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Introduction
Genes act as blue print of every living object‘s activity. Genes 

produces proteins, this protein or a set of proteins produced by other 
genes switches on or off or regulates the protein formation activity of 
other genes. Thus genes form a gene regulatory network, study of which 
appears to be very important to find the cause of a disease and the 
solution thereof i.e., ‘Drug design’. This is a sort of reverse engineering 
activity where end result is given i.e. dataset of a diseased person is 
given. From there we need to go back to normal person‘s gene network 
configuration by rectifying the erring network pathway.

Gene regulation is a general name for a number of sequential 
processes, the most well known and understood being transcription 
and translation, which control the level of a gene‘s expression, and 
ultimately result with specific quantity of a target protein. A gene 
regulation system consists of genes, cis-elements, and regulators. The 
regulators are most often proteins, called transcription factors, but 
small molecules, like RNAs and metabolites, sometimes also participate 
in the overall regulation. A GRN is a collection of DNA segments 
of chromosome in a cell which interact with each other indirectly 
(through their protein products) and with other substances in the cell, 
thereby governing the expression levels of mRNA and proteins. 

In computational point of view, a gene regulatory network is 
represented by a model or graph which represents regulations or 
interactions amongst genes using a directed graph. In gene networks, 
nodes represent genes and edges represent relations or interaction 
amongst genes (e.g., activation or suppression or regulation). DNA 
Microarray is an experimental procedure which indicates whether 

a gene is active or not, and if active, how much are their activation 
profile [1]. They are represented as a dataset in public domain websites. 
Microarrays are used in the medical domain to represent genetic profile 
of diseased and normal tissues of patients. Such profiles are useful as an 
aid in more accurate diagnosis, prognosis, treatment planning, as well 
as drug discovery for a particular disease. 

Main drawback for the gene network construction from microarray 
data is that it is often constrained by limited number of samples 
(patients), and the data contains a large number of genes. This imparts 
inaccuracy in the network design. Also the information contained 
in gene expression data, is limited by their quality, the experimental 
design, noise, and measurement errors. Therefore, estimated gene 
networks may represent some incorrect gene regulations, which may 
infer wrong conclusion on biological viewpoint. As the microarray data 
contain thousands of genes, the construction of GRN by using such a 
large number of genes will result into huge network, which is almost 
impossible to analyze and computationally excessive time-consuming. 
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Abstract
Biological databases, containing genetic information of patients, are undergoing tremendous growth beyond our 

analysing capability. However such analysis can reveal new findings about the cause and subsequent treatment 
of any disease. Interactions between genes and the proteins they synthesize shape Genetic Regulatory Networks 
(GRN). In this context, it has been developed a model capable of representing small dominant GRN, combining 
characteristics from the Rough Set and Bayesian Network. The investigation has been carried out on the publicly 
available microarray dataset for Lung Adenocarcinoma, obtained from the National Center for Biotechnology 
Information (NCBI) website. The analysis revealed that Rough Set Theory (RST) is able to extract the various 
dominant genes in term of reducts which play an important role in causing the disease and also able to provide a 
unique simplified rule set for building expert systems in medical sciences with high accuracy and coverage factor. 
The next part of this work is based on reconstruction of GRN using Bayesian network, which is a mathematical tool 
for modelling conditional independences between stochastic variables like different gene expression. This proposed 
Bayesian approach using scaled mutual information for scoring is applied to the dataset corresponding to most 
dominant responsible genes for Adenocarcinoma to uncover, gene/protein interactions and key biological features 
of the cellular system. Finally different interacting regulatory path which are the gene signature for a particular 
disease, between dominating genes are inferred from the probability distribution table and Bayesian Graph. Such 
reconstructed regulatory network is attractive for their ability to describe complex stochastic processes like gene 
transcription, classification of biological sequencing and intuitive model of causal influence successfully. This may 
serve as a signature pattern of the disease Adenocarcinoma, which has been extracted from huge microarray 
dataset. Extraction of this signature pattern is very useful for diagnosis of this disease.
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Therefore, efforts have been exerted to find smaller number of relevant 
genes from the vast Microarray data set, keeping the biological 
relevance intact to its maximum level. 

Next, efforts are made to try to find out the hidden dependency, 
i.e., regulatory interaction amongst the responsible smaller number of 
genes as derived. The direct or indirect interactions amongst the genes 
can be derived by constructing the GRN from this reduced information 
table. This network will act as a signature pattern of a particular disease 
extracted from the huge microarray dataset, which can be used for 
disease diagnosis purpose.

The most common intelligent techniques used for the above 
mentioned analysis are based on soft computing tools like Data Mining, 
Neural Network, Genetic Algorithms, Decision Trees and fuzzy theory 
etc [2-9]. Several methods have been proposed for estimating gene 
networks from microarray data using mathematical models such as 
Boolean networks differential equations and Bayesian networks [10-
23]. Although these methods succeed in constructing networks where 
genes known to be biologically related come close together, it is difficult 
to determine the correct direction of the edges, as well as whether or 
not the relation of genes is direct or indirect.

