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Abstract. A generalization of the classical discrete tomography
problem is considered: Reconstruct binary matrices from their absorbed
row and column sums. We show that this reconstruction problem can
be linked to a 3SAT problem if the absorption is characterized with the
constant β = ln( 1+

√
5

2 ).
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1 Introduction

Let A = (aij)m×n be a binary matrix and let be β ≥ 1. Then we can define the
absorbed row and column sums of A Rβ(A) and Sβ(A), respectively, as

Rβ(A) = R = (r1, . . . , rm) where ri =
n∑
j=1

aijβ
−j , i = 1, . . . ,m, (1)

and

Sβ(A) = S = (s1, . . . , sn) where sj =
m∑
i=1

aijβ
−i , j = 1, . . . , n. (2)

Then the reconstruction problem of binary matrices with absorption knowing
the projections along horizontal and vertical lines can be posed as

Reconstruction DA2D(β).
Instance: β ≥ 1, m, n, R ∈ N

m, and S ∈ N
n

Task: Construct a binary matrix A with size m× n such that

Rβ(A) = R and Sβ(A) = S . (3)
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If β = 1 then we have the classical reconstruction problem of binary matrices
without absorption (as summaries see e.g. [1,2]). Other β values are suitable
to describe the following model of the emission discrete tomography. Let us
suppose that the discrete object represented by the binary matrix A is in an
absorbing material having absorption coefficient µ. If we measure the horizontal
and vertical projections of A, then we have the absorbed row and column sums,
i.e., Rβ(A) and Sβ(A), where β = eµ. Some more explanation to the motivation
of this problem see [3,4]

Select, for example, the mathematically interesting case β = β0 where

β−10 = β−20 + β−30 (4)

giving a solution

β0 =
1 +
√
5

2
. (5)

In this paper we discuss the problem of reconstruction of binary matrices
from their row and column sums in the case of absorption characterized with
β0. A necessary and sufficient condition of uniqueness in this class is published
in [3,4].

In this paper we are going to connect this kind of reconstruction problem with
3SAT. The SAT and the different reconstruction problems have been connected
already in [5,6].

2 β0-Representation

Consider the row and column sums of the binary matrix A in the case of β = β0:

ri =
n∑
j=1

aijβ
−j
0 , i = 1, . . . ,m, and sj =

m∑
i=1

aijβ
−i
0 , j = 1, . . . , n. (6)

Using the terminology of numeration systems we can say that the finite (bi-
nary) word ai1 · · · ain is a (finite) representation in base β0 (or a finite β0-
representation) of ri for each i = 1, . . . ,m, and, similarly, a1j · · · anj is a β0-
representation of sj for each j = 1, . . . , n. The equations (6) mean also that
the row and column sums of A are nonnegative real numbers having a finite β0-
representation with n and m binary digits, respectively (including the eventually
ending zeros).

Let Bk denote the set of nonnegative real numbers having a β0-representation
with k binary digits (k > 1), formally,

Bk =
{ k∑
i=1

aiβ
−i
0 | ai ∈ {0, 1}

}
. (7)

Then
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ri ∈ Bn, i = 1, . . . ,m, and sj ∈ Bm, j = 1, . . . , n, (8)

are necessary conditions for the existence of a matrix A with

Rβ0(A) = (r1, . . . , rm) and Sβ0(A) = (s1, . . . , sn) . (9)

2.1 Switching in β0-Representations

The β0-representation is generally nonunique, because there are binary words
with the same length representing the same number. For example, on the base
of (4) it is easy to check the following equality between the 3-digit-length β0-
representations

100 = 011 . (10)

As direct consequences of (10), it is easy to see that

100 = 011
10x300 = 01x311

10x30x500 = 01x31x511
10x30x50x700 = 01x31x51x711

. . .

(11)

where x3, x5, x7, · · · denote the positions where both β0-representations have
the same (but otherwise arbitrary) binary digit. (That is, such kind of trans-
formation 1(0x)k−100 → 0(1x)k−111 (k ≥ 1) between the subwords of the β0-
representations can be performed without changing the represented value and
without changing the values in the positions indicated by x’s.) The transforma-
tions described by (10) and (11) are called switchings.

It is proved that any finite β0-representation of a number can be get from its
any other β0-representation by switchings.

