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Reconstruction of Compressed-sensing MR Imaging  

Using Deep Residual Learning in the Image Domain

Shohei Ouchi* and Satoshi Ito

Purpose: A deep residual learning convolutional neural network (DRL-CNN) was applied to improve 

image quality and speed up the reconstruction of compressed sensing magnetic resonance imaging. �e 

reconstruction performances of the proposed method was compared with iterative reconstruction methods.

Methods: �e proposed method adopted a DRL-CNN to learn the residual component between the input 

and output images (i.e., aliasing artifacts) for image reconstruction. �e CNN-based reconstruction was 

compared with iterative reconstruction methods. To clarify the reconstruction performance of the proposed 

method, reconstruction experiments using 1D-, 2D-random under-sampling and sampling patterns that 

mix random and non-random under-sampling were executed. �e peak-signal-to-noise ratio (PSNR) and 

the structural similarity index (SSIM) were examined for various numbers of training images, sampling 

rates, and numbers of training epochs.

Results: �e experimental results demonstrated that reconstruction time is drastically reduced to 0.022 s 

per image compared with that for conventional iterative reconstruction. �e PSNR and SSIM were improved 

as the coherence of the sampling pattern increases. �ese results indicate that a deep CNN can learn coherent 

artifacts and is e�ective especially for cases where the randomness of k-space sampling is rather low. Simu-

lation studies showed that variable density non-random under-sampling was a promising sampling pattern 

in 1D-random under-sampling of 2D image acquisition.

Conclusion: A DRL-CNN can recognize and predict aliasing artifacts with low incoherence. It was demon-

strated that reconstruction time is signi�cantly reduced and the improvement in the PSNR and SSIM is 

higher in 1D-random under-sampling than in 2D. �e requirement of incoherence for aliasing artifacts is 

di�erent from that for iterative reconstruction.
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Introduction

MRI and X-ray computed tomography are commonly used 

medical diagnostic tools. MRI scanners produce high-

quality images without the damaging ionizing radiation of 

X-rays. However, the scan time of MRI is much longer than 

that of X-ray computed tomography. Numerous techniques 

have thus been proposed to speed up MRI scan time. The 

application of compressed sensing (CS)1,2 to MRI image 

acquisition (CS-MRI)3 has attracted much interest in recent 

years. CS is a signal recovery theory, proposed by Donoho 

et al.,1 that allows image reconstruction from fewer sampled 

signals than those required by the Nyquist–Shannon sam-

pling theorem. With the application of CS, scan time can be 

shortened by changing the imaging sequence and algorithm 

for image reconstruction. CS greatly differs from conven-

tional rapid imaging methods such as parallel imaging4,5 in 

that it does not require additional hardware for MRI (par-

allel imaging requires multiple coils and a signal receiving 

system). CS-MRI has the  problems of image quality degra-

dation due to the assumption of sparsity in the image space, 

insufficient randomness of measurement matrix and noises 
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superimposed on the images. An iterative reconstruction 

method is used to solve the minimization problem. The 

reconstruction time required per image is relatively long 

compared with that for standard  Fourier-transform-based 

methods. There is a great demand for fast reconstruction, 

because up to several hundred images are taken in diag-

nostic imaging.

Deep learning has received much attention because of its 

excellent performance in speech and image recognition.6,7 

Deep learning has been applied to medical image processing, 

including anatomic classification,8 super-resolution,9 and MRI 

image reconstruction.10–14 It takes a lot of time to train a con-

volutional neural network (CNN), because deep learning 

involves the computation of a function that maps some inputs 

to their corresponding outputs using a huge number of training 

images. However, once learning has been completed, rapid 

reconstruction with no iterative processing can be achieved.

The first application of CNN to MRI was the de-aliasing of 
alias-superimposed images obtained in parallel imaging, which 

is classified as image domain learning.11 They applied a multi-

layer perceptron to reduce aliasing artifacts generated by under-

sampling in k-space. Wang et al.10 used an image domain CNN 

for reconstruction from a randomly under- sampled signal; the 

images obtained from the CNN are used as a constrained 

reconstruction model in conventional CS iterative reconstruc-

tion. Lee et al.12 proposed a deep learning network for the 

reconstruction of MRI images in which a multi-scale network 

structure called U-Net is utilized to cope with globally distrib-

uted artifact patterns and phase image reconstruction. Hyun et 

al.13 applied a CNN for image reconstruction using a uniformly 

subsampled signal and showed that high-quality images 

without remarkable artifacts can be obtained. As an alternative 

to image domain learning, k-space learning has been proposed, 

with methods such as automated transform by manifold 

approximation (AUTOMAP), in which the transformation 

from the source signal (k-space signal) to the target image 

domain can be achieved via data-driven supervised learning.14 

Images can be reconstructed directly from an under-sampled 

k-space signal with AUTOMAP. However, the required number 
of parameters scales quadratically with input size, limiting 

practical applications. Therefore, training in the image domain 

is practical in the sense that fewer parameters make it easier to 

train the network and the network is less prone to overfitting.14

We applied deep residual learning (DRL) in image 

domain learning using a CNN to the image reconstruction 

problem using an under-sampled MRI signal. Zhang et al.15 

proposed a CNN in which DRL is adopted for removing 

noise from noisy images. DRL is integrated to speed up the 

training process and enhance denoising. Inspired by Zhang  

et al.’s network, we propose a CNN reconstruction method 

that uses DRL with a modified version of Zhang et al.’s 
 network. Our method predicts aliased image components 
caused by under-sampling using patch-based learning and 

then obtains an alias-free image by subtracting the predicted 

alias components from the input alias-superimposed image. 

A CNN has been previously applied to learning artifacts, 

with a large receptive field used to cover all artifacts.12 Patch-
based learning can detect local features in an image; Zhang  

et al.’s network shows great image denoising performance.

