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Abstract

Background: Network inference methods reconstruct mathematical models of molecular or genetic networks

directly from experimental data sets. We have previously reported a mathematical method which is exclusively

data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible

alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete

time series data set.

Results: We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the

reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the

form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass

flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria

was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants.

Conclusions: The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all

alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for

certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may

potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model.

Background
Network reconstruction methods infere mathematical

models of real world networks directly from experimen-

tal data ([1-5] and references therein). We have recently

described an approach to the reconstruction of causal

interaction networks from time series data sets [6,7].

The original algorithm has two significant properties. (1)

It delivers provenly ALL minimal networks which are

able to reproduce the time series data that served as

input and (2) the algorithm is exact as it does not

involve any heuristic decisions by the operator so that

the results are independent of any personal bias. Having

a complete list of alternative networks which are compa-

tible with experimental data shall facilitate the design of

new experiments aimed at ruling out alternatives to sys-

tematically find a final, unique solution.

The output of the algorithm can be encoded as simple

place/transition Petri net (Figure 1; [8]) containing only

the minimal number of nodes and arcs required to fit

the given data set. In order to exactly reproduce the

experimental observations, we additionally use priorities

among transitions to enforce an order in which compet-

ing transitions fire [6]. The priorities reflect relative

kinetic rate constants. The algorithm starts by assigning

one place to each (biochemical) component or factor

which has been measured in the form of a time series

and tries to connect these places by a minimal set of

transitions (Figure 2). Transitions may be interpreted as

(bio-) chemical reactions ([9-11] and references therein).

If the number of components measured in the time ser-

ies is not sufficiently high in order to create a Petri net

which is able to reproduce the data, the algorithm adds

one place and restarts the reconstruction process and

continues to do so until solutions are found [6,7].

For the trivial example shown in Figure 2 the solution

of the reconstruction problem is obvious: The two
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successive states of the system which are reflected by

the time series data set (Figure 2a) are the result of the

firing of a single transition connecting three places

(Figure 2e). In more complex data sets however, the dif-

ferences measured between two successive time points

may have been caused by the firing of more than one

transition. Therefore the algorithm has to identify all

combinations of putative transition firing events the

sum of which might lead to the difference observed

between two successively measured time points (see [6]

for details).

According to the sampling theorem, the number of

time points taken in a series needs to be sufficiently

high to correctly capture the time-dependent change of

the measured components in the form of a time-discrete

characteristics (Figure 3). Potential oscillations of indivi-

dual components which occur asynchronously or which

are by far too fast to be observed at the time scale of

interest (e.g. formation and decay events of individual

enzyme substrate complexes; Figure 4a) were not con-

sidered by the algorithm as this would cause an explo-

sion of solutions [12] and because such events cannot

be observed anyway. It follows that the original recon-

struction algorithm [6,7] considers only macroscopic

changes that are measured within the chosen time scale

of a given data set. The resulting assumption of mono-

tonicity of the time course of the components in turn

puts a severe limit to the formal representation of any

form of catalysis or inhibition if, as in [6], only standard

Petri nets (i.e. Petri nets without contol arcs) are used

for the reconstruction process. As the formation and the

decay of enzyme-substrate complexes in most cases are

so fast and do occur asynchronously at the level of indi-

vidual molecules, individual turnovers (Figure 4a) are

usually not resolved by experimental time series mea-

surements. Representing the formation and decay of the

enzyme-substrate-complex of an enzymatic (catalytic)

reaction by a single transition that directly connects the

two places substrate (S) and product (P) of the enzy-

matic reaction through a bidirected arc (read arc; Figure

4b) solves this dilemma. In fact, our originally described

algorithm does not work with so-called extended Petri

nets which in addition to standard arcs may contain

read arcs and inhibitory arcs. In order to include cataly-

tic and inhibitory reactions, we had to fundamentally

redesign our network reconstruction algorithm. Consid-

ering catalysis and inhibition significantly extends the

practical applicability over the original algorithm [6] as

demonstrated in the present paper. The new algorithm

now allows for the reconstruction of signal transduction

and gene regulatory networks. It also allows the use of

data sets that compare the behaviours of wild-type and

mutant cells.

Although the concept of providing a complete list of

solutions remains and the basic principle of reconstruct-

ing the network in part is the same as in reference [6],

this work is based on fundamental methodological

improvements [13] (Durzinsky, M., W. Marwan, A.