Lemma 1. [3] Let a1 · · · ak and b1 · · · bk be different, k-digit-length β0-
representations of the same number. Then b1 · · · bk can be get from a1 · · · ak by
a finite number of switchings.

Consequence. If a1 · · · ak and b1 · · · bk are different, k-digit-length β0-representa-
tions of the same number, then there are positions i, i+ 1, i+ 2 (1 ≤ i ≤ k − 2)
such that there is a switching between a1 · · · ak and b1 · · · bk on these positions.

2.2 β0-Expansion

The k-digit-length β0-expansion is a particular k-digit-length β0-representation
that can be computed by the “greedy algorithm”: Let r ∈ Bk, then its β0-
expansion a1 · · · ak is determined as

r0 := r ,
ai := �β0 · ri−1, ri := {β0 · ri−1}, i = 1, . . . , k , (12)
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where �. and {.} denote the integer and fractional, respectively, part of the
argument. It is clear that the k-digit-length β0-expansion of any number r ∈ Bk is
uniquely determined (it is not the case with the k-digit-length β0-representations
as we saw it in the previous subsection).

The finite β0-expansion is characterized by the following property .

Proposition 1. [3] Let a1, . . . , ak ∈ {0, 1} (k ≥ 1). The word a1 · · · ak is the
β0-expansion of a number r ∈ Bk if and only if it has the form

a1 · · · ak = TUV , where T = 0 · · · 0, T = 1 · · · 1, or T = λ , (13)

(λ denotes the empty symbol),

U = U1 · · ·Uu, u ≥ 0, such that Ui = 10 · · · 0, i = 1, . . . , u,
(14)

and each Ui contains at least one 0,

V = 1 or V = λ (15)

and at least one of T , U , and V is not the empty symbol λ.

3 β0-Representation and 3SAT Clauses

We are going to describe the β0-representation by 3SAT expressions, that is,
by Boolean expressions in conjunctive normal form with at most three literals
in each clause. Let r be a real number having a k-digit long β0-representation,
a1 · · · ak. Let z1, . . . , zk be Boolean variables and L be a Boolean function of
z1, . . . , zk, that is, L = L(z1, . . . , zk). We say that the Boolean values a1, . . . , ak
satisfy L if L(z1 = a1, . . . , zk = ak) is true.

Now we are going to give the set of clauses, denoted by K, by which all
k-digit length β0-representations of any r ∈ Bk can be described for any k > 1.
Let a1 · · · ak the k-digit-length β0-expansion of r. Then, by Proposition 1,

a1 · · · ak = TUV ,

where T , U , and V are given by (13), and (14), respectively. Accordingly,

K = TT ∪ UU ∪ V V , (16)

where TT , UU , and V V denote the subsets of clauses describing the correspond-
ing parts T , U , and V .

First, consider the non-constant part of the β0-representations, U =
U1 · · ·Uu (u ≥ 0). On the base of Lemma 1 we know that all β0-representations
of any r ∈ Bk can be generated from the β0-expansion of r by elementary switch-
ings. Accordingly, the clauses UU have to describe the set of binary words gener-
ated from Uk by elementary switchings (see Fig. 1). The elementary switchings
done in U can be classified into two classes according to the places of switchings:
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(i) The switchings done in the positions of one Ui. (ii) The switchings done in the
positions of Ui and Ui+1, i.e. the last 1 of Ui “overflows” into the first position of
Ui+1 as a consequence of switchings. There can be such a switching if the length
of Ui is even and the length of Ui+1 is not less than 3 (see the β0-representations
in Fig. 1 indicated by arrows).

There are two consequences of overflowing switchings: We have different
clauses for Ui having even or odd length li and the sets of clauses of Ui, i =
1, · · ·u, are not completely independent.

The clauses of UU are given with the help of the Boolean variables
γj , δj , ϕj , ψj , and χj , j = w1, w1 + 1, · · · , wu + lu − 1, i.e. for all the variables
of UU . For each j exactly one of these variables has value 1 (see the clauses
of POSITIONS later). For this reason each binary word satisfying the clauses
described by these variables can be represented in a 1-to-1 correspondence by
a word of the alphabet {γ, δ, ϕ, ψ, χ}, indicating which variable has value 1 on
that position. For example, z1z2z3 = ψγδ means that γ1 = 0, γ2 = 1, γ3 = 0,
δ1 = 0, δ2 = 0, δ3 = 1, ϕ1 = 0, ϕ2 = 0, ϕ3 = 0, ψ1 = 1, ψ2 = 0, ψ3 = 0,
χ1 = 0, χ2 = 0, χ3 = 0. The variables γj , δj , ϕj , ψj , and χj describing the
clauses of UU will be transformed to 0’s and 1’s as follows:

ϕj ⇒ aj = 0, δj ⇒ aj = 1, ψj ⇒ aj = 0, γj ⇒ aj = 1, χj ⇒ aj = 1 . (17)

Continuing the previous example, then ψγδ = 011.

