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Reconstruction of Dispersive Dielectric Properties for
PCB Substrates Using a Genetic Algorithm

Jianmin Zhang, Member, IEEE, Marina Y. Koledintseva, Senior Member, IEEE, James L. Drewniak, Fellow, IEEE,

David J. Pommerenke, Senior Member, IEEE, Richard E. DuBroff, Senior Member, IEEE,

Zhiping Yang, Senior Member, IEEE, Wheling Cheng, Konstantin N. Rozanov,

Giulio Antonini, Senior Member, IEEE, and Antonio Orlandi, Fellow, IEEE

Abstract—An effective method for extracting parameters of a
Debye or a Lorentzian dispersive medium over a wideband fre-
quency range using a genetic algorithm (GA) and a transmission-
line model is presented. Scattering parameters (S-parameters)
of the transmission-line sections, including a parallel plate,
microstrip, and stripline, are measured. Wave equations for
TEM/quasi-TEM mode with a complex propagation constant and
a frequency-dependent wave impedance are used to evaluate the
corresponding S-parameters in an analytical model. The discrep-
ancy between the modeled and measured S-parameters is defined
as the objective function in the GA. The GA is used for search
of the dispersive-medium parameters by means of minimizing the
objective function over the entire frequency range of interest. The
reconstructed Debye or Lorentzian dispersive material parameters
are corroborated by comparing the original measurements with
the FDTD modeling results. The self-consistency of the proposed
method is demonstrated by constructing different test structures
with an identical material, i.e., material parameters of a substrate
extracted from different transmission-line configurations. The port
effects on the material parameter extraction are examined by using
through-reflection-line calibration.

Index Terms—Electromagnetic propagation in dispersive media,
finite-difference time-domain (FDTD) methods, genetic algorithms
(GAs), scattering parameters, transmission lines.

I. INTRODUCTION

THE KNOWLEDGE of complex dielectric properties of
materials is fundamental in the study of electromagnetic

energy absorption, high-speed integrated circuit package design,
and high-speed signal link path characterization [1]–[4]. Numer-
ous methods are available for determining different ranges of
the values of permittivity and permeability [1]–[8]. Each tech-
nique has its advantages and disadvantages. The resonant-cavity
methods are comparatively accurate and applicable at higher
frequencies (microwaves), but the measurements are narrow-
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band. Coaxial-line techniques achieve wideband material prop-
erty extraction with no leakage and radiation losses, but are most
amenable to powders or liquids, and the port de-embedding is
difficult. Dielectric constant and loss tangent can be measured
using an impedance analyzer, but the application is limited at
low frequency. The above-mentioned techniques extract mate-
rial properties over a certain frequency range that is usually
not sufficient for wideband digital pulses. A short-pulse prop-
agation technique can be used to obtain dielectric properties
for printed circuit board (PCB) substrate materials based on a
circular capacitor and a stripline structure in the time domain
up to 30 GHz [9]. This technique is limited in its practical
manufacturing capabilities, bandwidth of the test setup, and
an inherent signal-to-noise ratio of the time-domain measure-
ment [9]. Herein, the different technique associated with scat-
tering parameters (S-parameters) measurements for obtaining
material properties is presented. It is based on approximating
the frequency dependences by the Debye or Lorentzian disper-
sion laws, and a genetic algorithm (GA). Using this technique,
the dispersive material properties can be presented in a con-
tinuous functional form. They are easy to implement in full-
wave modeling, and can be used over a wide frequency span
[10]–[12].

To simulate the wideband electromagnetic response of
complex structures, it is necessary to know the frequency
dispersion laws of the bulk material constituting the structures.
Traditionally, the Debye and Lorentzian laws are used as the
simplest ones of frequency dispersion [12]–[14]. More general,
the dispersion laws may be approximated by a sum of several
Debye and/or Lorentzian terms. Using the general dispersion
law, it is possible to fit physically realizable dielectric behavior,
i.e., obeying the Kramers–Kronig causality relations and fitting
the frequency dependence of permittivity [13].