Wagler: Reconstructing extended Petri nets, submitted)

of the underlying mathematics as compared to refs.

[6,7]:

(1) While in [6] all possible reaction sequences are

enumerated by simulation, the new approach uses

an implicite representation of all possible combina-

tions, thereby avoiding combinatorial explosion.
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Figure 1 Petri net elements and the representation of a

chemical reaction in the form of a Petri net. a) Petri nets are

weighted, directed, bipartite graphs consisting of nodes and arcs.

The nodes of a Petri net, places and transitions, are interconnected

by arcs. An arc always connects a place with a transition or vice

versa, but never two places or two transitions with each other.

Places may contain (be marked with) tokens, while transitions move

tokens rather than containing them. Petri nets provide a useful,

mechanism-oriented framework to represent chemical or

biochemical reactions. Panel (a) shows a Petri net model of the

synthesis of water from its elements, hydrogen and oxygen.

Individual molecules are represented by tokens in the respective

places. In the example shown, two out of three molecules of

hydrogen react with one molecule of oxygen to give two

molecules of water. The chemical reaction is modeled by firing of

the transition T. Numbers adjacent to arcs are called arc weights.

When no number is given, the arc weight by definition is one. The

arc weight indicates how many tokens are removed from a place

(outgoing arc) or moved into a place (ingoing arc) when a

transition fires. Arc weights can be used to represent the

stoichiometry of a chemical reaction, accordingly. After two

molecules of water have been formed (b), the transition cannot fire

a second time because one molecule of hydrogen is missing so

that the stoichiometry of the reaction is not fulfilled. c) Standard

Petri nets, so-called place/transition nets are composed of places,

transitions, tokens and (standard) arcs. Extended Petri nets in

addition have read arcs and/or inhibitory arcs that put an additional

constraint on the firing licence of a transition, depending on the

marking of its pre-places (for details see Figure 5).
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(2) Terminal states of the network are now applied

in a new way which again reduces the number of

combinations to be analysed.

(3) Reaction vectors and catalytic events in the form

of control arcs are now treated completely indepen-

dent from each other by introducing control func-

tions. This again greatly reduces the number of

combinations to be analysed.

(4) The new algorithm allows that reactions may

depend on arbitrary logic combinations of the

presence or absence of components allowing to

represent complex regulatory dependencies.

A detailed description of the mathematical model

extended by the new concept of control functions and

the mathematical proof of the completeness of solutions

provided by the algorithm will be publised in a compag-

nion paper [13] (Durzinsky, M., W. Marwan, A. Wagler:

Reconstructing extended Petri nets, submitted). In this

manuscript, we describe its application to the
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Figure 2 The principle of automatic network reconstruction explained with the help of a trivial example. a) The input for the

reconstruction algorithm is a time series data set that describes the time-course of the components of interest (A,B,C) with discrete values as a

causal sequence of events. At time t2 the system reached its terminal state, i.e. the values of all components have reached their final level. In the

simplest form, the entries are boolean (0,1). b) Shows the reaction vector of the transition in e). A reaction vector corresponds to the incidence

matrix of an individual transition or to a column in the incidence matrix of a Petri net. c,d) The presence of the components at given time

points is represented by tokens in places assigned to the components. The algorithm evaluates those places the marking of which has changed

between two successive time points and e) connects these places with transitions that cause the observed flow of tokens in the reconstructed

Petri net.
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reconstruction of signal transduction and gene regula-

tory networks.

A standard experimental approach in molecular biol-

ogy is to introduce structural changes into a network

and to study the resulting change in its static or

dynamic behaviour. Such structural changes can be

introduced by genetic or pharmacological intervention,

for example. Many reactions in a biochemical network

depend on the presence or the absence of a certain

component while there may be no obvious, measurable

time-dependent change in concentration or abundance

of these respective components. Enzymes catalyze bio-

chemical reactions, like e.g. the phosphorylation or

dephosphorylation of proteins in a regulatory network.

Formally, and based on the original definition of cataly-

sis by Berzelius, a gene may be seen to catalyse an even

far downstream process. Deleting an enzyme-encoding

gene for example may abolish a certain biochemical

reaction. Although transcription and translation are in

between, the gene indirectly acts as a catalyst of the bio-

chemical reaction in the sense that the gene is necessary

for the biochemical reaction to occur, but it is not con-

sumed by the reaction.