Ui Ui+1 corresponding representations
| 100000 | 10000 | | δϕϕϕϕϕ | δϕϕϕϕ |
| 011000 | 10000 | | ψγδϕϕϕ | δϕϕϕϕ |
| 010110 | 10000 | | ψγψγδϕ | δϕϕϕϕ |
| 100000 | 01100 | | δϕϕϕϕϕ | ψγδϕϕ |
| 011000 | 01100 | | ψγδϕϕϕ | ψγδϕϕ |
| 010110 | 01100 | | ψγψγδϕ | ψγδϕϕ |
| 010101 | 11100 | | ψγψγψγ | χγδϕϕ | ←−
| 100000 | 01011 | | δϕϕϕϕϕ | ψγψγδ |
| 011000 | 01011 | | ψγδϕϕϕ | ψγψγδ |
| 010110 | 01011 | | ψγψγδϕ | ψγψγδ |
| 010101 | 11011 | | ψγψγψγ | χγψγδ | ←−

Fig. 1. All β0-representations of UiUi+1 generated by elementary switchings and the
corresponding representations with the variables γ, δ, ϕ, ψ, and χ (when li = 6 and
li+1 = 5). The positions of Ui and Ui+1 are separated by vertical lines. The “overflow-
ing” 1’s are indicated by χ in the rows with arrows.

Let B(Ui) denote the set of (binary) sequences of Ui. Clearly,

B(Ui) = {01}b1{0}c, (18)
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where b and c are nonnegative integers such that b+1+ c = li. Then the binary
sequences of UiUi+1, B(UiUi+1), can be given as

B(UiUi+1) =

{
B(Ui)B(Ui+1), if li is odd
B(Ui)B(Ui+1) ∪ {01}li/21B(0)(Ui+1), if li is even,

(19)

where B(0)(Ui+1) denotes the set of subsequences created from those sequences of
B(Ui+1), where the first element is 0, by omitting just this first 0. For example,
if li = 6 and li+1 = 5 then B(Ui) = {100000, 011000, 010110}, B(Ui+1) =
{10000, 01100, 01011}, and B(0)(Ui+1) = {1100, 1011}.

We can describe these sequences with the letters γ, δ, ϕ, ψ, and χ as follows.
Corresponding to (18) and (19)

B(Ui) = {ψγ}aδ{ϕ}b, (20)

B(UiUi+1) =

{
B(Ui)B(Ui+1), if li is odd
B(Ui)B(Ui+1) ∪ {ψγ}li/2χB(ψ)(Ui+1), if li is even.

(21)

According to (17) ψ,ϕ denote 0, γ, δ, and χ denote 1. B and B(ψ) are defined
in these sequences analogously to (18) and (19). Examples of generated in this
way and the corresponding β0-representations are in Fig. 1.

The following sets of clauses will define a subword Ui.

DELTA =
wi+li−2∧
j=wi

(δj ⇒ ϕj+1) ∧
wi+li−1∧
j=wi+1

(δj ⇒ γj−1) ∧

[ li2 ]∧
j=1

δwi+2j−1 ∧ (ϕwi+1 ⇒ δwi) .

The position of δ is crucial, because knowing this position all the elements suc-
ceeding δ can be computed as it is described in the first part of this rule and
all elements preceding δ can be computed as it is described in the second part.
δ cannot be on an even position in the subword Ui. The last part of DELTA
expresses that if there is a ϕ in the second position then there is a δ in the first
one.

PHI =
wi+li−2∧
j=wi+1

(ϕj ⇒ ϕj+1) ∧ ϕwi .

In other words, ϕ can be followed only by ϕ and ϕ cannot stand on the first
position of the subword.

GAMMAPSI =
wi+li−1∧
j=wi+2

(γj ⇒ ψj−1) ∧
wi+li−2∧
j=wi

(ψj ⇒ γj+1) .
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The only predecessor of γ is ψ and the only successor of ψ is γ.

