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Abstract

Our goal of this study was to reconstruct a ‘‘genome-scale co-expression network’’ and find important modules in lung
adenocarcinoma so that we could identify the genes involved in lung adenocarcinoma. We integrated gene mutation,
GWAS, CGH, array-CGH and SNP array data in order to identify important genes and loci in genome-scale. Afterwards, on the
basis of the identified genes a co-expression network was reconstructed from the co-expression data. The reconstructed
network was named ‘‘genome-scale co-expression network’’. As the next step, 23 key modules were disclosed through
clustering. In this study a number of genes have been identified for the first time to be implicated in lung adenocarcinoma
by analyzing the modules. The genes EGFR, PIK3CA, TAF15, XIAP, VAPB, Appl1, Rab5a, ARF4, CLPTM1L, SP4, ZNF124, LPP,
FOXP1, SOX18, MSX2, NFE2L2, SMARCC1, TRA2B, CBX3, PRPF6, ATP6V1C1, MYBBP1A, MACF1, GRM2, TBXA2R, PRKAR2A,
PTK2, PGF and MYO10 are among the genes that belong to modules 1 and 22. All these genes, being implicated in at least
one of the phenomena, namely cell survival, proliferation and metastasis, have an over-expression pattern similar to that of
EGFR. In few modules, the genes such as CCNA2 (Cyclin A2), CCNB2 (Cyclin B2), CDK1, CDK5, CDC27, CDCA5, CDCA8, ASPM,
BUB1, KIF15, KIF2C, NEK2, NUSAP1, PRC1, SMC4, SYCE2, TFDP1, CDC42 and ARHGEF9 are present that play a crucial role in
cell cycle progression. In addition to the mentioned genes, there are some other genes (i.e. DLGAP5, BIRC5, PSMD2, Src, TTK,
SENP2, PSMD2, DOK2, FUS and etc.) in the modules.
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Introduction

Lung cancer is the major cause of cancer-related deaths in the

world and is not easily diagnosed. At most, 15% of patients sustain

life for no more than five years [1]. Lung cancer is categorized into

two groups i.e. small-cell lung cancer (SCLC) that includes 20% of

lung cancers and non small cell lung cancer (NSCLC) that

comprises 80% of lung cancers. NSCLC is shown to initiate from

lung epithelial cells that leads to various histological subvarieties

including adenocarcinoma (ADC), large cell carcinoma (LCC) and

squamous cell carcinoma (SCC). The incidence of ADC subtypes

has relatively increased in the last few decades [2].

The variation in the human genome is diverse, including

alterations in the human karyotype, point mutations, single

nucleotide polymorphisms (SNPs) and so forth. The duplication,

insertion and deletion variations within the range of one kilo-base

to several mega-bases that wildly take place in human and other

mammalian genomes are termed copy number variations (CNVs).

Although there are powerful repair mechanisms in the human

genome, the odds of CNVs are high in such a way that they are

100–10000 times higher than point mutations [3]. Recently, the

role of CNV in various cancers has been thoroughly investigated

in many ways [4].

Array based comparative genomic hybridization (array-CGH) is

capable of supplying high-resolution identification of CNVs.

Single nucleotide polymorphism arrays (SNP array) can quantify

cancer-specific loss of heterozygosity (LOH) and CNV with high

precision in a genome-wide manner [5].Through the use of the

two approaches, several genomic regions frequently showing DNA

gains (3q, 5p, 7q, 8q, 11q and 16p) and losses (3p, 4q, 5q, 6q, 8p

9p and 13q, 17q) have been detected in NSCLC patients. Genetic

aberrations in NSCLC are potently associated with tumor

histology and a comparison of the two histological subtypes of

squamous cell carcinoma and adenocarcinoma has disclosed clear

dissimilarities in the recurrence of genomic aberrations [6]. Being

influenced by tumor subtype, gender, ethnicity and exposure to

carcinogens (e.g. smoking, radon gas, asbestos and cooking oil

fumes), built up genomic alterations apply different tumorigenic

mechanisms bringing about triggering of oncogenic signaling

pathways and unrestrained tumor growth and metastasis [7].

Previous studies on NSCLC, concentrating on oncogenic point

mutations, have recognized repetitious mutations that lead to

aberrant activation of EGFR, KRAS, PIK3CA, ERBB2, BRAF,
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and some other genes. In addition, inactivating point mutations

and deletions in TP53, STK11, NF1, CDKN2A and PTEN have

been demonstrated. Mutations in several tyrosine kinase genes

including PDGFRA and KDR have also been identified.

