with community structure
and interactions of multiple types. In its simplest form, it consists
of two communities of approximately equal size, and the edges
are drawn and labeled at random with probability depending on
whether their two endpoints belong to the same community or
not.

It has been conjectured in [1] that this model exhibits a
phase transition: reconstruction (i.e. identification of a partition
positively correlated with the “true partition” into the underlying
communities) would be feasible if and only if a model parameter
exceeds a threshold.

We prove one half of this conjecture, i.e., reconstruction is
impossible when below the threshold. In the converse direction,
we introduce a suitably weighted graph. We show that when
above the threshold by a specific constant, reconstruction is
achieved by (1) minimum bisection, and (2) a spectral method
combined with removal of nodes of high degree.

I. INTRODUCTION

A. Motivation

Community detection aims to identify underlying communi-
ties of similar characteristics in an overall population from the
observation of pairwise interactions between individuals [2].
The stochastic block model, also known as planted partition
model, is a popular random graph model for analyzing the
community detection problem [3], [4], in which pairwise
interactions are binary: an edge is either present or absent
between two individuals. In its simplest form, the stochastic
block model consists of two communities of approximately
equal size, where the within-community edge is present at
random with probability p; while the across-community edge
is present with probability q. If p > q, it corresponds to assor-
tative communities where interactions are more likely within
rather than across communities; while p < q corresponds to
disassortative communities.

In practice, interactions can be of various types and these
types reveal more information on the underlying communities
than the mere existence of the interaction itself. For example,
in recommender systems, interactions between users and items
come with user ratings. Such ratings contain far more infor-
mation than the interaction itself to characterize the user and
item types. Similarly, protein-protein chemical interactions in
biological networks can be exothermic and endothermic; email
exchanges in a club may be formal or informal; friendship in
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social networks may be strong or weak. The labeled stochastic
block model was recently proposed in [1] to capture rich
interaction types. In this model interaction types are described
by labels drawn from an arbitrary collection. In particular, for
the simple two communities case, the within-community edge
is labeled at random with distribution µ; while the across-
community edge is labeled with a different distribution ν.
In this context an important question is how to leverage the
labeling information for detecting underlying communities.

B. Information-Scarce Regime

In this paper, we focus on the sparse labeled stochastic block
model in which every node has a limited average degree,
i.e., p, q = O(1/n), where n is the number of nodes. It
corresponds to the information-scarce regime where only O(n)
edges and labels are observed in total1. This regime is of
practical interest, arising in several contexts. For example, in
recommender systems, users only give ratings to few items; in
biological networks, only few protein-protein interactions are
observed due to cost constraints; in social networks, a person
only has a limited number of friends.

For the stochastic block model in this information-scarce
regime, there are Θ(n) isolated nodes, as in Erdős-Rényi ran-
dom graphs with bounded average degree. For isolated nodes,
it is impossible to determine their community membership
and thus exact reconstruction of communities is impossible.
Therefore, we resort to finding a partition into communities
positively correlated to the true community partition (see
Definition 1 below).

C. Main Results

Focusing on the two communities scenario, we show that a
positively correlated reconstruction is fundamentally impossi-
ble when below a threshold. This establishes one half of the
conjecture in [1]. In the positive direction, we establish the
following results. We introduce a graph weighted by a suitable
function of observed labels, on which we show that:

(1) Minimum bisection gives a positively correlated partition
when above the threshold by a factor of 32 ln 2.

(2) A spectral method combined with removal of nodes of
high degree gives a positively correlated partition when above
the threshold by a constant factor.

Due to space constraints, we only provide proof sketches in
the Appendix; detailed proofs are available in [5].

1We also provide results for p, q = O(polylog(n)/n) in Theorem 3.



D. Related Work
For the stochastic block model, most previous work focuses

on the “dense” regime with an average degree diverging as
the size of the graph n grows and “exact” reconstruction,
such as [6], [7], [8]. McSherry [9] showed that the spectral
method works as long as p−q ≥ Ω(

√
p log n/n) with average

degree as low as Ω(log6 n). Massoulié and Tomozei [10]
reduced this lower bound on the average degree to Ω(log n).
More recently, it was shown in [11] that a matrix completion
approach works when p − q ≥ Ω(r

√
p/n log2 n) where the

number of communities r could scale with n.
For the “sparse” regime with bounded average degrees, a

sharp phase transition threshold for reconstruction (as defined
in Definition 1) is conjectured in [4] by analyzing the belief
propagation algorithm. The converse part of the conjecture
was rigorously proved in [12]. In the converse direction, it
is shown in [13] that a variant of spectral method gives a
positively correlated partition when above the threshold by an
unknown constant factor.