CHI =
wi+li−1∧
j=wi+1

χj ∧ (χwi ⇒ γwi+1) .

χ can stand only on the first position.

GAMMA =
wi+li−1∧
j=wi

(γj ⇒ ϕj+1) .

γ cannot be followed by ϕ.

POSITIONS =
[ li2 ]∧
j=1

(ϕwi+2j ∨ γwi+2j) ∧ (δwi ∨ ψwi ∨ χwi) ∧

[ li2 ]∧
j=1

(δwi+2j−1 ∨ ψwi+2j−1 ∨ ϕwi+2j−1) .

On an even position in a subword can be ϕ or γ, on the first position in the
subword can stand δ, ψ, or χ, and on odd positions in the subword can stand δ,
ψ, or ϕ. These are the only clauses containing 3 variables.

EV EN = (γwi+li−1 ⇒ χwi+li) .

Actually wi+ li = wi+1, the first element of the subword Ui+1. This means that
a subword with even length can influence the next subword. In this case the first
element is a χ followed by γ.

ODD = χwi+li ∧ ψwi+li−1 .

A subword with odd length cannot influence the next subword, this means that
the first element of the next subword cannot be χ and the last element cannot
be ψ.

DISJ =
li∧
j=1

(Aj ⇒ Bj), for symbols A,B ∈ {ϕ,ψ, γ, δ, χ}, where A �= B .

The clauses mean that exactly one of the variables ϕ, ψ, γ, δ, and χ has the
value 1, for each j = 1, · · · , li.
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The clauses for a subword Ui. Knowing the length of the subword Ui we
can construct a corresponding 3SAT expression:

Ki =




DELTA ∧ PHI ∧GAMMAPSI ∧ CHI

∧GAMMA ∧ POSITIONS ∧ODD, if li is odd

DELTA ∧ PHI ∧GAMMAPSI ∧ CHI

∧GAMMA ∧ POSITIONS ∧ EV EN, if li is even

(22)

The clauses describing UU . Let Γ = (γ1, · · · , γk), ∆ = (δ1, · · · , δk), Φ =
(ϕ1, · · · , ϕk), Ψ = (ψ1, · · · , ψk), and X = (χ1, · · · , χk) be the vectors of Boolean
variables. Then UU = UU(r;Γ,∆,Φ, ψ,X) is defined as follows:

UU =
u∧
i=1

Ki .

The clauses describing TT and V V . In these clauses the same variables
are as used in UU . Since the subwords corresponding to T and V have constant
values in each β0-representation of the same r ∈ Bk, the clauses describing these
parts are

TT =




γ1 = · · · = γlt = 0, δ1 = · · · = δlt = 0,
ϕ1 = · · · = ϕlt = 0, ψ1 = · · · = ψlt = 0, if T = 0 · · · 0;
χ1 = · · · = χlt = 1,

γ1 = · · · = γlt = 0, δ1 = · · · = δlt = 1,
ϕ1 = · · · = ϕlt = 0, ψ1 = · · · = ψlt = 0, if T = 1 · · · 1;
χ1 = · · · = χlt = 0,

φ, if T = λ ,

(23)

and

V V =

{
γk = 0, δk = 1, ϕk = 0, ψk = 0, χk = 0, if V = 1;
φ, ifV = λ ,

(24)

The clauses describing K. As we saw TT , UU , V V , and so K are defined
with the help of r, Γ , ∆, Φ, Ψ , and X, i.e.,

K = K(r;Γ,∆,Φ, Ψ,X) .

K is given by (16) explicitly.
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Theorem 1. Let r ∈ Bk and a1, . . . , ak be a binary word. a1, . . . , ak is a
β0-representations of r if and only if there are vectors Γ,∆,Φ, Ψ , and X of
Boolean values such that a1, . . . , ak is transformed by these vectors by (17) and
K(r;Γ,∆,Φ, Ψ,X) is true.

Proof. Let a1 · · · ak be a k-digit-length β0-representation of r. The corresponding
word of γ, δ, ϕ, ψ, and χ is uniquely determined on the base of the forms (20)
and (21). It is easy to check that all clauses of K (i.e. TT , V V , DELTA, · · · ,
DISJ) are satisfied by any word given by (20) and (21).

