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Abstract

Anabaena variabilis is a diazotrophic filamentous cyanobacterium that differentiates to het-

erocysts and produces hydrogen as a byproduct. Study on metabolic interactions of the two

differentiated cells provides a better understanding of its metabolism especially for improv-

ing hydrogen production. To this end, a genome-scale metabolic model for Anabaena varia-

bilis ATCC 29413, iAM957, was reconstructed and evaluated in this research. Then, the

model and transcriptomic data of the vegetative and heterocyst cells were applied to con-

struct a regulated two-cell metabolic model. The regulated model improved prediction for

biomass in high radiation levels. The regulated model predicts that heterocysts provide an

oxygen-free environment and then, this model was used to find strategies for improving

hydrogen production in heterocysts. The predictions indicate that the removal of uptake

hydrogenase improves hydrogen production which is consistent with previous empirical

research. Furthermore, the regulated model proposed activation of some reactions to pro-

vide redox cofactors which are required for improving hydrogen production up to 60% by

bidirectional hydrogenase.

Introduction

Cyanobacteria are unique prokaryotes because their oxygenic photosynthesis changed anoxic

biosphere to a more oxygen-rich environment about 2.4 billion years ago [1]. Plastids in plants

and algae are originated from cyanobacteria through the evolutionary event of endosymbiosis

[2] in which they do photosynthesis like higher plants. The metabolic versatility and flexibility

of cyanobacteria enabled them to grow in a wide range of habitats such as freshwaters, ponds,

wetlands and harsh environments including hot springs, brackish waters, deserts, and cold

regions [3, 4]. Cyanobacteria play a key role in providing the primary elements for life includ-

ing organic carbon, oxygen, and nitrogen [5]. Cyanobacteria need sunlight, water, carbon

dioxide, and some minerals to grow, and their photosynthetic efficiency is higher than other

oxygenic photosynthetic organisms like algae and plants [6, 7]. Ease of genetic manipulation,
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uncomplicated metabolism, and simple cultivation attracted great attention to cyanobacteria

as a producer of the third generation of biofuels [8–11] and high-value products [12, 13].

Genotypically and phenotypically related different cell types with dependent growth have

complicated life systems [14]. Filamentous cyanobacteria of the order Nostacales have a multi-

cellular metabolically interdependent system [15]. Genus Anabaena in this order, are filamen-

tous cyanobacteria that consist of hundreds of photosynthetic vegetative cells, arranged in an

unbranched and uniseriate filament [16, 17]. In the absence of nitrate or ammonia in the

growth media, vegetative cells undergo heterocyst differentiation enabling nitrogen fixation

[16, 18–20]. In the filaments, combined nitrogen depletion stimulates gene expression, and

heterocyst cells develop along the filament at the semiregular pattern, nearly 5–10% of the cells

[17, 21]. The nitrogenase enzyme which is responsible for the fixation of molecular nitrogen is

oxygen labile and the produced oxygen during photosynthesis will damage this enzyme irre-

versibly [22]. Heterocysts are characterized by having a thick cell wall that limits the entrance

of oxygen, deactivated O2-producing photosystem II, and a high respiration rate that scavenges

the remaining oxygen [23–25]. Since Ribulose 1,5-bisphosphate (RuBP) carboxylase, a key

enzyme in fixing carbon dioxide is absent in the heterocysts, sucrose is transported from vege-

tative cells to heterocysts as the dominant form of carbon [26, 27]. In return, fixed nitrogen in

heterocysts is transported to vegetative cells as amino acids and hence, the entire filament will

grow by the intercellular exchange of metabolites [24, 28].

Study on heterocysts is an interesting subject of cell differentiation [25] and simultaneous

metabolic modeling of the two cells. Investigation of the effect of intercellular interactions pro-

vides a better understanding of differentiation. Genome-scale metabolic models are built

based on genomic sequenced data [29]. The constraint-based modeling approaches such as

flux balance analysis (FBA) [30, 31] are applicable to predict multicellular phenotypes quanti-

tatively. In recent years, many cyanobacteria metabolic models have been developed and most

of them were reconstructed for the unicellular cyanobacteria such as Synechocystis sp. PCC

6803 [32–35]. Recently, Malatinszky et al. [36] reconstructed a genome-scale metabolic model

for the cyanobacterium Anabaena sp. PCC 7120, a heterocyst forming and diazotrophic cya-

nobacterium. They used FBA to study the effect of intercellular exchange of metabolites

between heterocysts and vegetative cells on the optimal growth rate.

Even though genus Anabena has garnered interest for its biohydrogen production during

nitrogen fixation [37–39], its metabolic models have not been used to study biohydrogen pro-

duction. Anabaena variabilis ATCC 29413 (hereafter A. variabilis) has one of the highest

hydrogen production rates in cyanobacteria and has been popular candidate for studying bio-

hydrogen production [40, 41]. Therefore, a curated genome-scale metabolic model for A. var-

iabilis ATCC 29413 (named iAM957) was reconstructed in this research for the first time to

study the metabolism of biohydrogen production. The model and gene expression data for

vegetative and heterocyst cells of A. variabilis ATCC 29413 [42] were integrated using TRFBA

[43] to develop a regulated two-cell metabolic model. One of the major obstacles for sustain-

able hydrogen production in N2-fixing cyanobacteria is the irreversible inhibition of the three

enzymes involved in H2 production (nitrogenase, uptake hup-hydrogenase, and bidirectional

Hox-hydrogenase) by oxygen [44] that was studied using the model.