Reactions in biochemical or genetic networks may be

subject to the control by inhibitors as well. Deletion of a

gene encoding an inhibitory subunit of a specific protein

may render this protein constitutively active. A

biochemical reaction or the expression of a gene may be

controled by different factors and/or might occur

through alternative mechanisms. The described regula-

tory dependencies of reactions can be modeled with the

help of read arcs (bidirected arcs) and inhibitory arcs in

the extended Petri net formalism. These control arcs

determine whether a given transition is able to fire

depening on the marking of its pre-places (Figure 5).

The reader interested in the mathematical details of the

algorithm and the proof of its correctness is referred to

the compagnion paper [13].

Results
Neglecting catalysis and inhibition, each transition T can

be encoded by a reaction vector rT and the collection of

all such vectors yields the incidence matrix of the stu-

died network. Considering catalysis and inhibition we

deal with controled reactions: Each set of such transi-

tions that connect the same places in the same way is

encoded by a controled reaction Rc = (r, fr), a pair,

where is the reaction vector indicating the change in the

marking of places caused by firing of any of the transi-

tions of the set and fr is a control function encoding

control arcs connected to the transitions. In other

words, reaction vectors and control functions separately

describe two different structural properties of one and

the same extended Petri net: (1) The reaction vectors r

insufficient sampling sufficient sampling 
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Figure 3 Constraints for the quality of data to be suitable for automatic network reconstruction. The algorithm requires that the time

course of the considered components is known, no matter whether the data are boolean or continuous (and are subsequently discretized) as

only those changes are considered that in fact are reflected by the data set. a) The number of time points measured is so low that the time

course of the signal is not reflected with a sufficient resolution in detail and interpolation of the data points may mislead the algorithm as

phases of formation and decay of the component are missed. b) The number of time points is sufficiently high in order to correctly reflect the

time course of the component.
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describe how the places of a Petri net are connected by

transitions through directed standard arcs, and how the

marking of the places accordingly changes upon firing

of the transitions. (2) The control function fr describes

which places are connected to given transitions through

control arcs (read arcs or inhibitory arcs, respectively;

Figure 5). The control function also defines the condi-

tions under which firing of at least one of all transitions

with the same reaction vector can occur. The control

function is 1 (TRUE) for a given transition if the mark-

ing of all pre-places that are connected by control arcs

to that transition licenses this transition to fire. When a

transition is not connected to any control arc, the value

of the control function fr is one and the firing of the

transition depends only on the marking of its pre-places

(Figure 5a). When a transition is connected by a control

arc (read arc or inhibitory arc) to a place, the control

function is 1 and the transition is allowed to fire only if

the marking of this place is as defined by the control

arc. If the control arc is a read arc as in the example of

Figure 5b, the condition for firing is fulfilled, only if

there is at least one token in the controling place (in

place C in Figure 5b). If the control arc is an inhibitory

arc, the condition is fulfilled only if there is no token in

the pre-place connected by the inhibitory arc to the

transition. If the firing of a given transition is under the

control of more than one control arc (read arc or inhibi-

tory arc), the control function is one if all conditions are

fullfilled. In the Petri net of Figure 5c this is the case if

there is at least one token in C and if there is no token

in D. A controled reaction r may eventually represent

more than one transition of the same reaction vector.

(This is why we discriminate between reaction vectors r

and transitions T by using different symbols through-

out.) In this case the control function represents all con-

ditions for the firing of any of the transitions of this set,

indicating whether the reaction can occur by firing of

any one of those transitions (Figure 5d). The marking of

the regulating places may indeed be updated through

transitions connected through standard arcs to other

places of the network.

Essential function of the algorithm

We describe the essential function of the algorithm by

taking the small Petri net of Figure 6a as an example.

The small net is used to generate a discrete time series

data set starting with the initial marking shown. In this

context, a time series data set indicates how the values

of the components (here represented as the marking of

the places) change as a function of time. As the marking

of the net may not necessarily change with each mea-

sured time point, the time series data set is compiled

into a state matrix (Figure 6b) which indicates how the

marking of the net develops as the tokens pass through

until a terminal state is reached (x4 in Figure 6b). A

terminal state is defined as a state where the marking of

all places in the Petri net does not change anymore.