Since reconstruction process of DRL-CNN is different with 

conventional iterative reconstruction methods; i.e., sparsified 
transform functions are not used in DRL-CNN or  non-iterative 

process, therefore, reconstruction performance may differ in 

both methods. In this study, the performance comparison and 

evaluation of CS image reconstruction between DRL-CNN and 

iterative reconstruction methods were investigated using several 

under-sampling patterns. To clarify the reconstruction perfor-

mance of DRL-CNN, reconstruction experiments using 1D-, 
2D-random under-sampling and  sampling patterns that mix 
random and non-random under-sampling were executed using 
DRL-CNN and iterative methods, such as the iterative soft 

thresholding algorithm (ISTA),16 the Split Bregman method,17 

and the alternating direction method of multipliers (ADMM).18 

To the best of our knowledge, reconstruction experiments using 
a mixture of random and non-random under-sampling pattern 
have not been executed. These examinations reveal the charac-

teristics of the DRL-CNN and suggest the appropriate under-

sampling patterns.

Materials and Methods

As mentioned in before, DRL-CNN was adopted in proposed 

method. First, the characteristics of the DRL-CNN and the 

details of the DRL-CNN reconstruction is presented in  

Network structure of DRL-CNN section. Next, the mathemat-
ical explanation of image reconstruction using the output of 
CNN is described in Image reconstruction in DRL-CNN sec-

tion. Finally, iterative reconstruction methods compared with 

proposed method is explained in Comparison with iterative 

reconstruction methods section.

Network structure of DRL-CNN
The proposed DRL-CNN was designed to predict the residual 

image, i.e., the difference between the alias-superimposed 

image and the ground truth image, which is different from a 

typical CNN that predict the de-aliased image directly. 

According to He et al.,19 residual mapping is much easier for a 

CNN to learn than unreferenced mapping. Zhang et al. adopted 

residual learning together with batch normalization in a deep 

CNN and applied it to the image denoising problem. They 

quantitatively and qualitatively showed that this method has 

good image denoising performance. Our proposed CNN was a 
modified version of Zhang et al.’s denoising CNN. We used a 
leaky rectified linear unit (ReLU)20 instead of a ReLU. A leaky 

ReLU provides the slope of the negative part of the function as 

an argument, which makes it possible to perform the back-

propagation of a CNN and is expected to improve learning.
Figure 1 shows the network used in this study. The input 

layer has 64 filters of size 3 × 3 × 1 as a convolutional (Conv) 
layer and a leaky ReLU. The middle layers have a Conv layer 



CS Image Reconstruction Using Deep Residual Learning

3Magnetic Resonance in Medical Sciences

with 64 filters of size 3 × 3 × 64, batch normalization, and a 
leaky ReLU. The output layer has a Conv layer with a filter of 
size 3 × 3 × 64. The kernel size of the Conv layer was set to  
3 × 3. All these parameters were determined according to the 
visual geometry group (VGG) network by Simonyan and Zis-

serman.21 In the  de-aliasing of MRI images, the size of the 

output image should be the same as that of the input aliased 

image. Therefore, simple zero data padding at the boundary 

before the Conv operation was carried out to make the feature 

map of the middle layers have the same size as that of the input 

image. Zhang et al. showed that this simple zero padding 

strategy has good denoising performance without boundary arti-

facts. With these layer configurations, the receptive field of the 
network, which is defined as the region in the input space that a 
particular CNN is looking at, was given by (2d + 1) × (2d + 1), 

where d is the total number of layers, for a kernel size of 3 × 3.

Image reconstruction in DRL-CNN
The image reconstruction procedure used in this study can be 

divided into two steps: reconstruction step by DRL-CNN and 

data consistency step, as shown in Fig. 2.

(a)  Reconstruction by DRL-CNN: Let the under-sampled 

signal and original image (ground truth) vector be 

y
N

Î , x N
Î , respectively and the full Fourier 

encoding matrix be F N N
Î ´ , then Fx represents the full 

k-space data. Consider a diagonal matrix representing 
the under-sampling mask as U N N

Î ´ , then the under-

sampled k-space signal can be expressed as UFx and 

zero-filled image xz is obtained by Eq. (1),

    x F UFx
z

H
= , (1)

   where H represents the Hermitian transpose operation. 

Aliasing artifacts v caused by under-sampling will super-

imposed on the zero-filled image xz. In this time, xz can be 

expressed as Eq. (2):

   x x v
z
= + . (2)

   When the original mapping is more like an identity map-

ping, the residual mapping will be much easier to be 

 optimized.19 Zero-filled image xz is much more like the 

fully scanned image x and close to identity mapping. 

Therefore, residual learning formulation is more suitable 

for image de-aliasing in DRL-CNN. Let R(xz) be the 

residual mapping to predict v ( ( ) )R x v
z
» , reconstructed 

image x′ is obtained by Eq. (3):

     x x R x
z z

¢ = - ( ) . (3)

(b)  Error reduction of the k-space signal: It is reasonable to 

keep the measured signal data y in non-zero-filled part, 
and replace the zero-padded part with predicted k-space 

data Fx′. This data consistency step will reduce the mean 
squared error in k-space and the quality of resultant 

image is expected to be improved.13 Hereinafter, this 

technique is called the data consistency step in k-space, 

and the DRL-CNN resulting from performing this pro-

cess is called the DRL-CNN-K.

  y F y I U Fx
H¢ ¢= + -{ }( ) . (4)

   The loss function used to update the network parameter is 

the mean squared error l( )Q  between the true and estimated 

Fig. 1 The network structure of DRL-CNN. The input layer has 64 filters of size 3 × 3 × 1 by Conv and the Leaky ReLU. The intermediate 
layers have Conv with 64 filters of size 3 × 3 × 64, batch normalization, Leaky ReLU. The output layer has Conv with a filter of size  
3 × 3 × 64. Proposed method predicts aliased image components cause by under-sampling using patch-based learning and then obtain 
aliased-free image by subtracting the predicted alias components by the input alias super-imposed image. Conv, convolution; DRL-CNN, 
deep residual learning convolutional neural network; Leaky ReLU, leaky rectified linear units.