Compared with lung adenocarcinoma, the range of genetic

alterations in lung squamous cell carcinoma is less known [8].

Recently, genome-wide association studies (GWAS) have

proven that three human genomic regions in chromosomes

5p15, 15q25, and 6p21 are associated with vulnerability to lung

cancer in European and American populations. Besides, 3q29 and

18p11.22 are associated with susceptibility to lung cancer in

Korean population [9].

The modern advancement of cDNA and oligonucleotide

microarray analysis has enabled us to broadly analyze gene

expression profiles in NSCLC cells and classify lung cancers at the

molecular scale [10]. Gene expression profiling has given us many

genes over- or down-expression in different disease states, but

again a small number of the genes have been shown to be clearly

functionally relevant to the tumorigenic procedure [11].

Our goal was to construct a ‘‘genome-scale co-expression

network’’ for lung adenocarcinoma using all available and relevant

data. The rationale behind our idea is the fact that simultaneous

use of SNP array, gene expression microarray, array-CGH, CGH,

GWAS and gene mutation data can give a more comprehensive

understanding of the whole genome of the cancerous cells.

Inasmuch as the genomic variations are different in various

NSCLC subtypes, we focused on lung adenocarcinoma to achieve

more precise results. In this study, through the integration of data

obtained from the analyses mentioned above, it is feasible to

deduce an integrated genome wide perspective of the mutated

genes, the gene dosage aberrations and their effect on gene

expression. Such achievements may help us in identifying the

significant genes in lung adenocarcinoma. Another main aim of

our study was to find the key modules in lung adenocarcinoma.

Accordingly, through clustering of a ‘‘genome-scale co-expression

network’’, lung adenocarcinoma modules were revealed. Another

objective achieved by analyzing the modules was to identify the

significant genes implicated in lung adenocarcinoma.

Materials and Methods

Figure 1 depicts a framework for construction of a ‘‘genome-

scale co-expression network’’ in lung adenocarcinoma which

includes different integrated data. Gene mutations, GWAS, array-

CGH, CGH and SNP array data were used to identify the loci and

the genes that exist in lung adenocarcinoma, with high precision.

In other words, through integration of the mentioned data, lung

adenocarcinoma was examined in genome-scale. Subsequently,

gene expression microarray data were used to integrate with other

data in order to construct ‘‘genome-scale co-expression network’’.

In the next step, using clustering, the key modules in lung

adenocarcinoma were revealed and analyzed.

Identification of the genes located on CNV segments in
lung adenocarcinoma
Datasets for SNP microarray (SNP array) related to adenocar-

cinoma were obtained from the NCBI Gene Expression Omnibus

(GEO) (http://www.ncbi.nlm.nih.gov/geo). The accession num-

bers were GSE33848 [12] and GSE36363 [13], and there were

216 samples in total. The applied datasets have Affymetrix

Genome-Wide Human SNP 6.0 array platform. The genome-

wide Human SNP Array 6.0 consists of SNPs and CN probe sets

related to two enzyme sets, namely Nsp and Sty.

The information regarding CNV regions was obtained by

AffymetrixH Genotyping ConsoleTM software (GTC). A number of

SNPs and CN probe sets are merely located on fragments made by

one of the enzymes, whereas the rest of SNPs and CN probe sets

are located on fragments made by both of the enzymes.

Genotyping Console 4.0 (GTC 4.0) harbors in its interface the

possibility of choosing between genotyping SNP 6.0 array data

with the Birdseed (v1) and the Birdseed (v2) algorithms. Birdseed

v2 applies EM to generate a maximum likelihood fit of a 2-

dimensional Gaussian mixture model in A*B space. V1 applies

SNP-specific models merely as an initial condition that allows the

Expectation-Maximization (EM) fit to wander more freely leading

to probable misleading of the clusters. On the other hand,

Birdseed v2 uses SNP-specific priors in likelihood as Bayesian

priors in addition to initial priors. This is considered as an

advantage over v1 because the EM cannot freely wander with such

constrains. SNP 6.0 CN/LOH analysis takes the advantage of the

BRLMM-P+ algorithm, which is comparable with BRLMM-P,

though with a few dissimilar parameters. GTC 4.0 was run with its

default parameters. After GTC 4.0 run, only the regions (loci) that

had been observed in at least 15% of the cancerous samples, were

selected. Eventually, we determined the genes located in the

mentioned CNV regions on the basis of NCBI Gene (http://www.

ncbi.nlm.nih.gov/gene).