In this investigation, Rough Set theory has been proposed to find 
dependence relationship among Microarray data, where genes have 
been considered as attributes and patients as objects [24-29]. Since RST 
can work in an environment where some of the data may be inexact or 
superfluous, it better suits for the present analysis where probability of 
having superfluous data in Microarray is there. Using RST, rule sets are 
extracted and from there important attributes or genes are identified. 
Then, a pattern based on the interrelation amongst the related genes is 
to be assumed as signature pattern for a probable type of disease. These 
decision-making rules eliminate all redundant objects i.e. patients 
and attributes i.e. genes, and thereby resulting into finding minimum 
subset of attributes to be used for attaining a satisfactory classification 
rules [30,31]. Moreover, the rough set reduction algorithms help to 
approximate the decision classes using possibly large and simplified 
patterns.

On the other hand, Bayesian Networks represent the dependence 
structure between multiple interacting quantities (e.g., expression 
levels of different genes). The present approach, which is probabilistic 
in nature, is capable of handling noise and estimating the confidence in 
the different features of the network. Therefore, it is possible to focus 
on interactions whose signal in the data is strong. Here, using this 
approach a network has been derived, which is referred as ‘signature 
pattern’ of the particular disease.

Lung Adenocarcinoma often begins in the outer parts of the lungs 
and shows well-known symptoms of Lung Cancer such as a chronic 
cough and coughing up blood may be less common until later stages in 
the disease. Early symptoms of Adenocarcinoma which include fatigue, 
mild shortness of breath, or pain in our back, shoulder, or chest are 
generally overlooked, which could have been curable if detected at 
early stage.

In this investigation, a novel methodology to find out the most 
dominant regulatory network for the automated diagnosis of Lung 
Adenocarcinoma using the microarray dataset of Adenocarcinoma on 
the basis of probability dependency among dominant genes has been 
proposed. This proposed dominant network model has been derived 
using RST and Bayesian network analysis methodology.

The RST has been applied on microarray dataset of Adenocarcinoma 

involving around 22,000-30,000 human genes and 115 patients. This 
reduction technique is applied to find all possible reducts from the 
microarray dataset which contains the minimal subset of attributes 
those are associated with a class label for classification. Total numbers 
of rule sets generated are 2187, which is further reduced to 15 rules 
without sacrificing accuracy. These 15 genes are stronger contender 
for the cause of Adenocarcinoma. Using the gene expressions 
corresponding to 15 numbers of dominant genes, a Bayesian Network 
has been constructed based on conditional independencies, which in 
turn depicts the dominant molecular regulatory network from gene 
expressions profiles. This network is very useful to find out the direct 
and indirect causal influence between different responsible genes. 
This network pattern can act as ‘signature pattern’ for the disease 
‘Adenocarcinoma’. This network profile will be helpful for diagnosis of 
the disease & may be helpful information for drug design of the disease.

The rest of the paper is organized as follows. Section II depicts 
the theoretical aspect of Rough set theory and the Bayesian Network 
which are the basic tools for this work. The evolutionary process of 
rule reduction and to find out the most dominant genes responsible for 
Adenocarcinoma is described in Section III. In Section IV, properties, 
learning structure algorithm and search algorithm of Bayesian network 
have been discussed. In next section, the inferred result corresponding 
to dominant Molecular Regulatory Network is discussed. The 
discussion and reference for this study is given in Section VI and VII 
respectively.

Preliminaries
In this section, we briefly discuss the basic concepts of Rough Set 

theory and Bayesian Network expression. A. 

Rough set theory

Rough sets constitute a major mathematical tool for managing 
uncertainty that arises from granularity in the domain of discourse 
due to incomplete information about the objects of the domain. The 
granularity is represented formally in terms of an indiscernibility 
relation that partitions the domain. If there is a given set of attributes 
ascribed to the objects of the domain, objects having the same attribute 
values would be indiscernible and would belong to the same block 
of the partition. The intention is to approximate a rough (imprecise) 
concept in the domain by a pair of exact concepts. These exact concepts 
are called the lower and upper approximations and are determined 
by the indiscernibility relation. The lower approximation is a set of 
objects definitely belonging to the rough concept, whereas the upper 
approximation is a set of objects possibly belonging. The formal 
definitions of the aforementioned notions and others required for the 
present work are given as follows.

Definition 1: An information system A = (U,A) consists of a 
nonempty, finite set U of objects (cases, observations, etc.) and a non-
empty, finite set A of attributes a (features, variables), such that a : U 
→ Va, where Va is a value set. We shall deal with information systems 
called decision tables, in which the attribute set has two parts (A = C 
∪ D) consisting of the condition and decision attributes (in the subsets 
C, D of A, respectively). In particular, the decision tables we take will 
have a single decision attribute d and will be consistent, i.e., whenever 
objects x, y are such that for each condition attribute a, a(x) = a(y), 
then d(x) = d(y).