S. Ouchi et al.

4 Magnetic Resonance in Medical Sciences

artifacts. The loss function for the i-th image in the total 

number of N training images is defined as Eq. (5):

 l
N

R x x x
zi zi ii

N

( ) ; ( )( )Θ Θ= − −
=∑

1

2 1 2

2

, (5)

where Q  is the network parameter.

Parallel imaging which install multiple receiver coils is 
widely used in practical use of MR scan, therefore, CS and 

parallel imaging will be used together in practical applica-

tions of CNN. This paper focuses solely on under-sampling 

signal supposing the use of single receiver coil MRI to eval-

uate the difference in obtained image quality between DRL-

CNN and conventional iterative reconstruction methods.

MR images used in this studies are proton-density-weighted 

(PDW), T1-weighted (T1W), and T2-weighted (T2W) images of 

the head included in the information eXtraction from image 

(IXI) dataset (http://brain-development.org/ixi-dataset/).22 All 

these are absolute value images. The IXI dataset openly pro-

vides a large number of healthy images. For this study, we used 

2500 images (100 images per person), that are sampled from 

various sequences captured using a 1.5T MRI system (Intera, 

Philips Healthcare, Best, The Netherlands) at Guy’s Hospital.

We split the 2500 MR images into five data set including 
25 subjects each to apply fivefold cross-validation. Four of 
five data set were used for training and one for testing. 
Average of five times evaluation was used for peak-signal-to-
noise ratio (PSNR) and structural similarity index (SSIM)23 

value of each examination.
The imaging conditions were as follows: for T1W images, 

TR = 9.813 ms, TE = 4.603 ms, number of phase encoding 

steps was 192, and flip angle was 8°; for T2W images,  

TR = 8178.34 ms, TE = 100 ms, number of phase encoding 

steps was 187, echo train length = 16, and flip angle was 90°; 
and for PDW images, TR = 8178.34 ms, TE = 8 ms, number of 
phase encoding steps was 187, echo train length = 16, and flip 
angle was 90°. If the size of images is smaller than 256 × 256 
pixels, then and zero data were filled in the both end of the 
image to be 256 × 256 pixels image.

The fully sampled k-space data were obtained by taking 

a Fourier transform of the model images. We consider 

2D-random under-sampling, where k-space signals are ran-

domly under-sampled in both the phase- and frequency-

encoding direction, as well as 1D-random under-sampling, 

where only the phase-encoding direction is randomly under-

sampled. Since the signal energy is concentrated at the center 

of the k-space, signal under-sampling was not applied at 

Fig. 2 The image reconstruction procedure is divided into two steps: reconstruction step using DRL-CNN and error reduction step in the 
k-space domain. k-Space signal is under-sampled according to the sampling pattern (a). The under-sampled signal is replaced with zero data 
on points where the signal is not acquired. At this point, aliasing artifacts appear on the zero-filled image (b). DRL-CNN is used to estimate 
the aliasing artifacts (c and d). Reconstructed image is obtained by subtracting the estimated artifact from the zero-filled image (e). Inverse 
Fourier-transform is applied to obtained image and then the calculated k-space signals on the sampling points are replaced with the acquired 
true signal (a) to improve the data consistency (f). The updated signal is applied Fourier-transform to obtain updated image (g). DRL-CNN, 
deep residual learning convolutional neural network; DRL-CNN-K, deep residual learning convolutional neural network in k-space.

a b c d

e

g
f
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those regions. Signal inside a circular region with a radius of 

14 pixels for 2D-random under-sampling, and inside 50 lines 
for 1D-random under-sampling at the center of the k-space 

were acquired without under-sampling. For both under- 

sampling methods, sampling rates of 30%, 40%, and 50% 

were examined. Variable density pseudorandom sampling 
masks whose sampling density varies in proportion to the 

Gaussian distribution were created in each sampling rates. In 

general, 2D-random sampling is not used for 2D image 

acquisition, because signal acquisition in the frequency-

encoding direction is rapid. However, it is worth considering 

how the learning efficiency of aliasing artifacts by CNN 
varies depending on the number of under-sampling dimen-

sions. So, we examined 1D- and 2D-random under-sampling 
in 2D image acquisition.

Comparison with iterative reconstruction methods
Generally, CS-MRI is formulated as a penalized inverse 

problem including the L1–L2 norm, and the solution for the 

object function shown as Eq. (6) is taken as the reconstructed 

MR image.

    argmin
x

UFx y x− +
2

2

1l Ψ , (6)

According to the CS theory, signal sparsity is an impor-

tant prior to remove the aliasing artifacts due to under- 

sampling in k-space, therefore, sparsity is introduced by 

applying sparsifying transform function Y  to the image. 

Since L1-minimization problem is non-smooth and non- 

differentiable function, many algorithms have been proposed 

so far. There are three types of algorithms including gradient-

based algorithm,3 variable splitting algorithm16–18 and oper-

ator splitting algorithm.24 ISTA16 is considered as one of the 

operator splitting algorithm and well known as reconstruction 

algorithm of CS. ADMM18 and Split Bregman algorithm17 

are utilized as variable splitting algorithms that came to be 

used to improve the quality of reconstructed images in the 

development period of CS-MRI. ADMM considers the aug-

mented Lagrangian function of a penalized inverse problem, 

and splits variables into subgroups, which can be alterna-

tively optimized by solving a few simple sub problems. The 

Split Bregman algorithm is a concept from functional anal-

ysis for finding extrema of convex functional. The splitting 
technique is used to decouple the L1- and L2-components in 

the object function to minimize. Obtained image quality dif-
fers depending on the reconstruction algorithm even the 

object function to be optimized is the same. In general, 

ADMM provides superior results than previously reported 

gradient-based method and ISTA.16 So, we evaluated ISTA 

which is widely used and known as CS reconstruction algo-

rithm, and two ADMM method, i.e., Split Bregman method 

(hereinafter referred to as Split Bregman) and constrained 

split augmented Lagrangian shrinkage algorithm for balanced 

model (C-SALSA-B)18 to compare the results with proposed 

method. Algorithms 1 and 2 show the reconstruction steps for 

Algorithm 1

 C-SALSA-B

1: n = 1

2: Repeat

3: a
m

m r
gn n c n nF U y h z d

+
=

+
+ + +1 Y

* * ( ) ( )