The labeled stochastic block was first proposed and studied
in [1] and a new reconstruction threshold that incorporates
the extra labeling information was conjectured. Simulations
further indicate that the belief propagation algorithm works
when above the threshold, but reconstruction algorithms that
provably work are still unknown.

II. MODEL AND NOTATION

This section formally defines the labeled stochastic block
model with two symmetric communities and introduces the
key notations and definitions used in the paper.

The labeled stochastic block model G(n, p, q, µ, ν) is a
random graph with n nodes of {±1} types and {` ∈ L}-
labeled edges, where L is a finite set of labels. To generate a
particular realization (G,L, σ), first assign type σu ∈ {±1} to
each node u uniformly and independently at random. Then, for
every node pair (u, v), independently of everything else, draw
an edge between u and v with probability p if σu = σv and
with probability q otherwise. Finally, every edge e = (u, v)
is labeled as ` ∈ L independently at random with probability
µ(`) if σu = σv and with probability ν(`) otherwise.

When µ = ν, it reduces to the classical stochastic block
model without labels. This paper focuses on the sparse case
where p = a/n and q = b/n for two fixed constants a and
b, and the goal is to reconstruct the true underlying types of
nodes σ by observing the graph structure G and the labels on
edges L.

It is known that in the sparse graph, there are Θ(n) isolated
nodes whose types clearly cannot be recovered accurately.
Therefore, our goal is to reconstruct a type assignment which
is positively correlated to the true type assignment. More
formally, we adopt the following definition.

Definition 1. A type assignment σ̂ is said to be correlated
with the true type assignment σ if a.a.s.

Q(σ, σ̂) :=
1

2
− 1

n
min{d(σ, σ̂), d(σ,−σ̂)} > 0, (1)

where d is the Hamming distance. Q is called the Overlap.

The shorthand a.a.s. denotes asymptotically almost surely.
A sequence of events An holds a.a.s. if the probability of An
converges to 1 as n→∞.

Define τ as

τ =
a+ b

2

∑
`∈L

aµ(`) + bν(`)

a+ b

(
aµ(`)− bν(`)

aµ(`) + bν(`)

)2

. (2)

It was conjectured in [1] that τ is the threshold for positively
correlated reconstruction.

Conjecture 1. (i) If τ > 1, then it is possible to find a type
assignment correlated with the true assignement a.a.s.

(ii) If τ < 1, then it is not possible to find a type assignment
correlated with the true assignement a.a.s.

In this paper, we prove (ii) and propose a simple spectral
algorithm able to find a type assignment correlated with the
true assignment for τ big enough.

III. MINIMUM BISECTION

To recover the community partition, a natural way is via
maximum likelihood estimation, where the log-likelihood can
be written as:

logP(G,L|σ) ∝
∑

(u,v)∈E(G)

log
aµ(Luv)

bν(Luv)
σuσv

+ log

(
1− a/n
1− b/n

) ∑
(u,v)/∈E(G)

σuσv

Using the constraint
∑
u σu = 0, maximum log likelihood

estimation reduces to

max
σ

∑
(u,v)∈E(G)

(
log

aµ(Luv)

bν(Luv)
+ log

1− a/n
1− b/n

)
σuσv

s.t.
∑
u

σu = 0, σu ∈ {±1},

If we ignore the o(n) term in the sum, this is equivalent to
the minimum bisection on the weighted graph with a specific
weight function w(`) = log aµ(`)

bν(`) . For a general weighing
function w : L → R, the minimum bisection finds the balanced
bipartite subgraph in G with the minimum weighted cut, i.e.,

min
σ

∑
(u,v):σu 6=σv

Wuv

s.t.
∑
u

σu = 0, σu ∈ {±1}, (3)

where Wuv = Auvw(Luv) and A is the adjacency matrix of
G.

Theorem 1. Assume the technical condition:∑
` aµ(`)w2(`),

∑
` bν(`)w2(`) > 8 ln 2. Then if

[
∑
`(aµ(`)− bν(`))w(`)]2∑
`(aµ(`) + bν(`))w2(`)

> 64 ln 2, (4)



solutions of the minimum bisection (3) are positively corre-
lated to the true type assignment σ? a.a.s. Moreover, the left
hand side of (4) is maximized when w(`) = aµ(`)−bν(`)

aµ(`)+bν(`) , in
which case (4) reduces to τ > 32 ln 2.