Development of a simple, accurate, and reliable method to ex-
tract Debye or Lorentzian dispersive medium parameters from
measured S-parameters is beneficial, as S-parameters character-
ize transmission lines in a wide frequency span precisely. How-
ever, characterizing the Debye or Lorentzian medium from a set
of measured data typically requires the solution of systems of
nonlinear equations, as indicated in [15], which is cumbersome.
In addition, the number of frequency points of the measured
S-parameters is much greater than the number of unknowns to
be extracted for dispersive materials. Moreover, measured |S11 |
curve and phase S21 curve are usually with multipeak, which is
a typical multimodal optimization problem. This motivates the
application of GAs with the characteristic of powerful, robust,
and effective in global searching and optimization especially for
solving multimodal problems [16]–[19].

0018-9375/$25.00 © 2008 IEEE
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In this paper, Section II gives the description of the disper-
sion laws used in the material parameter extraction. Implemen-
tation of GAs to extract material parameters is discussed in this
section as well. Analytical formulations for the calculation of
S-parameters based on the per-unit-length (p.u.l.) resistance,
inductance, conductance, and capacitance (RLGC) parameters
and wave impedance Zw for planar transmission lines are con-
tained in Section III. Case studies are shown in Section IV where
a layer of composite carbon- and aluminum-filled dielectric and
fiberglass epoxy FR4 substrates are investigated. The extracted
dispersive parameters are verified by comparing the measured
and the full-wave FDTD modeled S-parameters for different
cases. Port effects, self-consistency, and sensitivity analysis are
also discussed in this section. The conclusion is summarized in
Section V.

II. APPLICATION OF A GENETIC ALGORITHM AND DISPERSION

LAWS OF DEBYE AND LORENTZIAN

The permittivity of a nonmagnetic, linear, isotropic, and ho-
mogeneous dispersive material can be described in a general
form

ε(ω) = ε0ε∞ + ε0

M
∑

k=1

Akω2
0k

ω2
0k − ω2 + jω(2δk )

+ε0

N
∑

i=1

Ai

1 + jωτi
− jσe

ω
(1)

where Ak or Ai is a Lorentzian or a Debye dielectric suscep-
tibility amplitude, which is the difference between the static
dielectric constant εsk (or εsi) and the high-frequency (“opti-
cal”) relative permittivity ε∞. ω0k and (2δk ) are the resonant
frequency and the width of the kth Lorentzian peak. The re-
laxation time constant τi is for the ith Debye component. The
free-space permittivity is ε0 , and σe is the effective conductivity.
If (1) is simplified to a one-term Debye, it can be rewritten as

ε(ω) = ε0ε∞ + ε0
εs − ε∞
1 + jωτ

− jσe

ω
. (2)

The real part and the imaginary part of the relative permittivity
(εr = ε′r − jε′′r ) are



















ε′r (ω) =
εs + ε∞ (ωτ)2

1 + (ωτ)2

ε′′r (ω) =
(εs − ε∞) ωτ

1 + (ωτ)2 +
σe

ωε0
.

(3)

Similarly, for a single-component Lorentzian dielectric ma-
terial, (1) is simplified to

ε(ω) = ε0ε∞ + ε0
(εs − ε∞) ω2

0

ω2
0 − ω2 + jω(2δ)

− jσe

ω
(4)

and the real part and the imaginary part of the relative permit-
tivity for the Lorentzian material are



















ε′r (ω) =

(

ω2
0 − ω2

)

(εsω
2
0 − ε∞ω2) + 4ε∞ (ωδ)2

(ω2
0 − ω2)

2
+ 4 (ωδ)2

ε′′r (ω) =
2ωδω2

0 (εs − ε∞)

(ω2
0 − ω2)

2
+ 4 (ωδ)2

+
σe

ωε0
.

(5)

Fig. 1. GA program flowchart.