Compilation eliminates redundancy in the time series

data by deleting information for time points where no

change was detected as compared to the previous mea-

surement. Information from several time series data sets

obtained in different experiments and/or performed

with networks after structural intervention (e.g. with

cells that carry mutations in the pathways of interest)

may be combined into a single state matrix to be used

as input for the reconstruction algorithm (see case

study; not shown in Figure 6).

From the state matrix, the difference vector matrix is

computed with difference vectors indicating how the

marking of the net (i.e. the number of tokens in all

places) changes from one state to the next. The two

states x0 and x1, the difference vector d1 = x1 - x0, and

the terminal state x4 are arbitrarily chosen to demon-

strate subsequent steps of the algorithm. As it is not

known a priori whether the change in marking of places

represented by a given difference vector is caused by the

firing of one or of several transitions, all difference

!
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Figure 4 Alternative ways to represent a catalytic (enzymatic)

reaction. a) An enzymatic reaction converting substrate S into

product P is represented in the form of a place/transition Petri net

by modeling the formation and decay of the enzyme-substrate

complex ES. Upon firing of T1, enzyme E is consumed and released

upon firing of T2. b) In the framework of an Extended Petri net, an

enzymatic reaction can be modeled with a test arc (bidirected arc)

connecting the Enzyme place E with the transition that converts

substrate S into product P. The transition can only fire if there is at

least one token in E. Upon firing of the transition, the token is

consumed from and immediately redelivered into place E, i.e. unlike

in a), the marking of E does not change while the token of place S

moves to place P.
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Figure 5 Implicit representation of extended Petri nets by controled reactions. A controled reaction Rc = (r,fr) is composed of the reaction

vector r and the associated control function fr. The arcs of an extended Petri net can be thought of to consist of two sets. (1) The standard arcs

and (2) the control arcs (bidirected arcs and inhibitory arcs). A reaction vector describes how the marking of the connected places changes

upon firing of a transition. The control function defines the conditions under which firing of at least one of all transitions with the same reaction

vector may occur. The marking of the places of all four Petri nets shown in panels a) to d) has been choosen such that all transitions can fire. If

there is a token in place A, the transition in a) can always fire, the transition in b) can only fire if there is at least one token in place C, while the

transition in c) can only fire if there is at least one token in place C and if place D is empty. In the Petri net of panel d), the token has two

options to move from place A to place B. It can move through firing of T1 if there is at least one token in place C and at least one token in

place D. The alternative path, firing of T2, requires that there is at least one token in place D while place E must be empty. In panel d), the

reaction vector of the controled reaction Rc = (r,fr) represents the set of two transitions T1 and T2 each of which connects the places A and B in

the same direction through standard arcs. Note that if places A in panels a) to d) do not contain any token, none of the transitions could fire.

Symbols: ∧, logic AND; ∨, logic OR; -, logic NOT.
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vectors are decomposed into the maximal sets of possi-

ble individual reaction vectors r to be listed in one reac-

tion vector matrix. The reaction vector matrix lists all

possible connections of places and transitions by stan-

dard arcs as putative nodes of a reconstructed Petri net.

Which of these connections indeed is suitable to be a

transition in alternative reconstructed networks and in

which temporal order the transitions fire is estimated at

a later stage of the analysis. Figure 6d shows the decom-

position of the difference vector d1 = (-1, -1, 1, 0, 0, 0)T

into seven different reaction vectors as an example. For

the sake of clarity, the reaction vectors obtained by

exhaustive decomposition of d1 are graphically repre-

sented as Petri nets in Figure 6e. Referring to a bio-

chemical model, complete decomposition takes into

account that it is not known whether the chemical com-

ponents A, B, and C react with each other or (in part)