Definition 2: Let B ⊂ A. Then a B-indiscernibility relation IND (B) 
is defined as
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IND (B) = {(x, y) ∈ U: a(x) = a(y), ∀a ∈ B}.                                  (1)

 It is clear that IND (B) partitions the universe U into equivalence 
classes 

[xi]B = {xj∈ U: (xi, xj) ∈ IND(B)}, xi ∈ U.                                 (2)

The equivalence class of IND (B) is called the elementary set in B 
because it represents the smallest discernible objects.

Definition 3: The B-lower and B-upper approximations of a given 
set X(⊆ U) are defined, respectively, as follows:

{ :[ ] }= ∈ ⊆BX x U x B X                                                                       (3)

( ) /=BNB X BX BX                      (4)

The B-boundary region is given by

( ) /=BNB X BX BX                       (5)

Assuming B and C are equivalence relation in U, the important 
concept of positive region

[ ]( ) ∈= B X CPOS C BX                       (6)

Definition 4: In an information system there often exist some 
condition attributes that do not provide any additional information 
about the objects in U. So, we should remove those attributes since 
the complexity and cost of decision process can be reduced if those 
condition attributes are eliminated. Given a classification task mapping 
a set of variables C to a set of labeling D, a reduct is defined as any R ⊆ 
C, such that γ(C,D) = γ(R,D) and a reduct set is defined with respect to 
the power set P(C) as the set R ⊆ P(C) such that

{ ( ) : ( , ) ( , )}γ γ= ∈ =R A P C A D C D                    (7)

That is, the reduct set is the set of all possible reducts of the 
equivalence relation denoted by C and D. a minimal reduct is defined 
as any reduct R such that |R| ≤ |A|, ∀A ∈ R. That is, the minimal reduct 
is the reduct of least cardinality for the equivalence relation denoted 
by C and D.

Definition 5: The set of attributes which are common to all reduct 
is called core. The core is the set of attributes which is possessed by 
every legitimate reduct, and therefore consists of attributes which 
cannot be removed from the information system without causing 
collapse of the equivalence-class structure. It is possible for the core to 
be empty, which means that there is no indispensable attribute.

In Rough Set Theory, the datasets are represented with the help of 
decision tables. The decision table contains attributes i.e. condition and 
objects for different cases of samples. The decision table describes the 
decision in terms of conditions that must be satisfied in order to obtain 
the decisions specified in the decision table. In this paper, different 
genes are considered as attributes and gene‘s expression value are 
considered as object of a decision table. Based on different condition 
or different value of attribute the decision of the sample may be either 
normal or cancerous. This decision table is used as a training dataset 
which is used to know hidden dependency between different genes 
which are responsible for Adenocarcinoma. 

In this section, we describe how decision rules are generated based 
on the reduct system obtained from previous section. If we distinguish 
in information system two disjoint classes of attributes, called condition 
and decision attributes respectively, then the system will be called a 
decision table and will be denoted by S = (U,C,D), where C and D are 
disjoint sets of condition and decision attributes, respectively.

Let S = (U, C, D) be a reduced decision table where C denotes the 
reduced no. of attributes i.e. reduct. Every x €U determines a sequence 
c1(x) ….cn(x); d1(x)… dm(x), where {c1, …..,cn} =C and {d1,…..,dm} = D. 
The sequence will be called a decision rule induced by x (in S) and will 
be denoted by c1(x)...cn(x) →d1(x)… dm(x), or in short C→x D.

The number suppx(C,D) will be called a support of the decision rule 
C→x D and the number is given by

supp ( , ) ( ) ( ) ( )= = ∩x C D A x C x D x                     (8)

The strength of the decision rule C→x D can be written as the 
following equation where denotes the cardinality of X.

sup ( , )( , )σ = x
x

p C DC D
U

                   (9)

With every decision rule C→x D we associate the coverage factor of the 
decision rule, denoted covx(C,D) and defined as follows:

( ) ( )
co ( , )

( )
ν

∩
=x

C x D x
C D

D x
                    (10)

Bayesian network

In this paper, Bayesian approach has been introduced to extract the 
inter dependencies of the relevant genes by studying their expression 
patterns that uncovers their transcriptional patterns by examining 
statistical properties of dependence and conditional independence in 
the given data. Bayesian networks are particularly useful for describing 
processes composed of locally interacting components; that is, the 
value of each component directly depends on the values of a relatively 
small number of components. Secondly, the statistical foundations for 
learning Bayesian networks from observations, and computational 
algorithms are well understood and have been used successfully in 
many applications. Finally, Bayesian networks provide models of 
causal influence: although Bayesian networks are mathematically 
defined strictly in terms of probabilities and conditional independence 
statements, a connection can be made between this characterization 
and the notion of direct causal influence.