GAs are optimization techniques based on the mechanics of
natural selection and natural genetics [16]–[19]. The heuris-
tic nature of GAs makes them effective for solving complex,
multimodal, and high-dimensional problems. GAs operate on a
population of solutions, while the traditional optimization tech-
niques (hill climbing, enumerative, and random search) work
on a single solution. The widely used hill-climbing search tech-
nique is based on the assumption that the problem domain being
worked at is continuous, and/or at least the first-order derivatives
of the functions used to represent the problem in the domain ex-
ist. However, the constraints (differentiability or continuity) are
difficult, or even impossible to deal with in some practical prob-
lems, especially at boundaries or interfaces with discontinuities.
Since this kind of search technique is highly dependent on the lo-
cal gradient and starting search point, the convergence rate may
be faster than that of GAs, but getting “stuck” in a local optimum
is their major drawback if the problem space is multimodal. In
contrast with the hill-climbing search techniques, optima from
a GA are based on the entire population, and the GA is a global
search technique. As for enumerative techniques and random
search techniques, they are inefficient in solving optimization
problems because of their search mechanisms based on random
searching only, or point-to-point mapping. However, GAs are a
kind of random search, but they are associated with the direc-
tions and chances in the problem domain from the previously
searched results, and they are, therefore, efficient. Furthermore,
physical rules can be implemented in GAs, which makes them
more flexible and effective in solving practical optimization
problems.

To implement a GA for solving an optimization problem,
it is necessary to formulate the problem mathematically by
defining an objective function, building up an analytical model,
and choosing GA operators, such as selection, recombination,
and mutation [16]. To build up analytical models for different
transmission-line structures is detailed in Section III. The GA
program flowchart is shown in Fig. 1. An example of the GA con-
vergence curve and a parameter extraction convergence curve is
shown in Fig. 2. Two different objective functions are defined
for different calibration methods used in S-parameter measure-
ments. For one of the stripline measurements, through-reflect-
line (TRL) calibration is used to remove SMA port effects,
while short-open-load-through (SOLT) calibration is used for
the other cases. The objective function for the measurement
with TRL calibration is defined based on the differences of
both the magnitude and the phase of S21 between the measure-
ment and the analytical modeling as the reflection (S11) with a
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Fig. 2. Example of the GA convergence curve and the parameter extraction
convergence curve.

TRL calibration is very weak from the measurement. For SOLT
calibration, the magnitude differences of both S11 and S21 con-
tribute to the objective function. Two defined objective functions
are summarized (6), as shown at the bottom of the page.

The magnitudes of S-parameters at frequency fi , |Sm
11(fi)|

and |Sm
21(fi)|, are obtained from measurement, while |Se

11(fi)|
and |Se

21(fi)| are evaluated from analytical modeling (6).
Pm

21 (fi) and P e
21(fi) are the S21 phase from measurement

and analytical modeling, respectively. The terms max|Sm
11 |,

max|Sm
21 |, and max|Pm

21 | are the maximum absolute value of
|S11 |, |S21 |, and S21 phases from measurement. The purpose
of introducing the maximum terms in (6) is to normalize each
difference term to make each one equally weighted and the
objective function ∆ unitless. The expected parameters of
the dispersive medium are found as the objective function is
minimized.

III. ANALYTICAL MODELS FOR DIFFERENT PLANAR

TRANSMISSION LINES AND THEIR APPLICATION LIMITATIONS

Analytical models for parallel-plate, microstrip, and strip
transmission lines with dispersive dielectric substrates are stud-
ied and a general form of two-port S-parameters is formulated
in this section. Limitations of the proposed method for each
transmission-line structure are discussed as well. Assuming that
higher order modes and radiation because of the fringing fields
and surface waves are negligible for a transmission line, and con-
sidering that only the TEM (quasi-TEM for microstrip) wave is
excited by a 1-V voltage source with an angular frequency ω, the

Fig. 3. Parallel-plate transmission-line structure.