The model was exploited to study metabolic interactions between the two differentiated

cells and to find strategies for improvement of hydrogen production. The possibility of provid-

ing a condition without oxygen production and consumption in the metabolism of vegetative

and heterocyst cells was investigated using the two-cell model to determine which cell is more

suitable for H2 production. Then, the model was applied to determine metabolic changes

required for redirecting the electron flow to enhance H2 production under suboptimal growth

conditions.

A genome-scale metabolic network reconstruction of Anabaena variabilis
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Material andmethods

Reconstruction of a genome-scale metabolic model

The metabolic network of A. variabilis ATCC 29413 (iAM957) was reconstructed based on the

protocol presented by Thiele and Palsson [45]. The genome annotation and data from Kegg

[46], BioCyc [47] and CyanoBase (a specific database for cyanobacteria) [48] were used. A

draft network was generated manually and then each reaction was created by using the infor-

mation available for A. variabilis or other cyanobacteria in literature, biochemical databases,

and biochemistry textbooks. Mass and charge balances were carried out on each reaction.

BiGG [49], Brenda [50], and Uniprot [51] databases were extensively used in the refinement

step of the network. Subsequently, transport reactions were added to the network from

genome annotation as well as physiological information in the literature. A confidence score

was assigned to each reaction in the network based on the available evidence for its presence

[45]. Reactions, metabolites and 160 reference papers used for extracting reactions, were pre-

sented as an excel file in S1 File.

Calculations were carried out in MATLAB software by the use of COBRA toolbox [52] and

the glpk (GNU Linear Programming Kit) package was applied to solve Linear Programming

problems.

Generation of the biomass objective function (BOF)

The growth rate of A. variabilismetabolic model was determined by measuring the biomass

formation rate and biomass objective function (BOF) was defined for this purpose. The bio-

mass reaction consists of proteins, lipids, DNA, RNA, cell wall components, soluble metabo-

lites, inorganic ions, and pigments. The macromolecular composition of the biomass of A.

variabilis [53] (in weight percent) is 48.3 protein, 24.53 carbohydrates, 11.6 lipids, 9.1 RNA,

2.27 DNA, and 4.2 ash [53]. Amino acids are the major constituents of the biomass formula,

but there is no available experimental data for them. Therefore, the percentage of amino acids

was estimated from the genome information according to the method presented in [45]. Gly-

colipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoqui-

novosyldiacylglycerol (SQDG), and the phospholipid phosphatidylglycerol (PG) are major

lipids of A. variabilis [54]. The relative fractions of fatty acids were obtained from experimental

work of Naoki et al. [54] for this cyanobacterium. The molar percentage of nucleic acids in

DNA and RNA was estimated using the nucleotide sequence of A. variabilis [45]. Carbohy-

drates in biomass composition are glycogen, peptidoglycan, and lipopolysaccharides (LPS).

Glycogen is the major carbohydrate in biomass and in carbon starvation conditions, serves as

a carbon source for growth. Its fraction in biomass was obtained from Ersnt et al. [55] and the

amount of peptidoglycan and lipopolysaccharides was taken from metabolic model of Syne-

chocystis sp. PCC 6803 [33]. Chlorophyll a [56], carotenoids [56, 57], and tocopherols [58] are

considered as pigments of A. variabilis which chlorophyll a has the most portion of pigments

in biomass formula. Since, growth-associated ATP maintenance reaction (GAM) and non-

GAM reaction (NGAM) for biomass production were not measured experimentally for this

organism, the data for Synechocystis sp. PCC 6803 model [33] in three auto, hetero, and mixo-

trophic conditions were used. A detailed procedure for the biomass reaction formula is avail-

able in S2 File.

In silico simulations

Three metabolic models including single-cell, two-cell, and regulated two-cell models were

constructed in this research according to the following sections. The mat-files of the single-
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cell, two-cell, and regulated two-cell models for implementation in MATLAB are presented in

S3 File.

Single-cell model. The single-cell model was used to simulate the growth of vegetative

cells on nitrate as a combined nitrogen source. In the presence of nitrate, heterocyst differenti-

ation does not occur, and hence, the reconstructed metabolic model as a single-cell model was

applied to predict the growth rate using FBA. This method expresses a metabolic model as a

linear programming problem, as in Eq (1), and defines an objective function (Z).

Max Z ¼ cv

Such that S:v ¼ b

vmin � v � vmax

ð1Þ

where c is the vector of the objective function coefficients and S is an m×n matrix with

rank�m. m = 921 is the number of equations derived from the metabolic model using the

mass balance for each metabolite and n = 983 is the number of unknown reaction fluxes. b is

the right-hand side vector determined by known reaction fluxes, and vmin and vmax are the

lower and upper bounds of the variable fluxes, respectively. Upper and lower bounds of all

intracellular reversible reactions were set to 1000 and -1000 mmol/gDCW/h, respectively.

Fluxes were limited between 0 and 1000 mmol/gDCW/h for all intracellular irreversible reac-

tions. Upper and lower bounds of all exchange reactions were set to 1000 mmol/gDCW/h and

zero respectively. Lower bound of exchange reactions for H+, H2O, K, SO4, Pi, and inorganic

ions was set to -1000 mmol/gDCW/h and lower bound of exchange reactions for HCO3, NO3,

photon was set to -10 mmol/gDCW/h. Maximum uptake rate of each carbon source was deter-

mined according to the method presented in [36].