This stage involves the construction of a Genetic Network from 
the set of dominant gene expressions which are obtained from the 
preliminary stage of rules reduction process by using Rough set 
theory. The Bayesian belief network is a kind of probabilistic model 
for the construction of genetic network. It uses Direct Acyclic 
Graph which consists of nodes representing attributes and directed 
acyclic edges between them according to their independency and 
each node is attached with a joint probability distribution table to 
represent dependency relationships between variables. Since every 
independent statement in belief networks satisfies a group of axioms, 
we can construct belief networks from data by analyzing conditional 
independence relationships. The Conditional Independence (CI) test 
based method is used by all the algorithms of the second category which 
analyze relations of different quantities based on their dependency 
relationships.

Let‘s review the concept of d-separation or independency between 
nodes. For any three disjoint node sets X, Y, and Z in a belief network, 
X is said to be d-separated from Y by Z if there is no active undirected 
path between X and Y. A path between X and Y is active if:

i) Every node in the path having head-to-head arrows is in Z or 
has a descendant in Z;

ii) Every other node in the path is outside Z.
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The amount of information flow between two nodes can 
be measured by using mutual information, when no nodes are 
instantiated, or conditional mutual information, when some other 
nodes are instantiated. In information theory, the mutual information 
of two nodes, is defined as

,
( , )

( , ) ( , ) log
( ) ( )

= ∑
i j

i j
i j X X i j

i j

P X X
I X X P X X

P X P X                  (11)

and conditional mutual information is defined as

, ,
( , / )

( , / ) ( , , ) log
( / ) ( / )

= ∑
i j

i j
i j X X C i j

i j

P X X C
I X X C P X X C

P X C P X C
     (12)

where, Xi , Xj are two nodes and C is a set of nodes. Conditional mutual 
information is used as CI tests to measure the average information 
between two nodes when the status of some valves is changed by the 
condition-set C. When I (X i, X j /C) is smaller than a certain threshold 
value, we say that X i , X j are d-separated by the condition-set C, and 
they are conditionally independent.

A gene network, or a gene regulatory network, is a graphical 
model that represents the regulatory relationships between genes. In 
a gene network, if there is an edge from gene a to gene b, then the 
edge represents that gene a regulates gene b, or the expression of gene 
b depends on the expression of gene a. We model a gene network G as 
a Bayesian network, where genes are represented by random variables 
and the structure is described as a directed graph with the random 
variables as its nodes. Let X = {X1, X2, . . ., XP} be a set of random 
variables (genes) in the network G, where p is the number of nodes. In 
the context of Bayesian networks, the joint probability of X conditional 
on G can be decomposed as a product of conditional probabilities,

1( ) ( ( ))
=

=∏ p
j jjP X G P X Pa X                                                         (13)

where Pa(Xj) is a set of parent variables of Xj in G. Suppose that X is 
a gene expression data matrix whose element xij corresponds to the 
expression value of the jth gene in the ith array, where i = 1, . . . , n, 
j = 1, . . . , p. Here, n and p represent the number of microarrays and 
genes, respectively. Since microarray data take continuous variables, 
the probabilistic measures in Eq. (3) are replaced by densities and the 
likelihood of X conditional on G is given by

1 1( ) ( ( ))
= =

=∏ ∏n p
ij iji jP X G P X Pa X                 (14)

where Pa(Xij )is a set of expression values of the parent genes of j-th 
gene at i-th experiment. The joint probability distribution table for each 
node is known as inference.

Identification of Responsible Genes by Rule Reduction 
Process

Here, the genes are considered as attributes and about 82 patient‘s 
data as object. These are used to generate the required decision 
table. Based on different conditions or different values of attributes 
the decision of the sample may be either normal or cancerous. This 
decision table is used as a training dataset which is used to calculate 
hidden dependency amongst different genes which are responsible 
for Adenocarcinoma. The microarray data for Adenocarcinoma and 
normal human being (Series Geo_accession No.: GSE10072) has been 
collected from the NCBI website [http://www.ncbi.nlm.nih.gov] for the 
present context. Here, number of genes / attributes in the dataset are 
22284 and the no of patients / objects are 82. The values of the different 
attributes are real but for RST analysis it is considered as integers. The 
following table is the resultant decision table corresponding to the 

Adenocarcinoma Microarray data where the no of column is 22285 
and no of rows are 82.

The training data set consist of 42 cases of tumor and 40 cases 
of normal data set. Another 15 different random data set of different 
cases has not been used for generating rule sets. They are treated as test 
data set to test the validity of generated rules. As shown in the Table 1, 
1007_s_at, 1053_at… AFFX-Trpnx-M _at are found to be the genes, 
depending upon which, decision is taken.

Reduct calculation is a crucial task in RST system. Here, the 
minimal numbers of reducts have been calculated from decision table 
using the software package ‘‘Rough Set Exploration Systems (RSES 
2.2.2)”{[http://logic.mimuw.edu.pl/rses/]. Calculation of all reducts is 
very exhaustive and complex in nature. Therefore, for the calculation 
of all minimal reducts, Genetic Algorithm with full indiscernibility and 
modulo decision technique has been used. From the huge database or 
decision table, 37 no of reducts of various size are generated, each of 
which have the positive region 1 and Stability Coefficient equal to 1.