IV. SPECTRAL METHOD

The minimum bisection is NP-hard [14]. In this section,
we present a simple spectral algorithm based on the matrix
W introduced above (see [15] for a similar approach in
the unlabeled case). We show that this algorithm finds an
assignment correlated with the true assignment provided τ is
large enough.

First note that we have E[W |σ] = α
n11

> + β
nσσ

> − α+β
n I

with

α =
1

2

∑
`

w(`)(aµ(`) + bν(`)),

β =
1

2

∑
`

w(`)(aµ(`)− bν(`)). (5)

The term α+β
n I is irrelevant to the main results (thanks to

Weyl’s perturbation theorem) and neglected for simplicity. Let
D = W− α

n11
> and then E[D|σ] = β

nσσ
> has rank one with

singular value β. Hence, it makes sense to define D̂ as the
best rank-1 approximation of the matrix D. In other words,
if D =

∑
i vixiy

>
i is the singular value decomposition of D

with singular values v1 ≥ v2 ≥ . . . , we define D̂ = v1x1y
>
1 .

Then if the matrix D is “close” to its mean E[D|σ], we
expect v1 to be “close” to β and sign(x1) to be correlated
with σ, where sign(x) gives the sign of x componentwise.
Note that D is very similar to the modularity matrix defined
in [16] and thus dividing the vertices into two communities
according to sign(x1) can be seen as an algorithm to maximize
the modularity. Unfortunately, in the sparse stochastic block
model, there are vertices of degree Ω( logn

log logn ) and thus the

largest singular value of W could reach Ω(
√

logn
log logn ) which

is much higher than β.
In order to take care of this issue, we begin with a

preliminary step to “clean” the spectrum of W : we remove
all vertices in the graph with degree larger than 3

2
a+b
2 . To

summarize, for a given weight function w(`), our algorithm
Spectral− Reconstruction has the following structure:

1) Remove vertices with degree larger than 3
2
a+b
2 and

assign a random type to these vertices.
2) Define W ′ by setting to zero the rows and columns of

W corresponding to vertices removed.
3) Let x̂ be the left-singular vector associated with the

largest singular value of D′ = W ′ − α
n11

>. Output
sign(x̂) for the types of the remaining vertices.

Observe that step 3) can be seen as a relaxation of the
minimum bisection (3) by replacing the integer constraint
with the unit-norm constraint and relaxing the hard constraint∑
u σu = 0 to be a regularized term in the objective function.

Spectral− Reconstruction needs estimates of α and a + b,
which can be well approximated by 1

n1
>W1 and 2

n1
>A1
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Figure 1. The overlap Q against ε from 0.05 to 0.5.

respectively. To simplify the analysis, we will assume that the
exact value of α and a+ b is known.

Theorem 2. Assume |w(`)| ≤ 1 for all `. There exists
a universal constant C (i.e. not depending on a, b, µ or
ν) such that if β > C

√
a+ b, where β is defined in (5)

then Spectral− Reconstruction outputs a type assignment
correlated with the true assignment a.a.s. In the particular
case, where w(`) = aµ(`)−bν(`)

aµ(`)+bν(`) , the condition β > C
√
a+ b

reduces to τ > C ′
√
a+ b.

Compared to point (i) in the Conjecture 1, our result does
not give the right order of magnitude when a and b are large.
Indeed, we are able to improve it if we allow a and b to grow
with n.

Theorem 3. Assume that min(a, b) = Ω(log6 n). If

[
∑
`(aµ(`)− bν(`))w(`)]2∑
`(aµ(`) + bν(`))w2(`)

> 128, (6)

then Spectral− Reconstruction outputs a type assignment
correlated with the true assignment a.a.s. Moreover, the left
hand side of (6) is maximized when w(`) = aµ(`)−bν(`)

aµ(`)+bν(`) , in
which case (6) reduces to τ > 64. With this choice of w(`),
as soon as τ → ∞, Spectral− Reconstruction outputs the
true assignment for all vertices except o(n) a.a.s.

Note that in the regime min(a, b) = Ω(log6 n), the de-
grees are very concentrated and step 1) of the algorithm can
be removed without harm. The simulation results, depicted
in Fig. 1, further indicate that Spectral− Reconstruction
leaving out step 1) outputs a positively correlated assignment
when above the threshold. In the simulation, we assume for
simplicity only two labels: r and b, and define µ(r) = 0.5 + ε
and ν(r) = 0.5 − ε. We generate the graph from the labeled
stochastic block model with n = 1000 nodes for various a, b, ε.
Fix a, b, we plot the overlap Q against ε and indicate the
threshold τ = 1 as a vertical dash line. All plotted values are
averages over 100 trials.