In order to prove the other direction, consider an arbitrary wordW satisfying
the clauses of K. W has the uniquely determined structure TUV , where T same
as (13), V same as (15) and U is a word of γ, ψ, ϕ, δ, and, χ. We have to show
that U is a sequence of subsequences Ui, each of them satisfying (20) and (21).
Knowing r we can determine the lengths li and positions of all Ui, i = 1, · · ·u.

Now we identify the subsequence Ui with length li starting from the end of
U .

1. li is odd. According to POSITIONS, in the lith position can be δ, ψ, or ϕ.
a. In the li position there is a δ. Now we have to prove that before δ there
are only pairs of ψγ. From DELTA it follows that in the position li − 1
there is a γ. Let γ the position 2j, before δ. From GAMMAPSI it
follows that in the position 2j − 1 there is a ψ. From POSITIONS it
follows that in the position 2j − 2 there can be ϕ or γ. If in the position
2j − 2 is a ϕ, then according to PHI in the position 2j − 1 should be ϕ
which is a contradiction (from DISJ) . This means, that in the position
2j − 2 is a γ, and let j = j − 1. This step has to be repeated till j > 1.
If j = 1, i.e. in the second position is γ, then from POSITIONS we
have that in the first position can be δ, ψ, or χ. If in the first position
is δ then from DELTA follows that in the second position should be ϕ
which is a contradiction. Conform to the equations (20) and (21), in the
first position can be ψ or χ, in this last case there is an overflow.

b. In the li position there is a ψ This in contradiction with ODD.
c. In the li position there is a ϕ. From POSITIONS it follows that in
the previous position can be ϕ or γ. If it is γ, then from GAMMA it
follows that in the lith position cannot be ϕ which is a contradiction.
This means, that in the position li − 1 is ϕ. If li − 2 = 1 then in this
position is δ (from DELTA). If li − 2 > 1 then from POSITIONS it
follows that in the position li − 2 can be δ, ψ, or ϕ. If in the position
i − 2 is δ then similar to Case a. we can prove that Ui satisfies (20)
and (21). If in the position li − 2 is ϕ then similar to Case c. we can
prove that Ui satisfies (20) and (21). If in the position li − 2 is ψ then
from GAMMAPSI follows that in the position li − 1 is γ and this is in
contradiction with DISJ .

2. li is even. According to POSITIONS in the position li can be ϕ or γ. If
it is ϕ then using a similar deduction as in Case C. we can prove that Ui
satisfies (20) and (21). If in the position li is γ, then conform EV EN in the
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next position is χ and conform CHI in the position li+2 is γ, which means
that Ui satisfies (20) and (21).

4 The Reconstruction Algorithm

In order to solve the reconstruction problem DA2D(β0) we express the β0-
representations of the absorbed row and column sums with 3SAT clauses.
Boolean variables Γ (h) = (γ(h)ij )m×n, ∆(h) = (δ(h)ij )m×n, Φ(h) = (ϕ(h)ij )m×n,

Ψ (h) = (ψ(h)ij )m×n, and X(h) = (χ(h)ij )m×n are for describing relations of column

sums (h stands for horizontal), and Γ (v) = (γ(v)ij )m×n, ∆
(v) = (δ(v)ij )m×n, Φ

(v) =

(ϕ(v)ij )m×n, Ψ
(v) = (ψ(v)ij )m×n, and X(v) = (χ(v)ij )m×n for describing relations of

column sums (v stands for vertical), Let, furthermore, Γ (h)i· = (γ(h)i1 ), · · · , γ(h)in )
be the ith row of Γ (h), i = 1, · · · ,m and Γ

(v)
·j = (γ(v)1j ), · · · , γ(V )mj )

T be the jth

column of Γ (v), j = 1, · · · , n. ∆(h)
i· , Φ

(h)
i· , Ψ

(h)
i· , X

(h)
i· , ∆

(v)
·j , Φ

(v)
·j , Ψ

(v)
·j , and X

(v)
·j ,

be defined similarly.