  + - -
+

é

ë
ê

ù

û
ú +Y YF I U U F z d

c n n

* *( ) ( )1 g
m

m r
*

4: z d
n n n

s
+ +
= -1 1Soft

t
a( )

5: h h UF yn n h n+ +
= - -1 1d a( )Y

*

6: d d z
n n d n n+ + +

= - -1 1 1d a( )

7: n n= +1

8: Until converge

Output: x n
= Y

*
a

Algorithm 2

 Split Bregman

1: n = 1

2: Repeat

3: x F y I F U UF bn n n+ =
+

+ -
+

æ

è
ç

ö

ø
÷ -1

1

2 1

1

2 1m m
a* * * ( )Y*

4: a
tn n n
b

x b
+ +
= +1 1Soft ( )Y

5: b b x
n n n n+ + +

= + -1 1 1Y a

6: n n= +1

7: Until converge

Output: x
n

= Y
*
a

C-SALSA-B and Split Bregman respectively, where, Softt () 

means soft thresholding using threshold value t. Wavelet 

transform with Daubechies (number of coefficients 6) was 
used as a sparsifying transform function in Split Bregman and 

C-SALSA-B. Obtained images were compared in terms of 
the PSNR and SSIM.

Images in the dataset were divided into smaller patches 

for training the DRL-CNN. Zhang et al.15 set the patch size 

to 40 × 40 when the noise level is known and to 50 × 50 
when the noise level is unknown. The present study aims 

to remove aliasing artifacts due to signal under-sampling. 

The appearance of artifacts depends on the under-sampling 

pattern and may not resemble the noise in the image. The 

relationship between patch size and DRL-CNN perfor-

mance was examined by varying the patch size from  
31 × 31 to 71 × 71.
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Datasets were created for each sampling pattern, sam-

pling rate, and number of images used for training. Adam, an 

adaptive learning rate optimization algorithm designed for 

training deep neural networks,25 was used as an optimizer of 

DRL-CNN training. The batch size of the input dataset was 

128 and the learning rate was gradually decreased from  

1 × 10−3 to 1 × 10−5. Data augmentation was never applied in 

the training because we focused on the relationship between 

the number of training images and DRL-CNN performance.

Training and testing were performed using the 

 MatConvNet package26 in MATLAB R2017b (MathWorks, 

Inc., Natick, MA, USA) on a computer equipped with an 

Intel Core i7-7700 (3.60 GHz) CPU and an NVIDIA GeForce 
GTX 1080 Ti GPU. The training required 0.4 h for 80 images, 
1.2 h for 240 images, and 8 h for 2000 images.

Results

Figure 3 shows the PSNR and SSIM values of the recon-

structed images for various patch sizes for 1D-random sam-

pling. The dataset used in this examination contained 300 
PDW images and a single sampling pattern was used for 40% 
under-sampling. The stride for patching was standardized to 

about one-third of the patch size. As shown in Fig. 3, good 

results were obtained when the patch size was 61 × 61. 
Therefore, the patch size was set to 61 × 61 and the number 
of network layers was set to 30 in subsequent examinations. 
The relationship between PSNR, SSIM, and the number of 
training images is summarized in Table 1. The number of 

training images was increased from 80 to 2000 for the PDW, 
T1W, and T2W image models. Table 1 shows the fivefold 
cross-validation results for datasets with 100 to 2500 images. 

Here, the sampling rate was set to 40% using the same under-

sampling mask. Figure 4 shows the PSNR and SSIM values 
for various numbers of training PDW images for 1D- and 
2D-random under-sampling. Figure 5 shows the PSNR and 
SSIM values for various numbers of training epochs for 

1D- and 2D-random under-sampling using 2000 PDW 
training images. Figure 6 shows the reconstructed images for 

the DRL-CNN and the DRL-CNN-K for 1D-random under-

sampling using the trained network for 80, 240, and 2000 

images. Figures 6a, 6b, and 6q respectively show the fully 

scanned image, zero-filled image, and error image of Fig. 6b. 

Figures 6r–6w show the error images corresponding to the 

DRL-CNN images in Figs. 6c, 6e, and 6g and the DRL-

CNN-K images in Figs. 6d, 6f, and 6h, respectively. For both 

1D- and 2D-random under-sampling, the PSNR and SSIM 
values for the DRL-CNN increase with the number of 

training images. As shown in Fig. 6, aliasing artifacts tend to 

decrease with increasing number of training images. Further-

more, structure preservation is improved with the use of the 

data consistency step in the DRL-CNN-K. The PSNR and 
SSIM values increase with increasing training epoch number, 

as shown in Fig. 5.

A comparison of reconstructed images obtained with the 

DRL-CNN, the DRL-CNN-K, and conventional iterative 

methods, namely ISTA, C-SALSA-B, and Split Bregman are 

shown in Figs. 7 and 8 for 1D- and 2D-random under- 

sampling, respectively. The reconstruction parameter for 

ISTA was soft threshold level = 2sn, those for C-SALSA-B 

are g = 0.5, m = 1, r = 1, dh = dd = 1, and ts = 2sn, and those 

for Split Bregman are m = 1 and tb = 2sn, where sn is the 

estimated standard deviation of noise in the image. The 

aliasing artifacts in the images are shown in Figs. 7e-1 to 7j-1 

and Figs. 8e-1 to 8j-1 for a sampling rate of 30%. As shown 

in Fig. 8, aliasing artifacts are much fewer for the CNN-

based reconstruction method.