Note that our algorithm is most efficient when the param-
eters (a, b, µ and ν) of the model are known as the optimal
weight function depends on these parameters. In the case
where the labels are uninformative, i.e. µ = ν, our algorithm
is very simple, does not require to know the values a and b
and is (in the range of Theorem 3) the algorithm with the best
performance guarantees (see [11]).

V. CONVERSE RESULT

This section proves part (ii) of Conjecture 1. In particular,
we show that when τ < 1, asymptotically it is impossible
to tell whether any two nodes are more likely to belong
to the same community. Since reconstructing a positively
correlated type assignment is harder than telling whether any
two nodes are more likely to belong to the same community, it
further implies that reconstructing a positively correlated type
assignment is fundamentally impossible.

Theorem 4. If τ < 1, then for any fixed vertices ρ and v,

Pn(σρ = +1|G,L, σv = +1)→ 1/2 a.a.s. (7)

Theorem 4 is related to the Ising spin model in the statistical
physics [17], [18], and it essentially says that there is no long
range correlation in the type assignment when τ < 1. The
main idea in the proof of Theorem 4 is borrowed from [12]
and works as follows: (1) pick any two fixed vertices ρ, v and
consider the local neighborhood of ρ up to distance O(log(n)).
The vertex v lies outside of the local neighborhood of ρ a.a.s..
(2) conditional on the type assignment at the boundary of the
local neighborhood, σρ is asymptotically independent with σv .
(3) the local neighborhood of ρ looks like a Markov process on
a labeled Galton-Watson tree rooted at ρ. (4) For the Markov
process on the labeled Galton-Watson tree, the types of leaves
provide no information about the type of the root ρ when the
depth of tree goes to infinity.

VI. CONCLUSION

Our results show that when τ < 1 it is fundamentally
impossible to give a positively correlated reconstruction; when
τ > 1, the labeling information can be effectively exploited
through the suitably weighted graph. An interesting future
work is to prove the positive part of Conjecture 1.
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APPENDIX

A. Proof of Theorem 1

Let m(σ) = |{u : σu = +1, σ?u = −1}| and ε > 0 be
an arbitrarily small constant. To prove the theorem, by the

definition of positively correlated reconstruction, it suffices to
show that for all σ with n

4 (1− ε) ≤ m(σ) ≤ n
4 ,∑

(u,v):σu 6=σv,
σ?
u=σ

?
v

Wuv −
∑

(u,v):σu=σv,
σ?
u 6=σ

?
v

Wuv := Y1(σ)− Y2(σ) > 0.

Observe that Y1(σ) is a sum of 2m(n/2 −m) i.i.d. random
variables whose value is w(`) with probability a

nµ(`); Y2(σ)
is a sum of 2m(n/2−m) i.i.d. random variables whose value
is w(`) with probability b

nν(`). Using the Chernoff bound
and an union bound, we can show that a.a.s. for all σ with
n
4 (1− ε) ≤ m(σ) ≤ n

4 , Y1(σ)− Y2(σ) > 0, if (4) is satisfied.
By Cauchy-Schwartz inequality,(∑

`

(aµ(`)− bν(`))w(`)

)2

≤ 2τ
∑
`

(aµ(`) + bν(`))w2(`)

with equality achieved when w(`) = aµ(`)−bν(`)
aµ(`)+bν(`) . This com-

pletes the proof.

B. Proof of Theorem 2

Let C be a universal constant whose numerical value may
change in the proof. Let ‖X‖ and ‖X‖F denote the spectral
norm and Frobenius norm of a matrix X respectively.

A simple calculation shows:

Lemma 1. For any x ∈ {−1,+1}n and y ∈ Rn with ‖y‖ = 1,
we have

d(x, sign(y)) ≤ n‖ x√
n
− y‖2.

Applying this lemma with σ and x̂ gives:

1

n
d(σ,±sign(x̂)) ≤ ‖ σ√

n
± x̂‖2.

Lemma 2. Let M = αxx> and M ′ = βyy>, with α, β ∈ R,
‖x‖ = ‖y‖ = 1 and x>y ≥ 0. Then we have

‖x− y‖ ≤
√

2

max{|α|, |β|}
‖M −M ′‖.

Define D̂′ as the best rank-1 approximation of the matrix
D′. Applying this lemma with D̂′ and E[D|σ] gives:

min{‖ σ√
n
− x̂‖, ‖ σ√

n
+ x̂‖} ≤

√
2

β
‖D̂′ − E[D|σ]‖.