It is interesting to find that there is no core in the reduct set which 
means that there is no indispensable attribute and there are huge 
dependencies between different attributes of minimal reduct sets. 
In other words, there is a huge inhomogeneity among the attributes 
and there are many possibilities of substitution. These hidden 
dependencies, responsible for Adenocarcinoma needs to be calculated 
out. Thus only 195 numbers of different attributes has been figured out 
of 22284 numbers of total attributes in the Microarray dataset. Thus 
the dependency and complexity of the decision has been reduced by 
a factor 195/22284 after the calculation of reduct sets. Using these 
generated reducts (Table 2) and decision table, the decision rules 
have been generated with the help of RSES2.2 package. Due to the 
huge dependency with each other in the attributes of reduct set, 2187 
no of rules have been generated. Using these rules, it is possible to 
classify an unknown Microarray data set of any human either into 
Adenocarcinoma affected or normal lungs.

Considering the first reduct i.e., {201591_s_at, 202295_s_at, 
209613_s_at}, which consist of three attributes, it is found that, for the 
first reduct the number rules generated are 35 which are quite large in 
number and can be used for classification.

Table 3 shows a portion of the generated rules (first 35 rules only 
for the first reduct set) where each generated rules are given first and at 
rightmost column ‘Match/support’ denotes the number of case in the 
decision table which are supported by this particular rule.

Due to large number of rules, it is almost impossible to understand 
the hidden data dependency on each other manually. That‘s why the 

Table 1: Sample Decision table (truncated).

CASES ATTRIBUTES OR GENE 
EXPRESSION

1007_s_at 1053_at .. AFFX- pnX-5_at AFFX-
TrpnX-M_at Decision

X1 10 7 .. 4 4 TUMOR
X2 10 6 .. 4 4 NORMAL
X3 10 6 .. 4 4 TUMOR

Table 2: Reduct Set for the data set of Adenocarcinoma after using RSES (partially 
shown).

Reduct Set 
{ 201591_s_at, 202295_s_at, 209613_s_at } 
{ 201456_s_at, 203065_s_at, 203217_s_at, 215972_at } 
{ 201413_at, 201969_at, 204987_at,205022_s_at,206550_s_at,208429_x_at}
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generated rule needs to be reduced in number without effecting overall 
accuracy and coverage of the rules. In this rules reduction approach, 
basically there are following 3 steps.

Step 1-Shortening: Shortening is the first step where large rules are 
simplified. The process by which the maximum numbers of condition 
attributes are removed without losing essential information is called 
value reduction and the resulting rule is called maximally general or 
minimal length. Computing maximally general rules is of particular 
importance in knowledge discovery since they represent general 
patterns existing in the data.

The simplification rule algorithm initialize general rules GRULE 
to empty set and copies one rule r1∈ RULE to rule r. A condition is 
dropped from rule r, and then rule r is checked for decision consistency 
with every rule rj ∈ RULE. If rule r is inconsistent, then the dropped 
condition is restored. This step is repeated until every condition of the 
rule has been dropped once. The resulting rule is the simplified rule.

Consider the 35 rules which are generated for the first reduct set. 
Using above algorithm, it is found that that the condition which are 
imposed by the attribute 201591_s_at and 202295_s_at can be removed 
without affecting the accuracy of the rules generated by the first reduct 
set as 209613_s_at is the most dominant attribute in the first reduct 
set. Using RSES2.2, shortening is applied to the 2187 no of rule with 
shortening ratio 0.9. The user provides a coefficient between 0 and 1, 
which determines how ‘aggressive’ the shortening procedure should 
be. The coefficient is equal to 1.0 means that no shortening occurs. 
If shortening ratio is near zero, the algorithm attempts to maximally 
shorten reducts. This shortening ratio is in fact a threshold imposed 
on the relative size of positive region after shortening Applying the 
above mentioned algorithm the number of rules for the first reduct set 
is reduced to 7 (5 for the tumor, 2 for the normal) with only a single 
attribute 209163_s_at.The following shortened 7 rules are the rules 
only for the first reduct set.

(209613_s_at=8)=>(CLASS=TUMOR[7])

(209613_s_at=4)=>(CLASS=TUMOR[11])

(209613_s_at=5)=>(CLASS=TUMOR[4])

(209613_s_at=7)=>(CLASS=TUMOR[11])

(209613_s_at=6)=>(CLASS=TUMOR[7])

(209613_s_at=11)=>(CLASS=NORMAL[7])

(209613_s_at=10)=>(CLASS=NORMAL[28])

After shortening overall number rules is reduced to only 770 rules. 
So reduction factor after shortening is=(2187/770) =2.84.