Each image includes an enlarged view of the area indi-

cated by the red box. Figures 7 and 8 show that the recon-

structed image becomes increasingly similar to the fully 

scanned image with increasing sampling rate for both sam-

pling patterns. The results of the quantitative evaluation of 

the sampling rate using 2000 PDW images are summarized 
in Fig. 9. The PSNR and SSIM values for the iterative 

Fig. 3 The relationship between the patch size and PSNR (and SSIM) of reconstructed images for 1D-random under-sampling. The dataset 
used in this examination contained 300 PDW images and a single sampling pattern was used for 40% under-sampling. (a) DRL-CNN, (b) DRL-
CNN-K. Best results were obtained when the patch size is 61 × 61. DRL-CNN, deep residual learning convolutional neural network; DRL-
CNN-K, deep residual learning convolutional neural network in k-space; PDW, proton-density-weighted; PSNR, peak-signal-to-noise ratio;  
SSIM, structural similarity index.

a b
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reconstruction methods are the averages of 100 images ran-

domly picked up from 2500 images.

For 2D-random sampling, the reconstructed image 

obtained with ISTA is over-smoothed (i.e., fine details are 
missing). C-SALSA-B and Split Bregman produce images 

with higher quality. The DRL-CNN-K produces images that 

are comparable to those for C-SALSA-B and Split Bregman 

for each sampling rate. Similar results were obtained in the 

quantitative evaluation shown in Fig. 9a, where the DRL-

CNN-K has PSNR values comparable to those for C-SALSA-B 
and Split Bregman.

For 1D-random sampling, Fig. 9c shows that the DRL-

CNN has higher PSNR values than those for Split Bregman 
and C-SALSA-B for sampling rates lower than 40%. The 

PSNR is further improved for DRL-CNN-K, which adds a 
data consistency step. The comparison of reconstructed 

images in Fig. 8 shows that many more aliasing artifacts 

remain for the iterative reconstruction methods when the 

sampling rate is 30% or 40%. Figure 8 also shows that details 

are lost and obvious artifacts are visible for the iterative 

reconstruction methods. In contrast, the structure and small 

contrast are well preserved with the DRL-CNN. The preser-

vation of the brain structure is further improved with the 

DRL-CNN-K.

To investigate the relationship between the obtained 

image quality and the incoherence of signal under-sampling, 

a new sampling scheme in which non-random and random 

under-sampling were mixed in k-space was applied in recon-

struction experiments using the DRL-CNN-K. As shown in 
Fig. 10, regular under-sampling was applied within ±L lines 

from the center of k-space except for the central 50 lines, 
where standard non-skipping sampling was executed. 
Random under-sampling was applied to the rest of k-space. 

The sampling density was kept constant in all cases except 
for the central 50 lines. The obtained average PSNR values 
for 100 test images for various values of parameter L are 

shown in Fig. 10b, with the sampling rate set to 30%, 40%, 

and 50%. The PSNR values increase with increasing param-

eter L; i.e., the coherence of signal under-sampling increases 

even though it decreases for the conventional iterative recon-

struction methods.

Reconstruction experiments using variable density non-
random under-sampling patterns were performed to further 

improve the obtained image quality in DRL-CNN. We used a 

Gaussian distribution for the sampling density of non-random 

under-sampling. Figures 11a and 11g show the sampling pat-

terns of variable density under-sampling for the reduction 

factor of 30% and 40%, respectively used in our experiments. 
In signal under-sampling, the k-space was divided into  

small segments and uniform signal under-sampling were 

executed in each segment at a given sampling density. Sam-

pling  density and width of each segmented are indicated in 

Table 1 The PSNR and SSIM results of PDW, T1W and T2W images for the different sampling 
patterns, sampling rate and the number of training images

Pattern Sequence
Number of 

training images

DRL-CNN DRL-CNN-K

PSNR [dB] SSIM PSNR [dB] SSIM

2D-random PDW 80 31.09 0.958 37.80 0.989

240 31.69 0.958 38.69 0.990

2000 32.44 0.964 39.61 0.992

T1W 80 31.43 0.927 37.02 0.974

240 31.73 0.931 37.54 0.976

2000 32.51 0.938 38.40 0.980

T2W 80 31.75 0.960 38.29 0.990

240 32.09 0.963 38.96 0.991

2000 32.99 0.967 39.85 0.992

1D-random PDW 80 30.36 0.949 31.97 0.963

240 31.33 0.955 32.99 0.968

2000 32.61 0.964 34.26 0.974

T1W 80 31.52 0.927 33.00 0.945

240 32.11 0.935 33.57 0.951

2000 33.21 0.945 34.69 0.959

T2W 80 30.44 0.953 32.08 0.966

240 31.19 0.958 32.82 0.970

2000 32.50 0.965 34.14 0.976

CNN, convolutional neural network; DRL, deep residual learning; DRL-CNN-K, deep residual 
learning convolutional neural network in k-space; PDW, proton-density-weighted; PSNR, peak- 
signal-to-noise ratio; SSIM, structural similarity index.
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Figs. 11a and 11g. Reconstructed images using the same MR 

image model as Fig. 8 are shown in Fig. 11. Comparison of 

PSNR with uniform under-sampling are shown in Fig. 12. As 

seen in Fig. 11, reconstruction errors of uniform under- 

sampling Figs. 11f and 11l are larger than that of variable den-

sity non-random under-sampling Figs. 11c and 11i and the 

details of the object are much more preserved in the images 

obtained with variable density random under-sampling.