S-parameters for the transmission line can be calculated with
the propagation constant γ and the wave impedance ZW as [20]

|S11 | = 20 log10

∣

∣

∣

∣

Zin − R0

Zin + R0

∣

∣

∣

∣

(7)

|S21 | = 20 log10

∣

∣

∣

∣

2Zin (1 + Γl)

(Zin + R0) (e−γz + Γleγz )

∣

∣

∣

∣

(8)

P21 = angle

(

2Zin (1 + Γl)

(Zin + R0) (e−γz + Γleγz )

)

(9)

where z is the transmission-line length, and the input impedance
can be evaluated from

Zin =
V (−z)

I (−z)
= ZW

R0 + ZW tanh(γz)

ZW + R0 tanh(γz)
(10)

R0 is the load resistance, which is assumed to be equal to the
resistance at the excitation port. The reflection coefficient at the
load is determined from

Γl =
R0 − ZW

R0 + ZW
(11)

where the origin of the transmission line is defined at the load.
If an extra length of an open stub exists at a port (often the case
for vertical SMA launch ports in a parallel-plate configuration),
then the open stub effects are necessary to be considered both in
the input impedance and load impedance with a suitable model.
Since the propagation constant γ and the wave impedance
ZW can be evaluated from a set of RLGC parameters, to
represent the RLGC parameters through the substrate dielectric
properties, i.e., ε′r and ε′′r , the dimensions of the transmission
line are needed.

A. Parallel-Plate Transmission Lines

The simplest transmission-line structure for experimental
implementation is a parallel-plate transmission line shown in
Fig. 3. The known expressions [21] for p.u.l. RLGC parame-
ters with frequency-dependent permittivity of a substrate can be































∆ =
1

N

√

√

√

√

N
∑

i=1

{

[ |Pm
21 (fi) − P e

21(fi)|
max |Pm

21 |

]2

+

[ ||Sm
21(fi)| − |Se

21(fi)||
max |Sm

21 |

]2
}

, for TRL calibration

∆ =
1

N

√

√

√

√

N
∑

i=1

{

[ ||Sm
11(fi)| − |Se

11(fi)||
max |Sm

11 |

]2

+

[ ||Sm
21(fi)| − |Se

21(fi)||
max |Sm

21 |

]2
}

, for SOLT calibration

(6)
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used directly as

R =
2Rs

w
+ Rdc (12)

L =
µd

w
(13)

G =
ωε′′(ω)w

d
=

ωwε′′r (ω)ε0

d
(14)

C =
ε′(ω)w

d
=

ε′r (ω)ε0w

d
(15)

where w is the strip width and d is the separation of two metal
plates. The surface resistance is

Rs =

√

ωµ0

2σ
. (16)

The d.c. resistance is calculated as

Rdc =
2

twσ
(17)

where t is the thickness of the conductor and σ is the conductivity
(assuming that two metal plates are identical). The TEM wave
propagation constant and characteristic impedance are

γ =

√

ω

(

2Rs

d
+ jωµ

)

(ε′′ + jε′) (18)

ZW =
d

w

√

(2Rs/ωd) + jωµ

ε′′ + jε′
. (19)

To study the frequency behavior for various substrates over
different frequency spans using a parallel-plate structure, it is
necessary to design the structure with different dimensions. The
TEM assumption is true for a parallel-plate structure only over
a certain frequency range, depending on its configuration. To
hold the TEM assumption, referring to Fig. 3, the ratio of the
transmission-line width to its thickness must meet w/d >> 1,
which should be at least 10–20. It is assumed here that an
acceptable ratio is w/d ≥ 15. The critical wavelength of the
first higher order mode based on a perfect electrical conductor
(PEC) boundary condition is defined as [21]

λc1 = 2d. (20)

Since the fringing fields in the parallel-plate structure are ne-
glected, it is reasonable to apply perfect magnetic conductor
(PMC) boundary conditions at the two sidewalls along the di-
rection of wave propagation to see a longer cutoff wavelength
with w > d [22]

λ
′
c1 = 2w. (21)

The first cutoff frequency is then determined from
max(λc1 , λ

′
c1) as

fc1 =
c0

2w
√

εr
. (22)

The highest frequency f1 (in hertz) and the thickness of the
dispersive layer medium d (in millimeters) for only TEM wave

Fig. 4. Geometry of a microstrip transmission line.

propagation satisfy the condition

d · f1 <
100c0

3
√

εr
(23)

where c0 (in meters per second) is the speed of light in free space
and εr is the estimated relative permittivity of the medium, or for
the dispersive medium, the maximum real part of the permittivity
in the frequency range of interest.