Array-CGH and CGH datasets related to adenocarcinoma

were obtained from the source (http://www.cghtmd.jp/

CGHDatabase). The selected cell lines are RERF-LC-MS,

ABC-1, RERF-LC-OK, PC-14, HUT-29, SK-LC-3, VMRC-

LCD, 11-18 and A549, which are related to lung adenocarcinoma.

Gene mutation and GWAS data
Gene mutation data regarding adenocarcinoma were obtained

from HGMD (http://www.hgmd.cf.ac.uk/ac/indedx.php),

RCGDB (http://rcgdb.bioinf.uni-sb.de/MutomeWeb/) and

COSMIC (Catalogue of Somatic Mutations in Cancer) (http://

www.sanger.ac.uk/genetics/CGP/cosmic/add_info/). GWAS da-

ta were gathered from a literature search, from which, some genes

and loci were chosen [14,15,16,17].

Gene expression microarray data
Datasets for Gene expression microarray of adenocarcinoma

were obtained from GEO database. For including the most

number of genes possible and in order to maximize the number of

databases, the Affymetrix Human Genome U133 plus 2.0 Array

platform datasets were used to build the co-expression network

and various datasets were applied to denote multiple perturbed

states in adenocarcinoma. In total, 158 samples were chosen from

three datasets i.e. GSE12667 [18], GSE10245 [19] and

GSE28571 [6]. GSE28571 and GSE10245 datasets also involve

histological subtypes such as large cell carcinoma and squamous

cell carcinoma in addition to adenocarcinoma, nonetheless, only

adenocarcinoma samples were chosen.

Reconstruction of ‘‘genome-scale co-expression
network’’
There are many existing methods to reconstruct a biological

network from microarray data. The Methods based on machine

learning, for example Bayesian network [20,21] and clustering

algorithms, or methods based on information theory [22,23,24]

are some of methods used in reconstruction of gene regulatory

networks. ARACNE [24] is one of the popular statistical

algorithms for the reconstruction of accurate cellular networks

using microarray expression profiles. ARACNE is also flexible to
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work on complex mammalian cell data, and it uses statistical

methods to eliminate indirect links between genes. It is, therefore,

fast and efficient enough to reconstruct ‘‘genome-wide co-

expression networks’’.

Candidate gene-gene interactions are estimated by pairwise

analysis of the expression profile using the mutual information. I

(gi, gj) = Iij is an information theoretic measure of relatedness

which is zero if P(gi) and P(gj) are independent variables, i.e. P(gi,

gj) = P(gi).P(gj). Choosing an appropriate threshold for the mutual

information can determine which gene expressions can be

considered related to each other. The mutual information in

ARACNE is computed using formula 1, where xi and yi represent

expression levels and P(xi) and P(yi) represent the probability that

X=xi. The mutual information threshold can be imported as an

input of ARACNE using a P-value parameter. This factor alone

suffers from the problem of considering indirect interactions.

MI(X ,Y )~
X

i,j

P(xi,yj)log
P(xi,yj)

P(xi)P(yj)
ð1Þ

Then. ARACNE removes candidate indirect interactions using

Data Processing Inequality (DPI) property, which is a well-known

information theoretic measure. If formula 2 holds for the mutual

information values between g1, g2, and g3, then DPI states that

genes g1 and g3 only have relations because of their relations with

the third gene, g2, and they do not have a direct relation between

themselves.

I(g1,g3)ƒmin½I(g1,g2); I(g2,g3)� ð2Þ

ARACNE was used for construction of a co-expression network

for the expressed data. For construction of a ‘‘genome-scale co-

expression network’’, the co-expression network was constructed

according to the genes obtained from gene mutation data, GWAS

data, array-CGH, CGH and SNP-array analysis. These genes

(obtained through data integration) were used as a hub at the

entrance of ARACNE so that the co-expression network is

constructed on the basis of these genes.

Clustering of ‘‘genome-scale co-expression network’’
Topological characteristics of the co-expression network were

examined by Cytoscape 2.8.3 [25] and for clustering, ClusterONE

[26] and MCODE [27] were used. ClusterONE, a Cytoscape

plugin for clustering, was used as the clustering method in this

section. This algorithm is fast and can be run in a command-line

mode, which does not need to load the large genome wide network

in Cytoscape. ClusterONE is designed to find densely connected

subgraphs of a network by maximizing edges (weights) within a

cluster and minimizing edges (weights) between different clusters.