The clauses describing the rows and columns. Now we can describe a
whole row of the discrete set to be reconstructed by the following subset of
clauses:

K(h)(ri;Γ
(h)
i· , ∆

(h)
i· , Φ

(h)
i· , Ψ

(h)
i· , X

(h)
i· ) = TT ∧ UU ∧ V V, i = 1, · · · ,m ,

where TT , UU , and V V are defined in the previous section. All clauses describing
the absorbed row sums are given by

L(h) = L(h)(R,Γ (h), ∆(h), Φ(h), Ψ (h), X(h))

=
m∧
i=1

K(h)(ri;Γ
(h)
i· , ∆

(h)
i· , Φ

(h)
i· , Ψ

(h)
i· , X

(h)
i· ) . (25)

Similarly, the columns can be described by

K(v)(sj ;Γ
(v)
·j , ∆

(v)
·j , Φ

(v)
·j , Ψ

(v)
·j , X

(v)
·j ) = TT ∧ UU ∧ V V, j = 1, · · · , n ,

and

L(v) = L(v)(R,Γ (v), ∆(v), Φ(v), Ψ (v), X(v))

=
m∧
i=1

K(v)(sj ;Γ
(v)
·j , ∆

(v)
·j , Φ

(v)
·j , Ψ

(v)
·j , X

(v)
·j ) . (26)
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The clauses describing the binary matrix. The last step is to define the
connections between the Boolean matrices

CONN = (
∧
i1,j1

ϕ
(h)
i1,j1 ⇒ γ

(v)
i1,j1) ∧ (

∧
i1,j1

ϕ
(h)
i1,j1 ⇒ δ

(v)
i1,j1) ∧ (

∧
i1,j1

ϕ
(h)
i1,j1 ⇒ χ

(v)
i1,j1) ∧

∧(
∧
i1,j1

ψ
(h)
i1,j1 ⇒ γ

(v)
i1,j1) ∧ (

∧
i1,j1

ψ
(h)
i1,j1 ⇒ δ

(v)
i1,j1) ∧ (

∧
i1,j1

ψ
(h)
i1,j1 ⇒ χ

(v)
i1,j1) ∧

∧(
∧
i1,j1

γ
(h)
i1,j1 ⇒ ϕ

(v)
i1,j1) ∧ (

∧
i1,j1

γ
(h)
i1,j1 ⇒ ψ

(v)
i1,j1) ∧ (

∧
i1,j1

δ
(h)
i1,j1 ⇒ ϕ

(v)
i1,j1) ∧

∧(
∧
i1,j1

δ
(h)
i1,j1 ⇒ ψ

(v)
i1,j1) ∧ (

∧
i1,j1

χ
(h)
i1,j1 ⇒ ϕ

(v)
i1,j1) ∧ (

∧
i1,j1

χ
(h)
i1,j1 ⇒ ψ

(v)
i1,j1) .

The 3SAT expression describing the whole discrete set is:

L(h) ∧ L(v) ∧ CONN . (27)

That is, in order to solve the reconstruction problem DA2D(β0) we have to
do the following steps:

1. Determine the β0-expansions of ri, i = 1, · · · ,m, and j = 1, · · ·n.
2. On the base of β0-expansions give the 3SAT expression (27).
3. Solve the 3SAT problem using an efficient SAT solver (e.g. CSAT, see [7]).
4. If there is a solution of the 3SAT problem, give the binary matrix solution
on the base of (17).

5 Discussion

A method is given to solve the reconstruction problem DA2D(β0), i.e., to re-
construct a binary matrix from it absorbed row and column sums, when the
absorption can be represented by the special value β0. It is shown that the prob-
lem DA2D(β0) can be transformed to a 3SAT expression such that if there is a
solution of the 3SAT expression then it gives also a solution of the reconstruction
problem (see Section 4).

It is a natural question that how this method can be extended to other values
of β. We believe that this idea is specific and cannot be generalised directly to
all possible values of β. However, it is relative easy to show that very similar
results are true for β’s having the property

β−1 = β−2 + β−3 + · · ·+ β−l ,

where l ≥ 3. Then the switchings can be described by similar relations as in (11),
β-representations can be given similarly as in Section 3, and so the reconstruction
problem can be reduced to a 3SAT problem in such cases.
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7. O. Dubois, P. André, Y. Boufkhad, and J. Carlier, SAT versus UNSAT, in Second
DIMACS Implementation Challenge, D. Johnson and M. A. Trick, eds., DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, AMS, 1993.


	Reconstruction of Binary Matrices from Absorbed Projections
	Introduction
	β_0-Representation
	Switching in β_0-Representations
	β_0-Expansion

	β_0-Representation and 3SAT Clauses
	The Reconstruction Algorithm
	Discussion
	Acknowledgements
	References