The biomass reaction was used as the objective function to be maximized using FBA and

the single-cell model was compared with the metabolic model of Anabaena sp. PCC 7120 [36]

for prediction of growth on different carbon sources. So, according to the method presented in

[36], mixotrophic growth rate for each carbon source was calculated and divided by autotro-

phic growth rate on bicarbonate. Correlation between the predicted relative growth rates

and experimental values for the two models was determined using the Pearson correlation

coefficient.

Two-cell model. The two-cell model was constructed to compare its growth predictions

under autotrophic and diazotrophic conditions with those predicted by the regulated two-cell

model and predicted by the previous two-cell model [36]. Upper and lower bounds of all intra-

cellular reactions for the heterocyst and vegetative metabolic models were the same as those

for the single-cell model, except those presented in Table A in S4 File. As nitrogenase is inhib-

ited irreversibly by oxygen and concentration of oxygen in vegetative cells is high [22], it was

removed from the metabolic model of the vegetative cell. Reactions RBCh, RBPC, HCO3E,

GLMS, and PSII are only present in vegetative cells according to the references presented in

Table A in S4 File). Oxygen evolving photosystem II (PSII) is inactivated in heterocyst [25]

because nitrogenase is oxygen-sensitive and in the presence of O2 will be deactivated irrevers-

ibly. Besides, the absence of the key enzyme of the reductive pentose phosphate pathway,

ribulose 1,5-bisphosphate carboxylase (RBCh and RBPC), in heterocyst has been reported in

the literature before [26, 27]. Presence of glutamine-2-oxoglutarate aminotransferase (Fd-

GOGAT) which is the producer of glutamate from 2-oxoglutarate and glutamine in hetero-

cysts of A. variabilis was doubtful before [59], but later it was clearly concluded that heterocysts

lack this enzyme [60].

Since ribulose 1,5-bisphosphate carboxylase is absent in heterocysts of A. variabilis, fixed

carbon in the form of sucrose transfers from nearby vegetative to heterocyst cells as carbon

A genome-scale metabolic network reconstruction of Anabaena variabilis
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source. In return, heterocysts provide the nitrogen source needed for the metabolism of vege-

tative cells. Glutamate transports from vegetative cells to heterocysts and the fixed nitrogen in

the form of glutamine with an additional nitrogen atom than glutamate with the same carbon

skeleton shuttles back to vegetative cells as the nitrogen source for growth [61]. Hence, the

entire filament can grow by incorporating fixed nitrogen provided in heterocysts. The

exchange of these three metabolites (glutamine, glutamate, and sucrose) between the two cell

types happens through a continuous periplasm [19, 62].

Upper and lower bounds of all exchange reactions for the two-cell model were the same as

those for the single-cell model, except for HCO3, N2, NO3, and photon. Uptake of HCO3 was

only considered for vegetative cells and consumption of N2 was only considered for hetero-

cysts. To simulate the diazotrophic condition, uptake of NO3 was limited to zero. Considering

both vegetative and heterocyst cells can uptake photon, Eq 2 was added to the model. It should

be mentioned that a slack variable was added to the right-hand side of Eq 2 to transform the

inequality constraint into equality.

vp; Vþvp; H � vp; Max ð2Þ

vp,max indicates the maximum uptake rate of photon, and vp,V and vp,H are photon uptake rates

of vegetative cells and heterocysts, respectively. The maximum uptake rates of HCO3 and pho-

ton were set to experimental values reported by [63].

The biomass reaction of the vegetative cells was used as the objective function to be maxi-

mized using FBA. The biomass of heterocyst cells is 5–10 percent of vegetative cells biomass

[16, 22]. In this research, it was assumed that biomass composition of heterocysts is the same

as vegetative cells and heterocysts comprise 10 percent of the entire filament and therefore, Eq

3 was added to the two-cell model.

vg; H ¼ 0:1� vg; V ð3Þ

vg,V and vg,H are growth rates of vegetative and heterocyst cells, respectively. The calculated

biomass objective function was multiplied by 1.1 for two-cell models to report the total growth

rate. The two-cell model includes 1970 variables including reaction fluxes of the two cells,

three transport reactions (for intercellular exchange of sucrose, glutamine, and glutamate),

and a slack variable for Eq 2. This model also includes 1844 equations including 1842 equa-

tions from the two metabolic models and Eqs 2 and 3. Prefixes Vegetative and Heterocyst were

used to indicate metabolites and reactions of the vegetative and heterocyst models, respec-

tively. It should be mentioned that Eqs 2 and 3 were also added to the two-cell model presented

by Malatinszky et al. [36].

Regulated two-cell model. The TRFBA algorithm presented by Motamedian et al. [43]

was applied to integrate gene expression data [42] of vegetative and heterocyst cells in photo-

autotrophic and heterotrophic conditions for A. variabilis ATCC 29413 with the two metabolic

models. This algorithm first converted the metabolic model to irreversible and “without OR”

form that increased the number of variables to 3669 for the two-cell model. Then, TRFBA

added a constraint for each metabolic gene with measured expression level to the two-cell

model using Eq (4).