It allows the overlapping of subgraphs (clusters), which are

necessary in gene co-expression networks, since a gene may take

part in more than one functional module.

MCODE is another method for clustering that was used herein.

MCODE is a clustering algorithm, which can be used for directed

or undirected graphs. With our undirected co-expression graph,

we can summarize MCODE algorithm in three steps: vertex-

weighting, complex prediction, and the optional post-processing

phase. The vertex-weighting function is defined as the product of

the vertex core-clustering coefficient and the highest k-core level of

the immediate neighborhood of the vertex. This weighting scheme

defines a measure of local density for a vertex’s neighborhood. In

the second stage, complexes with high vertex weight are used as

seed and the complex neighbor vertices are checked to see if they

are a part of this complex or not. This check is done using a weight

threshold on the percentage weight vertex, which, is away from the

weight of the seed vertex. This process is repeated until no other

vertex can be added to this complex. In this way, complexes are

detected. In the third phase, a post-processing is done in which

some complexes may be removed (if they do not have a minimum

degree of 2), and some complexes may enlarge according to a

given fluff parameter. MCODE main algorithm – until step 2 –

Figure 1. A framework with the purpose of ‘‘genome-scale co-expression network’’ construction and corresponding analysis.
doi:10.1371/journal.pone.0067552.g001
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results in non-overlapping subclusters, which are not suitable for

clustering co-expression networks in which a gene may take part in

more than one module. The only possible overlap in MCODE can

happen in the third phase of the extending complexes.

Results

Mutated genes and identified genes by GWAS in lung
adenocarcinoma
All 141 mutated genes selected from gene mutation databases

were related to lung adenocarcinoma. In addition, 41 genes were

chosen from the studies related to GWAS, which were previously

published. The number of the genes reached 181 unique genes in

total, as listed in the Table S1.

CNV analysis
Our studies, along with several other ones, have shown that

some of the regions including loss and gain in all types of NSCLC

are quite different. For this reason, we focused on lung

adenocarcinoma to get better results, considering a subtype from

NSCLC. CNV analysis was done through the integration of SNP-

array, CGH and array-CGH data. Only those loci from gain and

loss were chosen which were already present in both. Array-CGH

data were obtained from CGMD database with nine lung

adenocarcinoma cell lines. Figure 2 depicts the regions having

gain (duplication) and loss (deletion) in different cell lines. Gain

and loss items were chosen from only those common in at least 40

percent of all cell lines. Gain items were 2p13, 3q25-29, 5p12-15,

5q23, 5q33-35, 7p11-22, 8q22-24, xq12-28, xp11-22 and 4q13,

and loss items were 3p12-21, 8p22-23, 9p13, 9p21-23, 9q13, 9q21

and 13q21-34.

SNP-array analyses were performed using Genotyping console

4.0 and Gain and loss items were chosen in such a way that only

those common in at least 15 percent of all cell lines were collected.

Gain items involved some regions of 1q, 2p11.2, 3q26.1, 5p15.33,

some regions of 5q, 6p25.3, 7q21.11, 14q13.2, some regions of 8,

10q11-22, 12p11-12, some regions of 14q, 15q11.2, 16p11, some

regions of 17p and 18q, 19q12, some regions of 20, 22q11, some

regions of Xq and Yp11.2 and loss items included 8p11.22,

9p11.2, 3q29, 17p11.2, 1q21.1-2, 3p12.3, some regions of 15q and

xp22. Figure 3 shows gain and loss regions caused by SNP-array

analysis. Then, another filtering was carried out to increase the

precision of the loci including gain and loss items, so that finally

those loci were chosen that existed among the output of array-

CGH, CGH and SNP-array analyses. These loci, along with their

genes downloaded from Entrez Gene, are provided in Table S2.

The total number of all these genes is 3652.

Reconstruction of ‘‘genome-scale co-expression
network’’
For construction of a ‘‘genome-scale co-expression network’’,

using ARACNE, the co-expression network was constructed

according to the genes obtained from gene mutation data, GWAS

data, array-CGH and SNP-array analysis in such a way that the

genes obtained from gene mutation data and GWAS data (Table

S1) were merged with the genes obtained from CNV analysis

(Table S2). After the merger of the obtained 3833 genes, no more

than 1588 ones included Probe and GO term and we only used

those genes, which contained probe and GO term. These 1588

genes (Table S3) were used as hubs at the entrance of ARACNE so

that the co-expression network is constructed on the basis of these

genes. This co-expression network was named ‘‘genome-scale co-

expression network’’, because the co-expression network was

constructed on the basis of the genome-scale data. We used

ARACNE with the following parameter settings in Table 1.