The reconstruction time for the DRL-CNN was 1.78 s 

using the CPU only and 0.022 s using the CPU and GPU. The 
reconstruction times were 4.03, 13.67, and 13.95 s for ISTA, 

C-SALSA-B, and Split Bregman, respectively. Because 

C-SALSA-B and Split Bregman have more steps in the 

reconstruction procedure than does ISTA, their reconstruc-

tion times are longer than that of ISTA. The reconstruction 

time for the DRL-CNN-K is almost the same as that for the 

Fig. 4 The relationship between the number of training images and PSNR (and SSIM). The number of PDW images used in the dataset was 
increased from 100 to 2500. (a–d) show PSNR and SSIM results for 2D- and 1D-random under-sampling using 40% signal, respectively. 
For both 1D- and 2D-random under-sampling, PSNR and SSIM improve with the increase of training images. The improvement of PSNR 
with reference to the number of training images appears to be greater for the 1D-random under-sampling. DRL-CNN, deep residual learn-
ing convolutional neural network; DRL-CNN-K, deep residual learning convolutional neural network in k-space; PDW, proton- density-
weighted; PSNR, peak-signal-to-noise ratio; SSIM, structural similarity index.

a

c

b

d

Fig. 5 The relationship between the increase of epoch number and PSNR (and SSIM) (a) and (b) shows PSNR and SSIM results, respec-
tively. The sampling rate was 40% and 2000 images are used for training. PSNR and SSIM improve with the increase of epoch number. 
DRL-CNN, deep residual learning convolutional neural network; PSNR, peak-signal-to-noise ratio; SSIM, structural similarity index.

a b
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Fig. 6 Improvement of image quality as the increase of the number of training images in 1D-random under-sampling (sampling rate 40%). The 
number of PDW training images is increased from 100 to 2500 with fivefold cross-validation. (a) Fully sampled image, (b) zero-filled image.  
(c), (e), and (g) are images with DRL-CNN for the number of training image 80, 240 and 2000, respectively. (d), (f), and (h) are images with DRL-
CNN-K and (i–p) are enlarged images corresponding to (a–h), respectively. (q–w) are error images corresponding to (b–h). It is shown that as 
the number of training images increases, the quality of reconstructed images improves. DRL-CNN, deep residual learning convolutional neural 
network; DRL-CNN-K, deep residual learning convolutional neural network in k-space; PDW, proton-density-weighted.
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Fig. 7 Comparison of 
reconstructed images for 
2D-random under- sampling. 
Sampling rate is set as 30%, 
40%, and 50% and the 
 dataset used in this exam-
ination contains 2500 PDW 
images. (a) Fully sampled 
image, (b–d) are sampling pat-
terns for 30%, 40%, and 50% 
respectively. (e–j) are zero-
filled, ISTA, C-SALSA-B, Split 
Bregman, DRL-CNN, DRL-
CNN-K using 30% signal. 
(k–p) and (q–v) correspond-
ing images to (e–j) for 40% 
and 50% signal respectively. 
(e-1–j-1) are error images of 
(e–j), respectively. C-SALSA-B, 
constrained split augmented 
Lagrangian shrinkage algo-
rithm for balanced model; 
DRL-CNN, deep residual 
learning convolutional neu-
ral network; DRL-CNN-K, 
deep residual learning con-
volutional neural network in 
k-space; ISTA, iterative soft 
thresholding algorithm; PDW, 
proton-density-weighted.
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DRL-CNN because the data consistency step takes a very 

short time.

Discussion

We will first focus on the patch size of the training images for 
the DRL-CNN. In Fig. 3, the PSNR and SSIM values tend to 
increase with increasing patch size for 1D-random under-

sampling. Good results were obtained using a patch size of 

61 × 61. In this study, the target of prediction by the DRL-
CNN is aliasing artifacts due to under-sampling, which have 

properties different from those of Gaussian noise.15 Thus, 

increasing the patch size makes it easier for the CNN to cap-

ture the occurrence pattern of aliasing artifacts, leading to 

improved reconstruction performance. However, as the patch 

size increases, the CNN layers become deeper, and the 

number of patches that can be cut out may decrease. The 

optimal patch size for image reconstruction using the DRL-

CNN was found to be 61 × 61, which is larger than that used 
for noise processing. The optimal patch size depends on the 

environment because aliasing artifact appearance depends on 

the sampling rate and under-sampling method. The feature 

map of the DRL-CNN has the same size as that of the input 

image. Lee et al.12 reported that a multi-scale network such 

as U-Net is more robust than a single-resolution network 

because of its large receptive field for capturing the aliasing 

artifact pattern. A comparison of single- and multi-scale 

DRL-CNNs will be conducted in future studies.

Figure 4 and Table 1 show that the PSNR tends to 
improve with increasing number of training images, regard-

less of the number of random sampling dimensions and the 

weight of the MRI parameter (proton density, T1, or T2). The 

improvement in PSNR with increasing number of training 
images is larger for 1D-random sampling. As described later, 

this can be explained by the incoherence of artifacts being 
lower for 1D-random sampling than for 2D-random sam-

pling. It is difficult for the CNN to learn artifact appearance 
rules in 2D under-sampling where aliasing artifacts have a 

random-noise-like distribution. Therefore, learning effec-

tiveness reaches its peak early. It is common for the PSNR 
and SSIM values to improve with increasing number of 

training images for a deep CNN; however, it was found that 

the PSNR improvement was different between 1D and 2D 
under-sampling in k-space.

Next, we consider the relationship between the sampling 
rate and the quality of reconstructed images. Looking at 

2D-random sampling first, the PSNR and SSIM values for 
the DRL-CNN are smaller than those for ISTA, as shown in 

Figs. 7 and 9; however, those metric can be improved by 

adopting DRL-CNN-K. These results indicate that superior 

performance in terms of CS reconstruction can be obtained 

by simply adding a data consistency step in signal space.  