B. Microstrip Transmission Lines

Poh et al. derived analytical and semiempirical formulas
for the calculation of microstrip-line capacitance and line
impedance [23]. If the relative permittivity of the substrate of
the microstrip line is in the range of 1 < εr < 16, and the ratio
of the substrate thickness to the microstrip trace width is limited
to the range of 0.1 ≤ (d/w) ≤ 0.5, the p.u.l. capacitance can be
calculated using

C =
wε′rε0

d

{

1 +
2d

πε′rw

[

ln

(

w

2d

)

+ 1.416ε′r + 1.547

+ (1.112 − 0.028ε′r )
d

w

]}

(24)

where d is the dielectric thickness and w is the width of the
microstrip trace, as shown in Fig. 4. The quasi-TEM wave
impedance can be approximated by (25), as shown at the bottom
of the page.

Similar to the discussion in Section III-A, the p.u.l. resistance
can be obtained from

R =

(

1

w
+

1

b

)(

RS +
1

σt

)

(26)

where t is the thickness of the conductor and b is the width of
the reference. The p.u.l. shunt conductance G can be found from

G = ωC
ε′′r
ε′r

. (27)

Zw =
377d

w
√

{ε′r − (2d/πw) [(1 + ε′r ) ln (2d/w) − 2.23 − 4.554ε′r − (4.464 + 3.89ε′r ) d/w]}
(25)
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The p.u.l. inductance of the microstrip line can be evaluated
from

L =
1

ω

√

[G2 + (ωC)2 ] |ZW |4 − R2 . (28)

The complex wave propagation constant γ and wave
impedance Zw are calculated as the p.u.l. parameters are known.
If ε′r of the substrate is larger than 16, or the ratio of the substrate
thickness to the trace width is out of the range of 0.1–0.5, expres-
sions for the p.u.l. capacitance and the TEM wave impedance
calculation can be found in [23] as well.

Three mechanisms may limit the application of microstrip
configurations: higher order modes, surface-wave propagation
in the planar metal–dielectric–air structure, and radiation effects
with the open structure. The upper bound frequency can be
estimated based on the three mechanisms and determined from
the lowest one. The cutoff frequency for the first higher order
mode is estimated as [24]

fc =
c0

√

ε′r (2w + 0.8d)
(29)

where c0 is the speed of light in free space. The lowest TM
surface-wave mode has no cutoff frequency, but its coupling to
the quasi-TEM mode becomes significant only when their phase
velocities are nearly matched. This occurs at frequency [24]

fs =
c0 arctan(ε′r )√
2πd

√

ε′r − 1
. (30)

An approximate relation for the frequency where the radiation
becomes significant is [24]

frd > 2.14 4
√

ε′r (31)

where fr is in gigahertz and d is in millimeters.

C. Stripline

For a symmetric stripline structure shown in Fig. 5, if the
ratio of the trace width to the spacing between the two reference
planes is greater than 0.35, i.e., w/ (2d) > 0.35, a wide stripline
is defined [25]. The calculation of the p.u.l. parameters RLGC

for a wide stripline can be performed by using [26]. The p.u.l.
resistance is calculated as

R =
1

2

(

RS +
1

σt

)(

1

w
+

1

b

)

. (32)

Fig. 5. Geometry of a strip transmission line.

Equation (33), shown at the bottom of the page, gives the p.u.l.
inductance, and the p.u.l. capacitance is

C = 3.5427 × 10−11ε′r

{

w

2d
+

1

π

{

2d + t

d
ln

[

4d + t

2d

]

− t

2d
ln

[

t(4d + t)

4d2

]}}

. (34)

The TEM wave impedance is evaluated from (35), shown at
the bottom of the page.

The p.u.l. shunt conductance G can be found from

G =

√

[R2 + (ωL)2 ]

|ZW |4
− (ωC)2 . (36)

The complex wave impedance is recalculated using the known
p.u.l. parameters, and is then used in the GA model for estimat-
ing S-parameters. For a wide stripline, the cutoff frequency of
the first higher order mode is estimated as [27]

fc1 =
15

√

ε′r (w + (2d + t) π/4)
(37)

where w, d, and t are in centimeters, and fc1 is in gigahertz,
referring to Fig. 5. Surface waves and fringing fields can be ne-
glected since the containment of the field in a stripline structure
is much better than in a microstrip or a parallel-plate structure.