Since we used ‘‘–s’’ option (Table 1) , the resulting components

each has at least one gene from our manually created gene set, and

the components not including these genes were removed from the

results. This is because we didn’t want to interpret any result that

was not included in our gene set, therefore, this helped to reduce

the computation needed to get our final co-expression network.

ARACNE was implemented with P-values of 0.03 and 0.05,

however, it led to no significant difference in the final clustering

results and this is why from this point ahead, the results with P-

value of 0.05 were employed.

The resulting ARACNE co-expression network on our micro-

array expression data of 54675 probes has 43058 nodes and

2015975 edges. This large network is comprised of 12 connected

components as follows: One component (the largest) with 43031

nodes and 2015959 edges, eight components containing only 2

nodes (therefore 1 edge), two components with 4 nodes and 3

edges, and one component with 3 nodes and two edges.

Clustering of ‘‘genome-scale co-expression network’’
To analyze the results, we applied clustering on the ‘‘genome-

scale co-expression network’’ generated by ARACNE. Clustering

Figure 2. Gain and loss comparison obtained from CGH and CGH-array analysis in different lung adenocarcinoma cell lines.
doi:10.1371/journal.pone.0067552.g002
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algorithms are used to find important sub networks or modules.

The results were first obtained from clustering with MCODE but

the results were not well-clustered because the clustering was

performed on the basis of network topology regardless of the edge

weight. Therefore, clusterONE was used which performs cluster-

ing on the basis of the edge weight (MI).

We ran ClusterONE with its default parameter settings on the

basis of MI. ClusterONE output was 91 clusters or modules

including 2237 genes (considering overlapping cluster genes).

Some of the clusters turned out to be subclusters of other larger

clusters, therefore omitting such subclusters the final number of

clusters was reduced from 91 to 23, including 972 genes. Many of

the genes are repeated in more than one cluster and overall, there

were 450 unique genes out of 23 modules. These clusters are

available in Table S4. The co-expression network is made around

the axis of the hubs, where all the resulting modules contain at

least on hub. For each module, the full data (probe ID, gene full

name, synonym, GO…) are provided in Table S5.

Discussion

Our results have detected 23 key modules in lung adenocarci-

noma, which are accessible in detail in Table S5. Since EGFR

signaling plays a key role in NSCLC, we have mainly chosen

modules 1 and 22 (which contain EGFR) as representative

modules for our discussion. The merger of the two modules with

the most identical genes (named ‘‘Merged-module’’ in this study) is

depicted in Figure 4 and Figure 5. Figure 5, illustrates the first

neighborhood of an EGFR node in Merged-module whose genes

were underlined. It is explained below that many of the identified

genes play critical roles in different types of cancer. Additionally,

other selected modules will be discussed briefly.

Various studies have shown that EGFR signaling plays a very

important role in NSCLCs [28,29,30,31,32]. Since EGFR

signaling is crucial for the cell survival and proliferation, it might

be the main reason for tumor progression in NSCLC. EGFR

signaling activates Ras/ERK, PI3K/Akt and STAT activation

pathways. These three pathways are the main routes for the cell

proliferation and survival [33,34,35]. Therefore, mutations that

lead to excessive activation of these pathways may cause cancer.

There are many reports on EGFR over-expression in NSCLC

[30]. Hirish et al. [36], Mukohara et al. [31] and Rush et al.

showed that the over-expression occurred in 62%, 78% and 98%

of NSCLCs, respectively. Hirsh et al. via FISH [36], Gandi et al.

via qPCR, CGH and FISH [29] showed a significant correlation

between EGFR gene copy number increase with increasing EGFR

expression. Knowing that the clustering was performed on the

Figure 3. A schema of the loss and gain obtained from SNP-array analysis.
doi:10.1371/journal.pone.0067552.g003

Table 1. Parameter settings used for ARACNE.

Parameter Value

List of probes for which a subnetwork will be constructed (-s) 1588 probes (Table S13))

P-value for MI threshold (-p) 9.14511467E-7 (0.05/number-of-probes)

Algorithm (accurate|fast : -a) Accurate

Kernel width (-k) default: determined by program

MI threshold (-t) 0

doi:10.1371/journal.pone.0067552.t001
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basis of MI, it is concluded that other genes present in the Merged-

module are in accordance with the same expression pattern as that

of EGFR. As such, all of these genes show over-expression in lung

adenocarcinoma.