X

i2Kj

vi � Ej � C ð4Þ

where Kj denotes the set of indices of reactions supported by metabolic gene j, vi is the flux of

reaction i, and Ej is the expression level of jth gene. C is a constant parameter that converts the

expression levels to the upper bounds of the reactions. The unit for C is mmol gDCW-1h-1 and

A genome-scale metabolic network reconstruction of Anabaena variabilis

PLOSONE | https://doi.org/10.1371/journal.pone.0227977 January 24, 2020 5 / 18

https://doi.org/10.1371/journal.pone.0227977


this coefficient indicates the maximum rate supported by one unit of the expression level of a

gene. The optimal value of C was determined using sensitivity analysis. By adding a positive

slack variable (aj) for each gene to Eq 4, the inequality constraint is transformed into an equal-

ity constraint (Eq 5).
X

i2Kj

vi þ aj¼ Ej � C ð5Þ

The expression level of 951 metabolic genes was measured for heterocysts and vegetative

cells and hence, 1902 variables and equations were added to the regulated two-cell

model. The added equations and variables were named with their corresponding gene and

prefix Vegetative or Heterocyst. The maximum uptake rate of HCO3 was set to 1 mmol/

gDCW/h and the maximum uptake rate of N2 and photon was set to 1000 mmol/gDCW/h

to simulate photoautotroph and diazotrophic growth condition. The maximum uptake rate

of HCO3 and photon was set to experimental values [63] for comparison with the two-cell

models. To simulate the heterotrophic growth condition using the regulated two-cell

model, fructose as carbon and energy source with the maximum uptake rate of 1 mmol/

gDCW/h was selected as carbon and energy sources for vegetative cells instead of HCO3 and

photon.

Shadow price was also calculated for each metabolic gene to determine the gene that con-

trols the growth rate of A. variabilis in high irradiance. Shadow price shows sensitivity of the

objective function to change in the right-hand side vector of Eq (5) according to Eq 6.

Shadow price ¼
@vg; V

@ðEj � CÞ
¼

@vg;V

C� @ðEjÞ
ð6Þ

Shadow price indicates the effect of one unit increase in gene expression on the predicted

growth rate of A. variabilis. Its positive value for a gene shows that the expression level of the

gene is not adequate and this level as an intracellular constraint controls the metabolism for

growth.

Maximization of biomass and hydrogen production was used as the objective function for

calculations using the regulated two-cell model. Maximal and minimal hydrogen secretion

rates were calculated for suboptimal conditions for a fixed growth rate of 90% which is optimal

growth and their flux distributions were compared to find strategies for improvement of

hydrogen production. To avoid the well-known degeneracy of solutions, the Manhattan norm

of the flux distributions was minimized while the growth and hydrogen production rates were

bound to the intended values.

Results and discussion

The metabolic network of A. variabilis ATCC 29413

A draft metabolic network of A. variabilis based on genome annotation and data presented in

relevant databases was reconstructed manually and then was refined. The reconstruction pro-

cess has been discussed in the material and methods section. The final model includes central

metabolic pathways such as glycolysis, pentose phosphate pathway (PPP), incomplete tricar-

boxylic acid (TCA) cycle, and Calvin-Benson cycle. In addition, it consists of pathways for bio-

synthesis of lipids, amino acids, cofactors, vitamins, nucleotides, pigments, and reactions

involved in hydrogen metabolism. The resulting single-cell metabolic model (iAM957)

includes 960 reactions and 912 metabolites as well as 957 genes that encode enzymes which are

responsible for these reactions. The reactions take place in four compartments including

A genome-scale metabolic network reconstruction of Anabaena variabilis
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cytoplasm, thylakoid, periplasm, and extracellular. Reactions in the network are divided into

eight categories comprising 47 pathways, the distribution of which is shown in Fig 1(a). 113

reactions out of 960 are non-gene assigned reactions but they are present in the model. This

happens for two reasons; either there was biochemical data confirming their occurrence in the

metabolism, or they were necessary for growth. Fig 1(b) shows both the number of genes

assigned and non-gene assigned reactions in each category.

A summary of iAM957 and a comparison between the metabolic models of A. variabilis

ATCC 29413, Synechocystis sp. PCC6803, PCC 7942, Spirulina platensis, and Anabaena sp.

PCC 7120 is presented in Table 1. It can be seen that the features of the reconstructed meta-

bolic models for cyanobacteria are different. For example, a comparison between iAM957 and

iJN678 demonstrates that iAM957 has more reactions. It is rational considering that A. varia-

bilis has a larger genome. There are 276 reactions in iAM957 that are not present in iJN678

and there are 158 reactions in iJN678 that are not present in iAM957. Fig A in S4 File indicates

that the different reactions are distributed in various pathways.

Fig 1. Properties of iAM957. (a) distribution of the metabolic reactions in the categories. (b) number of non-gene
associated (red) and gene associated (blue) reactions in each category.

https://doi.org/10.1371/journal.pone.0227977.g001
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Evaluation of the single-cell and two-cell models

Growth prediction and effect of heterocyst frequency. The correlation coefficients

between the predicted and measured relative growth rates for two single-cell models are pre-

sented in Table 2. The predicted rates by both models significantly correlate with the experi-

mental values but the correlation for the single-cell model of this research is a little higher than

that for Malatinszky et al. [36]. The predicted relative growth rates by two single-cell models

were also compared with experimental values in Table B in S4 File. It can be seen that both

models present appropriate predictions of the mixotrophic growth on various carbon sources

relative to the autotrophic growth on bicarbonate.

Both two-cell models predict that the increase of the heterocyst percentage slightly

decreases the growth rate Fig B in S4 File. Previous researches confirm the predicted effect of

heterocyst frequency. Sallah et al. [64] demonstrated that adding an amino acid analog (DL-

7-azatryptophan) into the growth medium of A. variabilis ATCC 29413 increased the hetero-

cyst frequency and conversely, reduced the growth. Furthermore, Berberoğlu et al. [65] experi-

mentally indicated that the growth rate of A. variabilis ATCC 29413 in absence of nitrate is

smaller than when nitrate is present.