Fig. 8 Comparison of recon-
structed images for 1D-random 
under-sampling. Sampling rate is 
set as 30%, 40%, and 50% and 
the  dataset used in this examina-
tion contains 2500 PDW images. 
(a) Fully sampled image, (b–d) 
are sampling patterns for 30%, 
40%, and 50% respectively. (e–j) 
are zero-filled, ISTA, C-SALSA-B, 
Split Bregman, DRL-CNN, DRL-
CNN-K using 30% signal. (k–p) 
and (q–v) corresponding images 
to (e–j) for 40% and 50% sig-
nal respectively. (e-1–j-1) are 
error images of (e–j), respec-
tively. C-SALSA-B, constrained 
split augmented Lagrangian 
shrinkage algorithm for bal-
anced model; DRL-CNN, deep 
residual learning convolutional 
neural network; DRL-CNN-K, 
deep residual learning convolu-
tional neural network in k-space; 
ISTA, iterative soft thresholding 
algorithm; PDW, proton-density- 
weighted.
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Fig. 9 Comparison of PSNR 
and SSIM with iterative recon-
struction methods, i.e., ISTA, 
C-SALSA-B and Split Bregman 
for 30–50% sampling rate. (a) 
and (b) PSNR and SSIM vs. 
sampling rate for 2D-random 
under-sampling, (c) and (d) 
PSNR and SSIM vs. sampling 
rate for 1D-random under-sam-
pling. Comparative PSNRs with 
C-SALSA-B and split Bregman 
are obtained in DRL-CNN-K 
in 2D-random under- sampling. 
Focusing on 1D-random 
under- sampling, DRL-CNN 
shows higher PSNR than split 
Bregman and C-SALSA-B when 
sampling rate is smaller than 
40%. PSNR is further improved 
in DRL-CNN-K by adding data 
consistency step to DRL-CNN. 
C-SALSA-B, constrained split 
augmented Lagrangian shrink-
age algorithm for balanced 
model; DRL-CNN, deep resid-
ual learning convolutional neu-
ral network; DRL-CNN-K, deep 
residual learning convolutional 
neural network in k-space; 
ISTA, iterative soft thresholding 
algorithm; PSNR, peak-signal-
to-noise ratio; SSIM, structural 
similarity index.

a b

dc

Fig. 10 The relationship between image PSNR and incoherency of sampling pattern. A new sampling scheme in which non-random and random 
under-sampling were mixed in a k-space and they were tested for reconstruction experiments using DRL-CNN-K and C-SALSA-B. As shown 
in (a), regular under-sampling is applied within ±L lines from to the center of k-space except the central 50 lines. Random under-sampling is 
applied to the rest of k-space. (b) shows the PSNR increase with increasing parameter L; i.e., the coherence of signal under-sampling increases 
even though it decreases for the conventional iterative reconstruction methods. C-SALSA-B, constrained split augmented Lagrangian shrinkage 
algorithm for balanced model; DRL-CNN-K, deep residual learning convolutional neural network in k-space; PSNR, peak-signal-to-noise ratio.
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The reconstructed image for the DRL-CNN had some errors 

that depended on the sampling rate, and its Fourier transform 

also had errors in k-space. The k-space signal estimated by 

the DRL-CNN is replaced by the acquired true signal at the 

sampled points, which reduces the errors distributed in 

k-space and thus improves the PSNR of the image. The 
image quality improvement obtained from data consistency 

is proportional to the total number of sampling points 

replaced by the true signal. Because we assume a real-valued 

function for the spin density distribution, the k-space signal 

has Hermitian symmetry; i.e., y(kx, ky) = y(−kx, −ky)*,  

where * denotes the complex conjugate of a complex func-

tion. Therefore, the replacement of the two sampling points 

y(kx, ky) and y(−kx, −ky)* corresponds to the replacement of 

the same sampling point signal, and therefore, the replace-

ment of the signal at y(−kx, −ky)* does not contribute to image 

quality improvement. The probability of acquiring both sym-

metrical points (kx, ky) and (−kx, −ky) in signal sampling at a 

given sampling rate is much smaller in 2D-random under-

sampling than in 1D-random under-sampling because the 

randomness of sampling points is higher in the former sam-

pling. Therefore, the improvement in PSNR and SSIM is 
greater in 2D-random under-sampling, as shown in Figs. 9a 

and 9b. The data consistency step is independent of CNN 

learning, so there is no need to retrain the CNN when this 

step is added. Moreover, the computation cost of this step is 

very small.

The obtained image quality and PSNR in 1D-random 
sampling are better than those in 2D-random sampling for the 

DRL-CNN, as shown in Figs. 4, 6, 7, and 9, which is incon-

sistent with CS theory established under the randomness of the 

measurement matrix. Results similar to those in Fig. 9 were 

obtained using different sampling patterns but the same sam-

pling rates. In general, 2D-random under-sampling should 

provide better quality images compared with 1D-random 

under-sampling from the standard CS viewpoint because the 

randomness of 2D-random under-sampling is higher that of 

1D-random under-sampling. However, CS with random 

under-sampling has some limitations in preserving structure 

details in an image, especially for a low sampling rate, because 

noise-like artifacts are superimposed onto the reconstructed 

image. Several studies have utilized regular under-sampling in 

the application of CNN to CS image reconstruction.27 As a 

simple example, consider a point image in the image domain. 

Fig. 12 Comparison of obtained image PSNR between variable 
density and uniform density in non- random under-sampling. The 
PSNR of variable density non-random under-sampling is higher 
than that of uniform density non-random under-sampling. PSNR, 
peak-signal-to-noise ratio.