The PI3K-Akt pathway is deemed a potential regulator of the

cell survival and proliferation. Some of the genes such as PIK3CA,

TAF15, VAPB, Appl1, Rab5a, ARF4, and XIAP in Merged-

module activate the PI3K-Akt pathway and are overexpressed in a

manner similar to that of EGFR in lung adenocarcinoma. The

Phosphoinositide-3-kinase catalytic alpha (PIK3CA) incearsed

activity has been observed in a number of human cancer types

such as breast, colon, liver, brain, stomach and lung [37]. TAF15

gene is also upregulated in liposarcoma [38]. XIAP protein over-

expression has been identified in six NSCLC cell lines [39] and its

inhibition triggers apoptosis in human lung adenocarcinoma A549

cells [40]. A genome-wide microarray analysis demonstrated that

VAPB has been frequently overexpressed or amplified in breast

cancer. Over-expression of VAPB in MCF10A-HER2 cells

increases Akt phosphorylation [41]. Appl1 is known as an adaptor

that takes part in cell signaling through interaction with different

signaling molecules involving Akt, PI3-kinase (PI3K), Rab5,

adiponectin receptor and TrkA [42,43]. Rab5a being activated

by Appl1 is significantly overepressed in ovarian cancer and is

connected with lung, hepatocellular and stomach carcinomas [44].

Another gene in Merged module is ADP-ribosylation factor 4

(ARF4) that activates EGFR signaling has an anti-apoptotic

function in human glioblastoma-derived U373MG cells [45].

Figure 4. 95 genes in Merged-module; each node denotes a gene in Merged module and edges depict co-expressed genes
relationships.
doi:10.1371/journal.pone.0067552.g004

Figure 5. The first neighborhood of EGFR node in Merged-
module.
doi:10.1371/journal.pone.0067552.g005
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Shigematsu et al. [46] and Sordella et al. [47] disclosed the activity

of PI3K/Akt pathway in NSCLC. Herein, we have unraveled the

over-expression of the above genes, which cause Akt over-

activation. PIK3CA, XIAP and Rab5a have previously been

reported in lung cancer and we have reported the effect of the rest

of the mentioned genes for the first time.

Furthermore, two genes in Merged-module i.e. CLPTM1L and

NFE2L2 are implicated in activation of the anti-apoptotic BCL2

family. The gain of CLPTM1L gene frequently occurs in the first

stages of NSCLC. CLPTM1L is an overexpressed protein in lung

tumor cells. Therefore, it denotes anti-apoptotic CLPTM1L

function as a probable mechanism of vulnerability to lung

tumorigenesis and resistance against chemotherapy [48]. NFE2L2

is a transcription factor up-regulated in the cell lines of pancreatic

cancer, ductal adenocarcinoma [49] and NSCLC [50,51]. We

have also revealed the over-expression of these two important

genes in lung adenocarcinoma.

In Merged-module, there are some transcription factors as

follows: SP4, ZNF124, LPP, FOXP1, SOX18, MSX2 and

NFE2L2. The mentioned transcription factors show the same

expression pattern as that of EGFR in lung adenocarcinoma. The

SP family members such as SP4 are responsible for the regulation

of the expression of a few genes such as EGFR. They are

connected to cancer cell proliferation, differentiation and metas-

tasis [52,53]. ZNF124 (ZK7) mRNA expression was detected in

several human tissues such as a number of leukemia cell lines [54].

With High-resolution array-CGH, Kang et al. [55] and Choi et al.

[56] have demonstrated the lipoma preferred partner (LPP) over-

expression in NSCLC. FoxP1 (Proteins of the Forkhead-box

family) has also been revealed to be expressed in many types of

human malignant tumors, while it is along with metastasis.

Elevated expression of FoxP1 has been demonstrated in NSCLC

[57], hepatocellular carcinoma and breast cancer [58,59]. SOX18,

another gene from the above transcription factors, is essential for

tumor-induced lymph-angiogenesis and metastasis and a probable

target for anti-angiogenic therapy of human cancers [60]. MSX2

is likewise a critical regulator of embryonic development that is

assumed to play a role in pancreatic and breast cancer [61].

Regarding the above explanation, these transcription factors,

being related to proliferation, survival and angiogenesis, play an

important role in lung adenocarcinoma. LPP, FOXP1 and

NFE2L2 have previously been reported in lung cancer and we

have reported the rest of the genes for the first time in lung

adenocarcinoma.