Step 2-Generalization: Though it is found that numbers of rules 

are reduced after shortening but due to different value there exist 
different rules for the same decision. Using shortening we minimize the 
dependent attribute in a rule whereas Generalization is the process by 
which the values of the reduced attribute are reduced into conjunctive 
form. For the first reduct set, the number of shortened rule is only 7 
but there are the different values of a same attribute 209613_s_at for 
which the decision is either tumor or normal. As an example, if the 
value is ‘4 or 5 or 6 or 7 or 8‘ then decision will be tumor and if the 
value is either 10 or 11 then samples will be considered as the normal. 
Therefore after generalization of the shortened rules for the first reduct 
set can be written

(209613_s_at=8|4|7|6|5)=> (CLASS=TUMOR [40])

(209613_s_at=11|10)=> (CLASS=NORMAL [35])

Interestingly it is found that the Match/support of this generalized 
rule is increased as the generalized & shortened rule support all 
individual shortened rules for normal and tumor. So, total ‘support’ for 
a particular decision is the sum of the individual rule for that decision.

Obviously generalized rules signify stronger rule than shortened 
rules. The ‘strength’ of the rule is defined as the ratio of the number 
supported by a rule for a particular condition to the total no of cases 
in the universe of decision table. So the strength of the above described 
generalized rule for tumor is = 40/82=0.488 which is quite good. 
Overall after generalization of shortened rule in this case, number of 
rules is reduced to 707.

Step 3-Filter: In previous section it is found that after generalization 
the strength of the rule increases as the support is increased. Moreover 
stronger rules are better for classification of unknown dataset. 
Therefore we filter the shortened & generalized rule with the condition 
of removing the rules up to 35 supports which is chosen randomly 
without sacrificing the accuracy of classification.

After this filter, we get only 15 numbers of strongest rules (Table 5) 
from 707 no of generalized rules which can be used for diagnosis of a 
human being from the microarray dataset which are given below. The 
no. of rules must be reduced in such a way that it should not affect the 
accuracy of classification.

Table 4 shows how the number & length of the rule are decreased 
but strength of the rule is increased with the different stage of rule 
reduction method which guarantee the accuracy of the rule will also 
increased in spite of the reduction of rules.

The attributes or the genes that consist of different 15 genes are 
stronger contender for the cause of Adenocarcinoma because they 
remain in reduced rule set. Table 6 depicts the most responsible genes 
for Adenocarcinoma.

(201591_s_at=10)&(202295_s_at=11)&(209613_s_at=8)=>(CLASS=TUMOR[2]) (201591_s_at=10)&(202295_s_at=11)&(209613_s_at=11)=>(CLASS=NORMAL[3]) 
(201591_s_at=10)&(202295_s_at=10)&(209613_s_at=4)=>(CLASS=TUMOR[4]) (201591_s_at=10)&(202295_s_at=12)&(209613_s_at=11)=>(CLASS=NORMAL[4])

Table 3: Generated rules set from reduct sets (partially shown).

Table 4: Comparative study of different stages of rule reduction.

Different stage of rules reduction No of rules Support of the rules Length of the rules premises Strength of the rules
Minimum Maximum Minimum Maximum Minimum Maximum

Rules form reduct set 2187 1 18 3 11 0.0120 0.219
After Shortening 770 1 39 1 8 0.0121 0.476
After Generalization 707 1 41 1 8 0.0121 0.500
After filter 15 37 41 1 3 0.4512 0.500
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Bayesian Network Model
This stage involves the construction of a Genetic Network from 

the set of dominant gene expressions which are obtained from the 
preliminary stage of rules reduction process by using Rough set theory. 
The dual nature of a Bayesian network makes learning a Bayesian 
network from an unknown dataset as a two stage process a natural 
division. First learn a network structure, and then learn the probability 
tables. There are various approaches to structure learning one of 
which is conditional independence test: These methods mainly stem 
from the goal of uncovering causal structure. The assumption is that 
there is a network structure that exactly represents the independencies 
in the distribution that generated the data. Then it follows that if a 
(conditional) independency can be identified in the data between two 
variables, there is no arrow between those two variables. Once locations 
of edges are identified, the direction of the edges is assigned such that 
conditional independencies in the data are properly represented.

At the moment, only the ICS algorithm is implemented. The 
algorithm makes two steps, first, find a skeleton (the undirected graph 
with edges if there is an arrow in network structure) and second, direct 
all the edges in the skeleton to get a DAG. Starting with a complete 
undirected graph, we try to find conditional independencies P[x, y|Z] 
in the data. For each pair of nodes x, y, we consider sets Z starting 
with cardinality 0, then 1 up to a user defined maximum. Furthermore, 
the set Z is a subset of nodes that are neighbors of both x and y. If an 
independency is identified, the edge between x and y is removed from 
the skeleton. A test is performed by using any of the score metrics to 
test whether variables x and y are conditionally independent given a set 
of variables Z.

The first step in directing arrows is to check for every configuration 
x—y—z where x and y not connected in the skeleton whether z is in 
the set Z of variables that justified removing the link between x and y 
(cached in the first step). If z is not in Z, we can assign direction x→ z 
←y.

Finally, a set of graphical rules is applied to direct the remaining 
arrows.

Rule 1: i→j—k & i-/-k => j→k 

Rule 2: i→j→k & i—k => i→k

Rule 3 : i→j←k & m—i—j & m—k—j & m—j => m→j 

Rule 4 : i→j & m—i—j & m—k—j & i—k => k→m & i→m

Rule 5: if no edges are directed then take a random one (first we 
can find).