Hence, we have

1

n
min{d(σ, sign(x̂), d(σ,−sign(x̂)} ≤ 2

β2
‖D̂′ − E[D|σ]‖2. (8)

Also, a simple derivation yields

‖D̂′ − E[D|σ]‖ ≤ 2‖W ′ − E[W |σ]‖. (9)

The following lemma bounds the quantity ‖W ′−E[W |σ]‖.
Its proof is similar to the proof of Lemma 3.2 in [19].



Lemma 3. For any σ ∈ {±1}n, there exists an universal
constant C such that

‖W ′ − E[W |σ]‖ ≤ C
√
a+ b, a.a.s. (10)

Combining this lemma with (8) and (9), we get

1

n
min{d(σ, sign(x̂), d(σ,−sign(x̂)} ≤ C a+ b

β2
,

and the theorem follows.

C. Proof of Theorem 3

The proof follows the same steps as for Theorem 2, except
that we are able to strengthen Lemma 3 thanks to a result of
Vu [20]. Note that the variance of the elements of W is upper
bounded by 1

n

∑
` w

2(`) (aµ(`) + bν(`)) so that by Theorem
1.4 in [20], we get

Lemma 4. Under the conditions of Theorem 3, we have

‖W − E[W |σ]‖ ≤ 2

√∑
`

w2(`) (aµ(`) + bν(`)) a.a.s.

D. Proof of Theorem 4

Consider a Galton-Watson tree T with Poisson offspring
distribution with mean a+b

2 . The type of the root ρ is chosen
from {±1} uniformly at random. Each child has the same type
as its parent with probability a

a+b and different type otherwise.
Every edge (u, v) is labeled at random with distribution µ if
σu = σv and ν otherwise. Let TR denote the Galton-Watson
tree T up to depth R and ∂TR denote the set of leaves of TR.
Let GR denote the induced subgraph of G up to distance R
from ρ and ∂GR be the set of nodes at distance R from ρ.

The following lemma similar to Proposition 4.2 in [12]
establishes a coupling between the local neighborhood of ρ
and the labeled Galton-Watson tree rooted at ρ.

Lemma 5. Let R = R(n) = b logn
10 log(2(a+b))c, then there exists

a coupling such that a.a.s.

(GR, LGR
, σGR

) = (TR, LTR
, σTR

),

where LGR
and σGR

denote the labels and types on the
subgraph GR respectively.

To ease notation, we omit the shorthand a.a.s. in the
sequel. To prove Theorem 4, it suffices to show that
Var(σρ|G,L, σv) → 1. By the monotonicity property
of conditional variance, it further reduces to show that
Var(σρ|G,L, σv, σ∂GR

) → 1. Let R be as in Lemma 5, then
GR = o(

√
n) and thus v /∈ GR. Lemma 4.7 in [12] shows

that σρ is asymptotically independent with σv conditionally
on σ∂GR

. Hence,

Var(σρ|G,L, σv, σ∂GR
)→ Var(σρ|G,L, σ∂GR

).

Also, note that

Var(σρ|G,L, σ∂GR
) = Var(σρ|GR, LGR

, σ∂GR
).

Lemma 5 implies that

Var(σρ|GR, LGR
, σ∂GR

)→ Var(σρ|TR, LTR
, σ∂TR

).

For labeled Galton-Watson tree, it was shown in [1] that if
τ < 1, the types of the leaves provide no information about
the type of root when the depth R→∞, i.e.,

P(σρ = +1|T, L, σ∂TR
)→ 1

2
.

Hence, Var(σρ|TR, LTR
, σ∂TR

)→ 1 and the theorem follows.
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[5] M. Lelarge, L. Massoulié, and J. Xu, “Reconstruction in the labelled
stochastic block model,” May. 2013, Preprint.

[6] M. Dyer and A. Frieze, “The solution of some random NP-hard problems
in polynomial expected time,” Journal of Algorithms, vol. 10, no. 4, pp.
451 – 489, 1989.

[7] M. Jerrum and G. B. Sorkin, “The metropolis algorithm for graph
bisection,” Discrete Applied Mathematics, vol. 82, no. 1-3, pp. 155 –
175, 1998.

[8] A. Condon and R. M. Karp, “Algorithms for graph partitioning on the
planted partition model,” Random Struct. Algorithms, vol. 18, no. 2, pp.
116–140, Mar 2001.

[9] F. McSherry, “Spectral partitioning of random graphs,” in 42nd IEEE
Symposium on Foundations of Computer Science, Oct. 2001, pp. 529 –
537.
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