There are some genes in Merged-module that their products

take part in the transcription or splicing. These genes include

SMARCC1, TRA2B, CBX3 and PRPF6 that show the same

upregulation pattern as EGFR in lung adenocarcinoma and we

have reported all the mentioned genes for the first time in lung

adenocarcinoma. SMARCC1 protein upregulation has been

reported in prostate cancer [62], colorectal cancer [63] and

cervical intraepithelial neoplasia [62]. TRA2B over-expression

was observed in endometrial cancers [64], Gastric cancer cells [65]

and cervical cancer [66]. In addition, elevated levels of CBX3

expression in tumor stem cell (TSC)-enriched osteosarcoma

cultures was detected [67]. PRPF6 is excessively expressed in the

lymph node of lymphoma and is believed to be a probable target

for tumor metastasis studies [68]. Regarding the roles of these

factors in other cancers and their upregulation in Merged-module,

it is possible to infer an important role for them in lung

adenocarcinoma.

Four genes i.e. ATP6V1C1, MYBBP1A, MACF1 and MYO10

in Merged-module are connected to metastasis and migration.

The increased levels of these gene expressions may be among the

triggering factors of lung adenocarcinoma metastasis. The

ATP6V1C1 has been shown to be involved in metastasis and

multiple drug resistance. The ATP6V1C1 level is considerably

high in oral squamous cell carcinoma [69,70]. MYBBP1A is

another gene in Merged module besides being a key regulator in

tumor cell proliferation and migration e.g. head and neck

squamous cell carcinoma [71]. MACF1 (ACF7) which is brought

to the cell membrane via APC (adenomatous polyposis coli) in

response to ERBB2 is the key factor for microtubule capture.

MYO10 is the myosinX coding gene which is associated with

Filopodia formation. This phenomenon has been detected in

basal-type breast carcinoma [72]. We have discovered

ATP6V1C1, MYBBP1A, MACF1 and MYO10 upregulation in

lung adenocarcinoma and accordingly, it is concluded that these

genes have an important role in lung adenocarcinoma metastasis

and we have reported all the mentioned genes for the first time in

lung adenocarcinoma.

Two other important genes i.e. GRM2 and TBXA2R in

Merged-module being from the GPCR superfamily, showed over-

expression in lung adenocarcinoma. PKA, another important gene

found in GPCR signaling showed over-expression as well.

Subtypes of GRM2 (mGluR2) are involved in the pathogenesis

of diverse cancer types like breast cancer [73], medulloblastomas

and gliomas in such a way that GRM2 is overexpressed in all of

these cancers [74]. GRM2 keeps the activity of ERK and PI3K

pathways. Both pathways are activated in response to EGF [75].

For this reason, we could observe EGFR-like GRM2 over-

expression in lung adenocarcinoma. Breast tumor tissues express

higher levels of TBXA2R [76]. One of the important factors in

GPCR signaling is the regulatory subunit of PKA named

PRKAR2A, which is overexpressed in lung adenocarcinoma

[77,78]. Elevated expression of Protein kinase A regulatory subunit

has been found in primary tumors [79], AML and colorectal

cancer [80]. We have reported all the mentioned genes for the first

time in lung adenocarcinoma.

PTK2 [81,82], PGF [83,84], SLCO4A1 [85] and Cdc27 [86]

are among the genes in Merged-module whose over-expression

has been reported in different cancers including lung cancer and

we have shown it as well. CDK13, BMP1, RNF13, MAT2A,

CHRNA4 are also among the genes in Merged-module whose

over-expression has been reported in different cancers, however,

their over-expression has been demonstrated in lung adenocarci-

noma in this study.

It is commonly accepted that the unleashed proliferation of

cancerous cells is contingent on rising protein synthesis and the

number of ribosomes. EIF3B that codes one of the EIF3A subunits

is one of the Merged-module genes. EIF3B is a crucial part of the

EIF3 complex that is implicated in tumor formation [87].There-

fore, it is concluded that EIF3B plays a critical factor in

enhancement of protein synthesis in lung adenocarcinoma. In

some other modules, ribosomal protein genes named RPS20,

RPL8 and RPS4X besides EIF3E, EIF3H, EIF1B, EIF4A2 and

EIF2B5 are present. On the basis of these results, the current

studies suggest that translation plays a pivotal role in tumor

progression.