L =
3.14 × 10−7

(w/2d) + (1/π) {(2d + t/d) ln [4d + t/2d] − (t/2d) ln [t (4d + t) /4d2 ]} (33)

Zw =
94.15

(w/2d) + (1/π) {(2d + t/d) ln [4d + t/2d] − (t/2d) ln [t (4d + t) /4d2 ]}
1√
εr

(35)
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TABLE I
DIMENSIONS OF FOUR PARALLEL-PLATE TRANSMISSION LINES AND THEIR MAXIMUM MEASUREMENT FREQUENCIES

IV. CASE STUDIES AND SENSITIVITY ANALYSIS

Six cases, including one microstrip, one stripline, and four
parallel plates (1–4), are studied based on the proposed method.
The substrate used in the parallel-plate test board 4 is a strong
dispersive composite material. FR4, a weak dispersive substrate,
is used in the other five cases, which is a glass-filled epoxy resin
material, and is widely used in the PCBs and easy to find for
study. It is known that the relative permittivity of FR4 varies sub-
stantially with frequency and differs for different samples of the
material. To check the self-consistency of the proposed method,
a same sample material is applied to construct the parallel-plate
test board 1 and the microstrip test board. Different dimensions
of parallel-plate test boards demonstrate the application limi-
tation given in (23) for parallel-plate transmission-line config-
urations. The sensitivity analysis is discussed in the parameter
extraction for the parallel-plate test board 1.

A. Parallel-Plate Cases

Three parallel-plate test boards (1–3) were made from dif-
ferent double-sided copper-clad boards with FR4 substrates.
The test board 4 was constructed by filling a composite di-
electric sheet between two copper plates. The bottom and front
views of the parallel-plate structure are schematically shown in
Fig. 3. Debye dielectric parameter extractions were applied on
FR4 materials for boards 1, 2, and 3, while Lorentzian param-
eter extraction was implemented in the board 4. S-parameters
were measured using an HP 8720ES network analyzer with an
ATN-4112A S-parameter test set over the frequency range from
100 MHz to 5 GHz. The electrical lengths due to the SMA con-
nectors at the ports were removed using port extension after a
full two-port SOLT calibration. The loss due to the SMA con-
nectors was included in the parameter extraction. The stripline
case shown in part C of this section will demonstrate that the loss
effects due to the SMA connectors are negligible up to 5 GHz.
The dimensions for the four test boards and their highest mea-
surement frequencies are summarized in Table I. The extracted
Debye parameters and the frequency limitations for the three
Debye test boards are given in Table II.

As seen from Table II, the extracted parameters of the De-
bye curves for different FR4 dielectric substrates are different.
The reason is that the dielectric properties of FR4 depend on
many factors, such as manufacturing processes, chemical com-
positions, shape and orientation of glass fibers, temperature,
humidity, etc. These factors might vary significantly, and the
parameters of dispersive curves need to be extracted for each
board individually.

TABLE II
EXTRACTED DEBYE PARAMETERS FOR THE SUBSTRATES IN THE TEST BOARDS

1, 2, 3 AND THEIR CORRESPONDING FREQUENCY LIMITATIONS

Fig. 6. Measured and modeled |S21 | and |S11 | for test board 1 and extracted
Debye curve.

The extracted FR4 Debye parameters were verified by com-
paring the measured and the FDTD-modeled S-parameters. In
the FDTD full-wave modeling, the copper plates of each test
board were modeled as a zero thick copper with skin effect. The
dielectric spacing between the two copper plates were mod-
eled as a Debye medium with the extracted parameters given in
Table II. A recursive convolution procedure was used to imple-
ment the Debye dispersion law in the FDTD [28]. The magnitude
comparison between the simulation and measurement, and the
extracted Debye curves are shown in Fig. 6 for the test board
1. The discrepancy is less than 0.5 dB in |S21 |, and the differ-
ence between resonant frequencies is hard to distinguish. The
comparisons shown in Figs. 7 and 8 between the FDTD simula-
tions and measurements also agree well for test board 2 and test
board 3, respectively, with the discrepancy of less than 0.7 dB
in |S21 |, and the resonant frequency shift less than 1.67%. The
corresponding extracted Debye curves for test boards 2 and 3
are shown in Figs. 7 and 8 as well.
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Fig. 7. Measured and modeled |S21 | and |S11 | for test board 2 and extracted
Debye curve.