Prediction of autotrophic growth. The comparison of predicted autotrophic growth

rates for the two-cell models using FBA and regulated two-cell model using TRFBA with

experimental data [63] is illustrated in Fig 2. Sensitivity analysis of the relative error in the pre-

diction of growth rate with respect to the C values was applied to determine the optimal value

of 0.05 mmol/gDCW/h for the C parameter of the TRFBA algorithm Fig C in S4 File.

It illustrates that TRFBA and FBA predictions in low irradiance are approximately the same

and close to the experimental data while FBA for both two-cell models overestimates the

growth rate under high irradiances and bicarbonate uptake rates. FBA does not generally

apply any intracellular constraint and only extracellular constraints including bicarbonate and

photon uptake rates control the predicted growth rates. Overprediction for high irradiances

and uptake rates indicates that intracellular constraints are inhibiting the growth and so,

Table 1. Features of the metabolic model reconstructed for A. variabilis ATCC29413 in comparison with metabolic models of other cyanobacteria.

Features iAM957 (This study) iJN678 [33] iSyf715 [85] Anabaena [36] iAK692 [86]

Species A. variabilis ATCC29413 Synechocystis sp. PCC 6803 Synechococcus elongatus PCC7942 Anabaena sp. PCC 7120 S. platensis

Reactions 983 863 895 897 875

metabolic reactions 825 706 851 818 699

other reactions 161 157 44 79 176

metabolites 926 795 838 777 837

Included genes 957 678 715 862 692

Total genes 5772 3725 2906 5368 6176

Percent of coverage 16.6 18.2 24.6 11.1 11.2

Subsystems 47 54 - 38 -

https://doi.org/10.1371/journal.pone.0227977.t001

Table 2. The Pearson correlation between the predicted and measured relative growth rates on various carbon
sources for the two single-cell models.

Single-cell model

This research Malatinszky et al. [36]

Pearson correlation coefficient 0.87 0.79

P-value 1.24×10−4 1.3×10−3

https://doi.org/10.1371/journal.pone.0227977.t002
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expression data were integrated with the two-cell metabolic model using TRFBA to impose the

intracellular constraints and to find the origin of the inhibition. TRFBA limits the upper

bound of intracellular reactions based on the expression level of their corresponding genes.

The calculated shadow prices for metabolic genes indicate that the growth rate is sensitive to

the expression level of Ava_1852 in the vegetative cells. This gene is responsible for synthesis

of protein PsbJ that is one of the components of the core complex of photosystem II. The

mean expression level of Ava_1852 is 56 that is significantly less than the average expression

level for vegetative cells. Hence, TRFBA predicts that PSII is limiting reaction which controls

growth in high levels of radiation and bicarbonate uptake. Shadow price for other genes was

zero and hence, the regulated two-cell model predicted that the measured expression level of

other genes was adequate for growth. Fig D in S4 File presents the predicted growth rate versus

expression level for some genes of photosystem II using the regulated two-cell model. It can be

seen that only the expression level of PsbJ was not sufficient for optimal growth. The inhibited

growth of A. variabilis at high irradiance has also been stated by Yoon et al. [66, 67]. It is also

expressed that high light intensities destroy photosystem II reaction centers and lead to photo-

inhibition on the growth of the cyanobacterium [68, 69].

Furthermore, the predicted changes in the intercellular exchange fluxes under various auto-

trophic growth was evaluated using experimental data of Berberoğlu et al. [63]. No constraint

was imposed on the intercellular exchange fluxes of the three two-cell models. FVA [70] was

used to calculate the flux variability of each intercellular exchange reaction. The two-cell

model of Malatinszky et al. [36] predicted that both sucrose and glutamate can be used as the

main carbon source (Fig E(a) in S4 File). However, our two-cell model predicts that sucrose is

transported to heterocysts as carbon source in all conditions (Fig E(b) in S4 File). Experimental

reports also suggest that the main carbon source for heterocysts is sucrose [71].

Interestingly, glutamate and sucrose intercellular exchange reactions are coupled in the

two-cell model of Malatinzsky et al. [36] and the sucrose rate is maximized when glutamate is

Fig 2. Comparison of growth rates predicted by the two-cell models and the regulated two-cell model with
experimental data [63]. The labeled values indicate irradiance (lux) and bicarbnate uptake rate (mmol/gDCW/h),
respectively, for each data. The same colors were used for distant points with the same experimental data.

https://doi.org/10.1371/journal.pone.0227977.g002
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exchanged at the maximum rate. Furthermore, Fig E in S4 File shows that maximum exchange

rates for this two-cell model are always higher than those for our two-cell models and the rates

unreasonably increase with an enhancement of irradiance. The maximal sucrose uptake rate of

46.8 mmol/gDCW/h is calculated at an irradiance of 16100 lux and bicarbonate uptake rate of

2.14 mmol/gDCW/h while this rate for our two-cell is 1.29 mmol/gDCW/h. This indicates that

there is an internal cycle of carbon in the two-cell model of Malatinzsky et al. [36]. This cycle

circulates carbon sources between heterocyst and vegetative cells and the required energy for

this circulation is provided by uptake of photon. Comparison between flux distributions for

maximum and minimum intercellular exchange rates indicates that many reactions are

involved in generating this internal cycle. Hence, Malatinzsky et al. [36] fixed the glutamine-

glutamate exchange ratio to one that results in the reduction of the effect of this cycle.