Fig. 11 Comparison of reconstructed images between variable 
density and uniform density in non-random under-sampling. 
Sampling rate is set as 30% and 40%. (a) and (g) are variable den-
sity non-random under-sampling patterns and (d) and (j) are uni-
form density non-random under-sampling patterns, respectively. 
(b), (e), (h), and (k) are reconstructed images using DRL-CNN-K. 
(c), (f), (i), and (l) are error images corresponding to (b), (e), (h), 
and (k). It is shown from error images that the reconstruction error 
of uniform under-sampling is larger than that of variable density 
non-random under-sampling and the details of the object are 
much more preserved in the images obtained with variable density  
random under-sampling. DRL-CNN-K, deep residual learning con-
volutional neural network in k-space.
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Sample its Fourier-transformed signal with equal space skip-

ping. The fold-over point images are placed at the position 

defined by the position of the original point image and skip-

ping distance. For this simple example, it will be easier for the 
CNN to learn the rule of the fold-over effect in regular under-

sampling than in random under- sampling because the aliasing 

is very simple and easy to recognize. For regular under- 

sampling, the blurring of the reconstructed image is smaller 

compared with that obtained in random under-sampling. The 

results shown in Figs. 9a and 9c are consistent with these 

insights; the PSNR in 1D-random under-sampling is higher 
than that in 2D-random under- sampling and performance is 

excellent especially for a low sampling rate, for which notice-

able aliasing artifacts tend to appear. The relationship between 

the obtained image quality and the incoherence of signal 

under-sampling in Fig. 10 indicates that the PSNR and  
SSIM are improved as the coherence of the sampling pattern 

increases. We can conclude from these results that artifacts 

with low incoherence are easier to be learned by the  

CNN, which contributes to the higher image quality for the 

DRL-CNN.

This is a major difference between CS iterative recon-

struction and image domain learning using a CNN. These 

results indicate that a deep CNN can learn coherent artifacts 

and is effective especially for cases where the randomness of 

k-space sampling is rather low, such as in 1D-random under-

sampling in 2D image acquisition. Based on the results 

shown in Fig. 10, we conducted reconstruction experiments 
using variable density non-random under-sampling to 

improve the image quality in CS-MRI. Variable density 

random under-sampling has been widely used in CS-MRI in 

which dense sampling is executed in the central region of 
k-space, since most of MR signal energy concentrated on that 

space. Figure 12 shows that obtained image PSNRs are fur-
ther improved by adopting variable density sampling in non-

random signal under-sampling. Since the signal distribution 

of k-space depends on the distribution of the imaging subject, 

the optimal function that define the sampling density in 
k-space may vary depending on the position of cross-section 

or imaging conditions. Careful consideration should be paid 

for the choice of sampling density function.

For the application of the proposed method to clinical 

examinations, we must consider other practical issues such as 
echo signal decay by T2 relaxation in fast spin echo sequences or 
inhomogeneous image noise in Sensitivity Encoding (SENSE) 

imaging. The CNN can learn signal decay or noise in addition to 

artifact appearance. This will be considered in future studies.

The sparsity of images is assumed in CS theory and iter-

ative reconstruction. When objects to be imaged have low 

sparsity in the image space, sparsity can be introduced by 

applying a sparsifying transform function or total variation 

(TV)28 to the image. The preservation of fine structure and 
the degree of artifacts in the reconstructed images generally 

depend on the sparsifying transform function, which must 

thus be carefully chosen. In contrast, there is no need for a 

sparsifying transform function for the DRL-CNN, which 

simplifies the reconstruction process and avoids the over-
smoothing and unnatural appearance introduced by a sparsi-

fying transform function or TV. These are major advantages 

of the DRL-CNN.

The reconstruction time was about 14 s for C-SALSA-B 

and Split Bregman in our study. This was shortened for the 

DRL-CNN to 1.78 s using only the CPU and 0.022 s using 
the CPU and GPU, irrespective of the number of training 
images. Iterative reconstruction solves L1–L2 minimization 

problem with some constraints, therefore, it require a lot of 

time to obtain images. The reconstruction time of CNN-

based method varies depending on the depth of network, the 

number of filter kernel and filter size and so on. Since it does 
not have iterative process in reconstruction process, the 

reconstruction time become much shorter compared with 

iterative reconstruction and has the potential to overcome the 

issue of CS long reconstruction time.

One issue with deep learning reconstruction is that 
training takes a long time. Different artifacts and different 

sampling patterns in k-space affect the performance of the 

CNN, because the network is implemented in the image 

domain. One way to address artifact pattern differences is to 
incorporate images with many different sampling patterns 

into the training dataset. Even though this will increase 

training time, it will improve the robustness of the network.

Conclusion

This paper presented a DRL-CNN approach for image recon-

struction using an under-sampled MRI signal in which 

aliasing artifacts due to under-sampling are learned by a 

patch-based CNN. The relationship between the obtained 

image quality and the number of under-sampling dimensions 

in 2D image acquisition was investigated. A comparison of 

the proposed DRL-CNN with conventional iterative recon-

struction methods (ISTA, ADMM, and Split Bregman itera-

tion) shows that the PSNR and SSIM values for the 
DRL-CNN are smaller than those for iterative reconstruction 

in 2D-random under-sampling and comparable in 1D-random 

under-sampling. The DRL-CNN has a drastically reduced 

reconstruction time. The improvement in PSNR and SSIM 
obtained by adding a data consistency step in the DRL-CNN 

is greater in 2D-random under-sampling. With this step, the 

overall performance is comparable to that for iterative recon-

struction in 2D-random under-sampling and superior in 

1D-random under-sampling. The highly incoherent aliasing 

artifacts in random under-sampling contribute to the image 

quality improvement in CS iterative reconstruction. In con-

trast, low-incoherence artifacts are easier to learn by the pro-

posed CNN, and therefore, higher PSNR and SSIM values 
were obtained in 1D-random under-sampling for the DRL-

CNN. The characteristics of image reconstruction using the 

DRL-CNN were clarified by a comparison with conventional 
iterative reconstruction methods.
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