Fig. 8. Measured and modeled |S21 | and |S11 | for test board 3 and extracted
Debye curve.

TABLE III
EXTRACTED LORENTZIAN PARAMETERS FOR A COMPOSITE DIELECTRIC

SHEET IN TEST BOARD 4 AND ITS FREQUENCY LIMITATION

The Lorentzian dielectric parameters were reconstructed from
a 0.6-mm-thick composite dielectric sheet with test board 4. The
dielectric sheet was composed of a polymer matrix of Teflon-
type, filled with a mixture of long aluminum and short car-
bon fibers [29]. The sheet material is anisotropic. However,
its parameters were studied only in the direction normal to
the parallel-plate plane. The extracted parameters and the fre-
quency limitation are given in Table III. The material under
investigation is a wideband Lorentzian dielectric since the
ratio of the resonant line width to the resonant frequency is
greater than 1 (δ/ω0 > 1) [30]. The effective conductivity loss
substantially influences the form of the imaginary part of the
composite permittivity. Fig. 9 shows the measured and FDTD-
modeled S-parameters for the test structure with the Lorentzian

Fig. 9. Measured and modeled |S21 | and |S11 | for test board 4 and extracted
Lorentzian curve.

dielectric and the extracted Lorentzian real and imaginary
parts (with an effective conductivity σe ). A good agreement is
achieved below 9 GHz. At higher frequencies, the discrepancy
is due to the anisotropic property of the Lorentzian dielectric
substrate, which is not fully studied herein.

B. Self-Consistency Check and Sensitivity Analysis

The microstrip test board was constructed with the identi-
cal material as used for the parallel-plate test board 1 for the
purpose of self-consistency examination. The highest measure-
ment frequency and the detailed dimensions of the microstrip
test board, referring to Fig. 4, are given in Table IV. Similar to
the parallel-plate measurements, the HP 8720ES network ana-
lyzer was used, and the port effects due to the electrical length
of the SMA connectors were eliminated by port extension. The
extracted Debye parameters for the substrate material from the
microstrip structure and the test board 1, the relative difference
(relative to the extracted value of parallel-plate structure), and
the highest frequency limitation for a quasi-TEM/TEM wave
propagation on their structures are summarized in Table V.

The agreement in the extraction of εs and ε∞ between the
parallel plate and the microstrip is less than 1%. However, the
difference of σe is at 6.6%. This is because small variations in
σe and τ do not significantly impact |ε(ω)| for the studied cases,
while a small change of εs or ε∞ leads to a substantial variation
in |ε(ω)|. These can be seen from the sensitivity analysis of the
one-term Debye extraction for the parallel-plate configuration.
The sensitivity is defined as [31]

Si =
p0

i

εr (ω)0

∂εr (ω)

∂pi
(38)

where pi is the ith variable and the superscript 0 denotes the
reference value shown in Table V for the test board 1. The
value εr (ω)0

is calculated at the reference point over the entire
frequency range of interest. The sensitivity of each Debye term
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TABLE IV
DIMENSIONS OF THE MICROSTRIP STRUCTURE AND ITS HIGHEST MEASUREMENT FREQUENCY

TABLE V
COMPARISON OF EXTRACTED DEBYE PARAMETERS FOR THE SAME SUBSTRATE

Fig. 10. Sensitivity analysis for one-term Debye parameter extraction.
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where

D0=

(

4.24+
0.17

1+j3.74×10−11ω
− j3.65×10−3

ωε0

)

. (40)

The sensitivity of each Debye term relative to the extracted
value is shown in Fig. 10 (from 100 MHz to 5 GHz). It
demonstrates that the extraction of εs and ε∞ is more sensitive
than that of σe and τ . The consequence is that the variation of

Fig. 11. Measured and modeled |S21 | and |S11 | for the microstrip line and
extracted Debye curve.

the extracted εs and ε∞ is small, and the variation is large for
τ and σe .