The regulated two-cell model also transports sucrose to heterocyst in low irradiance (Fig E

(c) Fig in S4 File). But both sucrose and glutamate can be used as the main carbon source at

high irradiance. This result is rational because the model predicts that the growth rate is con-

stant at high irradiance because of the limitation of PSII (as previously explained) and given

the extra bicarbonate available, none of the sources are preferred for carbon transport.

Analysis of A. variabilis for hydrogen production

Selection of the appropriate cell for hydrogen production. The major obstacle for pro-

ducing hydrogen using photosystems is the sensitivity of nitrogenase and hydrogenase

enzymes to oxygen [72]. For this purpose, the two-cell model was applied to analyze the simul-

taneous effect of oxygen and hydrogen exchange on photoautotrophic growth using vegetative

and heterocyst cells of A. variabilis. Fig 3(a) shows that more hydrogen production in vegeta-

tive cells increases oxygen production at a constant growth rate. In fact, when the cell is grow-

ing in photoautotrophic conditions, the model predicts that providing an oxygen-free

environment in vegetative cells is not possible. Unlike the vegetative cells, Fig 3(b) reveals that

more hydrogen production reduces oxygen consumption in heterocysts at a constant growth

rate. That is; hydrogen production reduces the growth rate at a constant oxygen exchange rate

for both cell types.

The model’s prediction is in agreement with the literature [72] in which heterocyst provides

an oxygen-free environment for hydrogen production. Furthermore, experimental data of Ber-

beroğlu et al. [65] showed that larger hydrogen production rates are obtained for a medium

including higher heterocyst frequency. The spatial separation achieved through the differentia-

tion of heterocyst overcomes oxygen sensitivity issues. As a result, heterocyst is a more suitable

host for hydrogen production in the photoautotrophic conditions.

The reason for different metabolisms of vegetative cells and heterocysts is that oxygen-

evolving photosystem II in heterocyst is inactivated [73, 74] and the model also predicts that

oxygen flux from the environment into heterocyst is very low (see Fig 4). The predicted con-

sumption and production rate of the cytoplasmic oxygen molecule in the metabolism of het-

erocyst is 8.45×10−4mmol/gDCW/h which is much less when compared to the vegetative cell

(1.07 mmol/gDCW/h). Besides the fact that glutamate has one more oxygen atom than gluta-

mine, glutamine-glutamate exchange and sucrose transfer to heterocyst provide oxygen atom

without a need for O2 uptake. Jensen and Cox [74] measured oxygen concentration in the het-

erocysts of A. variabilis and concluded that a little amount of O2 is necessary to be entered into

the heterocyst for providing the energy through respiration which is in agreement with the

metabolic model. The diffusion of oxygen to heterocyst through its cell envelope is very low

because of the glycolipid and polysaccharide layers and the remaining oxygen is maintained

close to zero by respiration [73]. Low O2 demand in the metabolism in addition to low O2
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diffusion provides an anaerobic environment for the oxygen-sensitive nitrogenase and

hydrogenases to be active in the heterocyst.

The model predicts that interaction between hydrogen and oxygen in vegetative cells for

heterotrophic growth on fructose is similar to what was predicted for heterocyst in photoauto-

trophic conditions (Fig F in S4 File). This result is rational for every metabolic model of cyano-

bacteria because fructose provides both energy and carbon sources for the cell in heterotrophic

conditions. However, in photoautotrophic conditions, bicarbonate is used as a carbon source

and photon uptake that is necessary for energy generation produces oxygen. Some researchers

proposed a two-stage operation for hydrogen production which is in agreement with the

model [72]. At the first stage, cyanobacteria grow photoautotrophically and glycogen is accu-

mulated. At the second stage, hydrogen is produced anaerobically by switching from photoau-

totrophic metabolism to dark fermentation and consuming accumulated glycogen.

Improvement of hydrogen production. The intact cells of nitrogen-fixing cyanobacteria

produce net hydrogen in small amounts [75]. Thus, the two-cell metabolic model was applied

Fig 3. Double robustness analysis using the regulated two-cell model for photoautotrophic growth of Anabaena
variabilis. The heatmap presents changes in the growth rate with varying oxygen exchange and hydrogen production
fluxes in a) vegetative and b) heterocyst cells.

https://doi.org/10.1371/journal.pone.0227977.g003
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to find improvement strategies for hydrogen production by heterocysts in photoautotrophic

and diazotrophic conditions. The model predicts that hydrogen is not produced at the optimal

growth rate of A. variabilis because of the fact that the increase in hydrogen secretion amount

is not in accordance with further growth rate (Fig 3(b)). Thus, the objective function of the reg-

ulated two-cell model was changed to hydrogen production in the suboptimal condition of the

90% optimal growth rate to identify pathways and reactions which are effective on hydrogen

production in heterocysts. To determine reactions involved in improving the hydrogen pro-

duction process, flux distribution for maximal and minimal hydrogen productions was com-

pared to each other. The list of up- and down-regulated reactions and their fluxes during

maximal and minimal hydrogen production is available in S5 File.

The main reactions that have been up- and down-regulated for improvement of hydrogen

production proposed by the two-cell model are shown in Fig 4. In the vegetative cell, it can be

seen that the activation of ribulose-bisphosphate carboxylase is increased and more 3-phos-

phoglycerate has been produced. Successive reactions of the Calvin-Benson cycle and glycoly-

sis pathway have resulted in the overproduction of fructose 6-phosphate and UDP-glucose

that in turn are converted to sucrose during the pathway of sucrose metabolism. Required

energy and redox cofactors for increasing the sucrose production are provided via the activa-

tion of photosystems I and II.