It is evident that cell cycle regulatory factors play vital roles in

different types of cancer. We have observed similar expression

patterns in modules 3 and 12 in the genes whose products play

important roles in cell cycle regulation. These genes are CCNA2

(Cyclin A2), CCNB2 (Cyclin B2), CDK1, CDK5, CDC27,

CDCA5, CDCA8, ASPM, BUB1, KIF15, KIF2C, NEK2,

NUSAP1, PRC1, SMC4, SYCE2, TFDP1, CDC42 and ARH-

GEF9 (CDC42 regulator) that show over-expression in lung

adenocarcinoma. These factors are all connected with cell cycle

Co-Expression Network in Lung Adenocarcinoma
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progression and their over-expression leads to tumor progression

in lung adenocarcinoma.

Cyclin A2 (CCNA2) takes control of both S phase and G2/M

transition regarding Cdk2 and Cdk1, respectively. In S phase,

Cyclin A2 undertakes the initiation and progression regulation of

DNA synthesis. Through the G2/M transition, Cyclin A2 has a

crucial role in triggering Cyclin B1–Cdk1 activation [88,89].

CDK1 andCDK2 are CDK partners of A- and B- cyclins. A-type

cyclins are capable of binding both CDK1 and CDK2, however,

B-type cyclins are associated with CDK1 [90]. CDCA5 (Sororin)

joins the cohesin complex to regulate the segregation of sister

chromatids. Sororin undergoes phosphorylation in mitosis. Sor-

orin is one of the phosphoproteins and protein kinases such as

Cdk1/cyclinB and ERK2 regulates its dynamic localization and

function [91]. On the basis of what previously mentioned,

CDCA5, CDK1, CCNA2 and CCNB2 functions are dependent

to each other and we have identified a similar expression pattern

in lung adenocarcinoma in a way that all were upregulated

together. CDCA8 (Borealin), ASPM, BUB1, KIF15, KIF2C,

NEK2, NUSAP1, PRC1, SMC4 and SYCE2 genes are involved

in cell division. Since the functions of the mentioned genes are

related, their expression patterns turned out to be similar in our

study.

CDCA7 expression is controlled by E2F1 and MYC factors that

play important roles in cell cycle[130]. CDCA7 is frequently

overexpressed in human cancers such as chronic myelogenous

leukemia and lung cancers [92]. We have unraveled its over-

expression in lung adenocarcinoma. Cdc42 is overexpressed in

many of primary lung cancer patients, and Cdc42 over-expression

is significantly associated with high TNM stages and lymph node

metastasis [93] and its role has recently been proved in lung cancer

[94]. ARHGEF9 (Cdc42 guanine nucleotide exchange factor 9)

selectively activates Cdc42 [95]. We have proved the over-

expression of CDC42 and ARHGEER9 factors in lung adeno-

carcinoma.

Conclusion

Various studies have shown that EGFR signaling plays a very

important role in NSCLC [28,29,30,31,36]. Since, EGFR

signaling is crucial for cell survival and proliferation; it might be

the main reason for tumor progression in NSCLC. EGFR

signaling activates Ras/ERK, PI3K/Akt and STAT activation

pathways. These three pathways are the main routes for cell

proliferation and survival [33,34,35,96,97,98]. Four different

reports have revealed an increase in PI3K/Akt and pSTAT3

activation pathways in NSCLC with EGFR mutation

[46,47,99,100]. Shigematsu et al. [46] and Sordella et al. [47]

believe that EGFR mutation is specially exerting effects on PI3K/

Akt and STAT3 having a minute effect on ERK activation (Ras/

ERK pathway). But Mukohara et al. [31] through wet-lab and

Bidkhori et al. [32] through in silico investigations have shown that

in NSCLC, frequency levels of all three pSTAT3, pAkt and pERK

are high. Besides, Amann et al. [101] and Vicent et al. [102] have

shown that in NSCLC samples with EGFR mutation, pERK level

is high. Our results prove that most of the overexpressed genes

whose products take part in EGFR signaling pathway can activate

PI3K/Akt pathway much more than the other two pathways.

Furthermore, most of the mentioned genes products mainly

belong to the PI3K/Akt pathway compared to the othe two

pathways.

In this study, a number of genes have been identified for the first

time to be implicated in lung adenocarcinoma. Some of these

genes play pivotal roles in other cancer types such that they are

considered as therapeutic targets. To manage and contain the

investigation, we selected some modules among 23 modules as

mentioned above. In addition, there are some genes in other

modules that can have very important roles in lung adenocarci-

noma, namely DLGAP5, BIRC5, PSMD2, Src, TTK, SENP2,

PSMD2, DOK2, FUS among others. We suggest that the genes

discussed here can also be used as potential leads for wet lab

investigations.
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