The measured and FDTD-modeled S-parameters with De-
bye parameters from the microstrip extraction and the corre-
sponding Debye curves are shown in Fig. 11. The maximum
discrepancy over the entire frequency span is less than 0.6 dB
for |S21 | and 2 dB for |S11 |, and the resonant frequency shift is
approximately 1.3%. Both real and imaginary parts of pemittiv-
ity (involving σe ) for the two extracted Debye curves are shown
in Fig. 12 with the maximum difference of 0.7% for the real part
and 6.1% for the imaginary part, respectively. The comparison
between measurements and simulations has demonstrated that
the proposed method works well for the extraction of dispersive
material parameters for the substrate typically used in PCBs for
mixed-signal electronics.

C. Stripline and Port Effects

One more Debye parameter extraction case was studied for
the stripline structure shown in Fig. 5 with an FR4 substrate.
Similar to the measurement done for the parallel-plate boards
and the microstrip board, a full two-port SOLT calibration with
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Fig. 12. Real part and imaginary part of the relative permittivity extracted
from different structures for an identical material.

TABLE VI
DIMENSIONS OF THE STRIPLINE AND ITS HIGHEST MEASUREMENT FREQUENCY

TABLE VII
EXTRACTED DEBYE PARAMETERS FOR THE STRIPLINE

SUBSTRATE AND ITS FREQUENCY LIMITATION

port extension was used. The dimensions of the test board and
the highest measurement frequency are given in Table VI. The
extracted Debye parameters and the frequency limitation for
TEM wave propagation are presented in Table VII. The extracted
Debye parameters were implemented in full-wave FDTD mod-
eling with copper as zero-thick skin-effect material. The mag-
nitude and phase of S21 for the measurement and the simulation
are shown in Fig. 13. The difference in magnitude is less than
0.2 dB, and the phase discrepancy is hard to distinguish up to
5 GHz. The Debye curves extracted from the stripline substrate
are shown in Fig. 13 as well.

The electrical lengths due to the SMA connectors were re-
moved by port extension from the earlier studied cases. How-
ever, the loss due to the SMA connectors was included in the
measurements. For the stripline, another measurement was con-
ducted with a TRL calibration to eliminate the port effects [21].
The length of the stripline after TRL calibration was z′ =
202.5 mm (referring to Fig. 5). The extracted Debye param-
eters given in Table VII (with port effects) were then used in
full-wave FDTD modeling for the piece of pure stripline without
port effects. Both in magnitude and phase of S21 measurement
(TRL calibration) and the FDTD modeling are shown in Fig. 14.
The discrepancies shown in Fig. 14 are similar to those shown
in Fig. 13 with the maximum difference less than 0.2 dB in
magnitude, which indicates that the port effects in the studied
cases are not significant, and the proposed material parameter

Fig. 13. Measured (SOLT calibration) and modeled S21 both in magnitude
and phase for the stripline structure.

Fig. 14. Measured (TRL calibration) and modeled S21 both in magnitude and
phase for the stripline structure.

extraction method is valid. The Debye curves used in the full-
wave modeling shown in Fig. 14 are exactly the Debye curves
shown in Fig. 13.

V. CONCLUSION

A method for the reconstruction of dispersive dielectric
properties (parameters of the Debye and Lorentzian disper-
sive curves) for PCBs was presented. It was based on the
transmission-line theory and application of a GA. Good agree-
ment between the measured and the full-wave FDTD-modeled
S-parameters was achieved based on the planar transmission-
line structures (parallel plate, microstrip, and stripline), when the
dielectric parameters of the dispersive substrates were extracted
using the proposed method. The self-consistency examination
demonstrated that the proposed method was reliable. Port ef-
fects in the parameter extraction for the FR-4 substrates were
insignificant up to 5 GHz. Using the proposed method with sim-
ple planar transmission-line geometries, dielectric properties of
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dispersive materials can be extracted effectively under the as-
sumption of TEM/quasi-TEM wave propagation.
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