Sucrose, as the carbon source, is transported from vegetative cell to heterocyst and is con-

verted to fructose and UDP-glucose via a reverse reaction catalyzed by alkaline invertase. The

experimental results obtained by Schilling and Ehrnsperger [76] confirms the presence of

sucrose synthase in vegetative cells and of alkaline invertase in heterocysts. In heterocyst, in a

reverse process compared to the vegetative cell metabolism, UDP-glucose is converted to glu-

cose 6-phosphate using UDP–glucose pyrophosphorylase and phosphoglucomutase, then

fructose is converted to fructose 6-phosphate by fructokinase.

The two-cell model utilizes glucose 6-phosphate dehydrogenase (G6PDH2), 6-phosphoglu-

conolactonase, and phosphogluconate dehydrogenase from the oxidative pentose phosphate

pathway (OPPP) to change glucose 6-phosphate to ribulose 5-phosphate. In the model,

enzymes of OPPP and also hexokinase are active and have fluxes, which is in agreement with

the results published by Winkenbach andWolk [77] for Anabaena cylindrica. Summers et al.

[78] demonstrated that reactions of OPPP and G6PDH are the essential catabolic routes for

providing redox cofactors for nitrogen fixation and respiration in differentiated heterocysts

and this is what the model confirms properly.

Fig 4. The predicted flux distributions for minimal (top) and maximal (down) hydrogen production under a
constant growth rate. Abbreviations of metabolites are available in S1 File.

https://doi.org/10.1371/journal.pone.0227977.g004
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Utilization of OPPP produces two moles of NADPH per mole of glucose 6-phosphate, and

then ribulose 5-phosphate is converted to glyceraldehyde 3-phosphate using the non-oxidative

pathway of PPP. NADPH is used to produce hydrogen by applying NADPH-linked bidirec-

tional Hox hydrogenases in maximal condition, for producing ATP in respiratory electron

transport (RET), and also transferring electrons from ferredoxin in PSI. On the other hand,

nitrogenase employes ATP and ferredoxin to produce ammonium and hydrogen. Ammonium

activates the glutamine-glutamate shuttle to provide the nitrogen source to the vegetative cell.

Fig 4 shows that this shuttle is not applied to improve hydrogen production, and the rate of

nitrogenase activity does not change in the maximal and minimal conditions. In fact, Hup

hydrogenase consumes the produced hydrogen by nitrogenase to generate reduced ferredoxin.

Hup hydrogenase reutilizes the evolved hydrogen by nitrogenase so that almost hydrogen pro-

duction would not be detectable [79, 80]. Furthermore, removal of Hup hydrogenase improves

hydrogen production significantly [81, 82].

The model proposes another less-known pathway for the production of hydrogen. Fructose

6-phosphate produced by fructokinase is converted to 3-phosphoglycerate through glycolysis

pathway. Afterwards, 3-phosphoglycerate is converted to formate and CO2. This process pro-

vides NADH that in turn is used to produce hydrogen using NADH-linked Hox hydrogenases

in maximal condition.

In fact, the two-cell model proposes that the activation of NAD(P)H-linked Hox hydroge-

nases and the other optimal pathways supply required NADH and NADPH for the production

of 60% of hydrogen using Hox hydrogenase in the maximal condition. The high theoretical

potential of Hox hydrogenase to produce hydrogen has been investigated [79]. Hox hydroge-

nase has the capacity of both re-oxidizing and producing hydrogen. However, its removal

results in less hydrogen production [82]. Moreover, it is the Hup hydrogenase, and not the

bidirectional enzymes which is the most effective element in recycling hydrogen [80]. These

results indicate that Hox hydrogenase act as a hydrogen producer in A. variabilis. It is worthy

to mention that the metabolic energy demand for Hox hydrogenase is less than nitrogenase

activity to produce hydrogen [75]. Nitrogen fixation is an expensive reaction energetically that

consumes 16 ATP molecules for the reduction of N2 and generates only one molecule of H2

[72, 83]. Besides of the fact of the high energy demand for nitrogen fixation, the nitrogenase

turnover rate is 6.4 s-1 which is very slow in comparison with the turnover rate of Hox hydrog-

enase (98 s-1) [72, 84]. Considering this issue that Hox hydrogenase in cyanobacteria primarily

functions as a redox regulator for maintaining a proper oxidation/reduction state in the cell

[79], we should perceive that activation of the proposed optimal pathways provide the required

redox cofactors for significant improvement of hydrogen production by Hox hydrogenase.

Conclusion

In this study, a curated genome-scale metabolic network for heterocystous cyanobacterium A.

variabilis ATCC 29413 was reconstructed using the information presented in the databases

and research papers. iAM957 was used to construct the single-cell for simulation of growth in

the presence of nitrate and the two-cell model for simulation of diazotrophic condition. The

models were compared with the single-cell and two-cell models previously presented by Mala-

tinszky et al. [36]. The single-cell models properly predicted mixotrophic growth on various

carbon sources, however, the two-cell models overestimate the growth under autotrophic and

diazotrophic conditions. Hence, gene expression data of vegetative cells and heterocysts for A.

variabilis ATCC 29413 was used and the regulated two-cell model was constructed. In accor-

dance with previous research, this model predicted that PSII controls growth under high irra-

diance and heterocyst is a more suitable host for hydrogen in the photoautotrophic and
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diazotrophic conditions. The model was then used to predict up/down-regulation strategies to

enhance the production of hydrogen. For this purpose, the flux distribution under the minimal

and maximal hydrogen production was compared and the reactions whose fluxes increased/

decreased were identified. The proposed changes for the improvement of hydrogen produc-

tion were in agreement with previous experimental works. The proposed metabolic model not

only is useful for in silico study the metabolism of this filamentous, diazotrophic cyanobacte-

rium but also it could be a valuable tool for improvement of bioproducts production using the

two-cell system of A. variabilis.
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Cyanobacterium Anabaena variabilis Kütz. Microbiology. 1982; 128(9):2203–5.