The problem of learning a Bayesian network can be stated as follows. 
Given a training set D={X1, X2… XN} of independent instances of X, find 
a network B= [G, C] that best matches D. The common approach to this 
problem is to introduce a statistically motivated scoring function that 
evaluates each network with respect to the training data, and to search 
for the optimal network according to this score.

A commonly used scoring function is the Bayesian scoring metric 
(Cooper & Herskovits 1992, Heckerman et al. 1995) Score(G:D) = 
logP(G|D)=logP(D|G)+logP(G)+C1 where C1 is a constant independent 
of G and P(D|G) the marginal likelihood which averages the probability 
of the data over all possible parameter assignments to G . The particular 
choice of priors P (G) and P (C1|G) for each G determines the exact 
Bayesian score. Under mild assumptions on the prior probabilities, 
this scoring metric is asymptotically consistent. Given a sufficiently 
large number of samples, graph structures that exactly capture all 
dependencies in the distribution, will receive, with high probability, a 
higher score than all other graphs. This means, that given a sufficiently 
large number of instances in large data sets, learning procedures can 
pinpoint the exact network structure up to the correct equivalence 
class.

This algorithm also makes the following assumptions:

1. The database attributes have discrete values and there are no 
missing values in all the records.

2. The volume of data is large enough for reliable CI tests. 

A truncated decision table, containing 82 different cases of gene 
expressions corresponding to 15 most dominant responsible genes 
which we already collected by rule reduction method using Rough 
Set theory from the same microarray dataset (GSE10072), is used 
to reconstruct the Bayesian Network. To build the regulatory path 
between the responsible genes i.e. Bayesian Network, “WEKA -3.6” 
software tool [http://www.cs.waikato.ac.nz/ml/weka/] with Bayes Net 
classifier is used. We have consider state of the lungs either normal or 
cancer (named as class) as a virtual gene which is also included in the 
table to find out the regulatory path between other genes and the state. 
ICS algorithm is used as the learning structure search algorithm and 
simple estimator option can be used to select the method for estimating 
the conditional probability distributions of different genes or attributes. 
The maxCardinality option determines the largest subset of Z to be 

Table 5: Most dominant 15 number of rules for classification of Adenocarcinoma.

(209613_s_at=8|4|7|6|5)=>(CLASS=TUMOR[40]) 40
(203065_s_at=10|9|8|7)=>(CLASS=TUMOR[41]) 41
(206068_s_at=6|5)&(206757_at=4)=>(CLASS=TUMOR[41]) 41
(206068_s_at=6|5)&(212760_at=8|9)=>(CLASS=TUMOR[41]) 41
(201772_at=9|8|10)&(206068_s_at=6|5)=>(CLASS=TUMOR[41]) 41
(49452_at=6)=>(CLASS=TUMOR[39])39 (208056_s_at=7|6|5)&(218918_at=9|7|8|6)&(49452_at=6)=>(CLASS=TUMOR[39])39
(209072_at=7|6)&(218982_s_at=8|9|10|11)&(49452_at=6)=>(CLASS=TUMOR[38])38
(201591_s_at=10|11)&(202295_s_at=11|12|10)&(209613_s_at=9|10|11)=>(CLASS=NORMAL[38])38 (203065_s_at=12|11)=>(CLASS=NORMAL[39]) 39
(203091_at=8|7)&(203249_at=9)=>(CLASS=NORMAL[37]) 37
(206068_s_at=7|8)=>(CLASS=NORMAL[38])38 (209613_s_at=9|10|11)&(222313_at=7|6|5)=>(CLASS=NORMAL[39]) 39
(49452_at=8|7)=>(CLASS=NORMAL[37]) 37
(201938_at=10|9)&(205261_at=10|11|12)=>(CLASS=NORMAL[36]) 36

Table 6: Most dominant genes responsible for Adenocarcinoma.

201591_s_at 202295_s_at 203249_at 208056_s_at 218918_at
201772_at 203065_s_at 205261_at 209072_at 222313_at
201938_at 203091_at 206068_s_at 209613_s_at 49452_at
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considered in conditional independence tests P[x, y|Z] and Bayes type 
score is used for this purpose. The Bayesian Network & probability 
distribution table corresponding to the 15 dominant genes is shown 
in Figure 1. This acts as ‘signature’ of the disease ‘Adenocarcinoma’ 
extracted from its Microarray dataset.

Result Analysis
Here, this study has been carried out for automated human disease 

diagnosis. The input to the process is genetic information of the person 
under investigation in the form of Microarray dataset. The extracted 
rules are cross validated against the training data set and also unknown 
persons Microarray dataset. The results show that these rules can 
predict the 42 tumor & 40 normal which is 100% accurate. Then again 
these reduced rules are verified against the 15 number of unknown 
test data sets which consist of 8 tumor & 7 normal cases. After 
classification using the rules, it can be seen that the rules can classify 
the new data set with same accuracy and coverage factor 1. The genes 
that remain in different 15 rules are stronger contender for the cause 
of Adenocarcinoma. By analyzing the attribute values of responsible 
genes we can easily identify whether a person has normal or cancerous 
lung, from his microarray data. The above results are verified using 
publicly available website Gene-ontology, named DAVID [http://
david.abcc.ncifcrf.gov/] which provides a comprehensive set of 
functional annotation tools for investigators to understand biological 
meaning behind large list of genes. Among the 15 no of genes, all 
genes directly or indirectly related to Lung Adenocarcinoma, proves 
the fact that RST can extract biological relevant information also. Thus 
it can be concluded that using this technique, accurate diagnosis of 
Adenocarcinoma can be done, if the microarray data of the concern 
patient is available.

From the above Bayesian network and inference table, is following 
observation can be made.

1. 201591_s_at, 206068_s_at, 203065_s_at, 20172_at, 209613_s_
at & 203091_at these genes are parent genes which have 

direct causal influence on Adenocarcinoma (class). Therefore 
depending upon expression value of these genes, the state of 
the lungs of human is directly influenced. So if we want to 
design a drug for Adenocarcinoma, these parent genes must be 
druggable as they are directly responsible for changing the state 
from normal to cancerous lungs.

2. On the other hand, 202295_s_at, 208065_s_at, 205261_at these 
genes are intermediate gene which are indirectly regulate the 
state of the lungs.

3. The intermediate genes are particularly depending on the parent 
genes. As an example 209613_s_at gene can directly influenced 
the state. But 20805_s_at is also triggered by 209613_s_at 
which is parent node of the 20805_s_at. In other words, the 
effect of gene 209613_s_at on state of the lungs _ is mediated 
through gene 20805_s_at _. Once we know the expression level 
of 209613_s_at gene _, the expression of gene _ 20805_s_at 
does not give new information about the state. So 209613_s_at 
can directly or indirectly infer the class or state. Same statement 
can be concluding for other intermediate genes.

4. There is a different regulatory path existing in the gene network 
based on dependency of different gene expression value. These 
dominant regulatory path are described below:

o 201591_s_at→202295_s_at→205261_at→class

o 201591_s_at→202295_s_at→208065_s_at →class

o 206068_s_at→202295_s_at→205261_at→class

o 206068_s_at→202295_s_at→208065_s_at →class

o 209613_s_at→208065_s_at →class

o 209613_s_at→205261_at →class

•	 201591_s_at→class

o 206068_s_at→class

Figure 1: Dominant Gene Regulatory Network for the disease Adenocarcinoma using Bayesian Model.
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o 203065_s_at→class

o 20172_at→class

o 209613_s_at→class

o 203091_at→class

5. On the other hand 203249_at, 49452_at & 21898_at these three 
genes depend on the class or state of the lung as well as on other 
parent genes but they don‘t infer the state. So these genes are 
less of concern during drug design as they are the children node 
of the class.

6. 209072_at, 2213_at and 201938_at these genes neither directly 
nor indirectly cause cancer. Moreover these genes are not 
affected according the current state of the lungs which can 
be concluded by observing probability tables of therm. No 
dependency is found either with other genes or the states. So 
these genes which are at the low layer than the Class of the 
Bayesian Network have also no practical significance during 
drug design.

So, using Bayesian Network, a GRN for Adenocarcinoma is 
constructed using these 15 genes which can be treated as ‘signature 
patter’ for a particular disease from microarray data which can be used 
for classification as well as to find out regulatory path which is helpful 
for drug design in future.

Discussion
In this paper, a new and novel approach for reconstruction of 

dominant molecular regulatory network from gene expressions profiles 
using Rough set theory & Bayesian network analysis method has 
been proposed. Rough set theory has been successfully implemented 
to find out the hidden dependency between huge imperfect dataset 
by calculating reduct and decision rules from it. Using shortening, 
generalization & filter process we can easily get a simple & few 
numbers of rules, by which we can predict the status of a human with 
100% accuracy and moreover find the most dominant genes which 
are responsible for Adenocarcinoma. The result also predicted 15 
responsible / affected genes for causing the disease Adenocarcinoma. 
The validation for this can be carried out in the Gene Ontology website- 
David. It has been assumed that the set of genes will more or less act in 
the same general way in a particular species e.g. human beings in the 
present investigation scenario.

We also presented a new approach for finding out the gene network 
by analyzing gene expression data of dominant gene that builds on 
theory and algorithms for learning Bayesian networks. The approach 
includes two techniques that were motivated by the challenges posed 
by this domain: a novel search algorithm (CI Test-ICS algorithm) and 
an approach for estimating statistical Bayes score. We applied our 
methods to the real expression data of Adenocarcinoma. Although 
we did not use any prior knowledge, we managed to extract many 
biologically plausible conclusions & regulatory path for drug design in 
future. The dominant Gene Regulatory Network can be considered as 
‘Genetic Signature’ of the disease. The results needed to be verified in 
wet-lab but we hope this process have future potential in medicine.
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