60. Martı́n-Figueroa E, Navarro F, Florencio FJ. The GS-GOGAT pathway is not operative in the hetero-
cysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120. FEBS
Lett. 2000; 476.

61. Thomas J, Meeks JC, Wolk CP, Shaffer PW, Austin SM. Formation of glutamine from 13N-ammonia,
13N-dinitrogen, and 14C-glutamate by heterocysts isolated from Anabaena cylindrica. J Bacteriol.
1977; 129.

62. Mariscal V, Herrero A, Flores E. Continuous periplasm in a filamentous, heterocyst-forming cyanobac-
terium. Molecular microbiology. 2007; 65(4):1139–45. https://doi.org/10.1111/j.1365-2958.2007.
05856.x PMID: 17645442

63. Berberoğlu H, Barra N, Pilon L, Jay J. Growth, CO2 consumption and H2 production of Anabaena varia-
bilis ATCC 29413-U under different irradiances and CO2 concentrations. Journal of applied microbiol-
ogy. 2008.

64. Salleh SF, Kamaruddin A, Uzir MH, Karim KA, Mohamed AR. Investigation of the links between hetero-
cyst and biohydrogen production by diazotrophic cyanobacterium A. variabilis ATCC 29413. Archives of
microbiology. 2016; 198(2):101–13. https://doi.org/10.1007/s00203-015-1164-6 PMID: 26521065

65. Berberoğlu H, Jay J, Pilon L. Effect of nutrient media on photobiological hydrogen production by Ana-
baena variabilis ATCC 29413. International Journal of Hydrogen Energy. 2008; 33(4):1172–84.

66. Yoon JH, Sim SJ, KimM-S, Park TH. High cell density culture of Anabaena variabilis using repeated
injections of carbon dioxide for the production of hydrogen. International journal of hydrogen energy.
2002; 27(11–12):1265–70.

67. Yoon JH, Shin J-H, Park TH. Characterization of factors influencing the growth of Anabaena variabilis in
a bubble column reactor. Bioresource technology. 2008; 99(5):1204–10. https://doi.org/10.1016/j.
biortech.2007.02.012 PMID: 17383870

68. Agel G, NultschW, Rhiel E. Photoinhibition and its wavelength dependence in the cyanobacterium Ana-
baena variabilis. Archives of Microbiology. 1987; 147(4):370–4.

69. Markou G, Georgakakis D. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-indus-
trial wastes and wastewaters: a review. Applied Energy. 2011; 88(10):3389–401.

70. Mahadevan R, Schilling C. The effects of alternate optimal solutions in constraint-based genome-scale
metabolic models. Metabolic engineering. 2003; 5(4):264–76. https://doi.org/10.1016/j.ymben.2003.09.
002 PMID: 14642354

71. Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, et al. Intercellular diffusion
of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. MBio. 2015;
6(2):e02109–14. https://doi.org/10.1128/mBio.02109-14 PMID: 25784700

A genome-scale metabolic network reconstruction of Anabaena variabilis

PLOSONE | https://doi.org/10.1371/journal.pone.0227977 January 24, 2020 17 / 18

https://doi.org/10.1093/nar/gkv1049
http://www.ncbi.nlm.nih.gov/pubmed/26476456
https://doi.org/10.1038/nprot.2011.308
http://www.ncbi.nlm.nih.gov/pubmed/21886097
http://www.ncbi.nlm.nih.gov/pubmed/16347884
https://doi.org/10.1111/j.1529-8817.1968.tb04685.x
http://www.ncbi.nlm.nih.gov/pubmed/27067947
https://doi.org/10.1111/j.1365-2958.2007.05856.x
https://doi.org/10.1111/j.1365-2958.2007.05856.x
http://www.ncbi.nlm.nih.gov/pubmed/17645442
https://doi.org/10.1007/s00203-015-1164-6
http://www.ncbi.nlm.nih.gov/pubmed/26521065
https://doi.org/10.1016/j.biortech.2007.02.012
https://doi.org/10.1016/j.biortech.2007.02.012
http://www.ncbi.nlm.nih.gov/pubmed/17383870
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1016/j.ymben.2003.09.002
http://www.ncbi.nlm.nih.gov/pubmed/14642354
https://doi.org/10.1128/mBio.02109-14
http://www.ncbi.nlm.nih.gov/pubmed/25784700
https://doi.org/10.1371/journal.pone.0227977


72. Srirangan K, Pyne ME, Chou CP. Biochemical and genetic engineering strategies to enhance hydrogen
production in photosynthetic algae and cyanobacteria. Bioresource technology. 2011; 102(18):8589–
604. https://doi.org/10.1016/j.biortech.2011.03.087 PMID: 21514821

73. Walsby AE. The permeability of heterocysts to the gases nitrogen and oxygen. Proc R Soc Lond B.
1985; 226(1244):345–66.

74. Jensen BB, Cox RP. Effect of oxygen concentration on dark nitrogen fixation and respiration in cyano-
bacteria. Archives of Microbiology. 1983; 135(4):287–92.

75. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and hydro-
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