separately. In case A, B and C are involved in more

than one chemical reaction, it is open in which temporal

sequence these reactions do occur. Therefore, all possi-

ble permutations of all reaction vector combinations

that give a difference vector have to be considered (Fig-

ure 6f). This may however lead to intermediate states of

the system that have not been observed in the time ser-

ies data set. This is demonstrated by taking the two pos-

sible permutations of the sequence of r4 and r5 as

example (Figure 6g). In the first permutation (the 1st

reaction is r4 and the 2nd reaction is r5), the system

proceeds from state x0 to state x1 through an additional,

intermediate state y1. In the second permutation (the

1st reaction is r5 and the 2nd reaction is r4), the addi-

tional, intermediate state is y2. For the sake of complete-

ness it is essential to compute all potential additional,

intermediate states and this complete set is required for

performing the next step of the algorithm in which all

reactions that cannot be part of a functional recon-

structed Petri net are filtered out. Filtering is performed

by testing all reactions of the reaction vector matrix

with all states of the state matrix which has been

extended by all additional states y. All sums of a state

vector and a reaction vector are evaluated. This is per-

formed by asking which reaction is applicable in each

individual state of the system (as listed in the state

matrix). A reaction, by definition, is applicable to a state

if it does not generate an invalid successor state with

entires out of bound (corresponding to a negative or a

too large number of tokens per place). The remaining

pairs of state vector and applicable reaction vector are

analysed for the potential control by the control func-

tion the value of which may change in a marking-depen-

dent manner while the tokens flow through the net.

Each individual transition might potentially be under

the control of test- and/or of inhibitory arcs that might

emerge from ANY of the places and hence all reac-

tions must be considered for such potential control. If

a reaction is applied to (occurs at) a given state, the

control function fr must have the value of 1 at that

state. If a reaction is applicable to one of the terminal

states (to terminal state x4 in the example of Figure

6b), the reaction must be disabled at this state, because

otherwise the state would not be terminal. In this case

the control function must be fr(x4)= 0. By comparison

of state vectors where the reaction is enabled and state

vectors of terminal states where the reaction has to be

disabled, one then identifies potential places, the mark-

ing of which might control the firing licence of the

respective transition of a Petri net in terms of an argu-

ment of the control function. In the example shown in

Figure 6g (right side, 1st permutation), reaction r4
occurs at the state x0 which has a token in A but no

token in place F. Because the terminal state x4 (at

which r4 must be disabled) has no token in A but a

token in F, either of the two places can control r4. In

other words, the reaction r4 may be mediated by a

transition which is connected to place A by a test arc,

or it may be mediated by a transition which is con-

nected to place F by an inhibitory arc. Note that, in

the simple case, only one of the two controled reac-

tions (r4, f4 = A) or (r4, f4 = -F) needs to be chosen to

compose the reconstructed Petri net. When a reaction

occurs at multiple different states and has to be dis-

abled at multiple terminal states, more complex con-

trol is possible (Figure 5).

To summarize, when a reaction r is applied to a cer-

tain state x, it has to be enabled by its control function

at that state (fr(x) = 1). If the reaction is applicable at

some terminal state x’, the control function has to dis-

able the reaction (fr(x’) = 0), otherwise r could produce

a successor state of x’ contradicting its property to be a

terminal state. With respect to their associated control

function fr, reactions r as elements of a controled reac-

tion Rc = (r, fr) fall into three groups:

(I) A reaction that is not applicable to any terminal

state can be enabled at all times fr ≡ 1) which means

that by minimality no control arcs are pointing to

the respective transition in the reconstructed Petri

nets.

(II) A reaction which is applicable to an intermediate

state of the system which has the same state vector x

as a terminal state has, must be deleted (ruled out),

because the control function fr cannot be 1 (on) and

0 (off) at identical marking of the Petri net. Hence

no appropriate control arcs exist in this case.

(III) In all other cases the control of the reaction by

control arcs is possible (Figure 6g; right side).
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If (r4 , r5 ) is choosen:                                 

r4  is applied at x0   f4 x0( ) = 1

r5  is applied at y1   f5 y1( ) = 1

however,

r4  is also applicable at terminal state x4

 r4  must be disabled  f4 x4( ) = 0 

 done by a token in A or no token in F

If (r5 , r4 ) is choosen:                                 

r4  is applied at y2   f4 y2( ) = 1

r5  is applied at x0   f5 x0( ) = 1

however,

r4  is also applicable at terminal state x4

 r4  must be disabled  f4 x4( ) = 0

 done by no token in F 

1st Permutation (r4 , r5 ) :

    x0   +      r4    =     y1;           y1    +     r5    =     x1

1

1

0

0

1

0

+

0

-1

1

0

0

0

=

1

0

1

0

1

0

;   

1

0

1

0

1

0

+

-1

0

0

0

0

0

=

0

0

1

0

1

0

2nd Permutation (r5 , r4 ) :

    x0   +      r5    =     y2;           y2    +     r4    =     x1

1

1

0

0

1

0

+

-1

0

0

0

0

0

=

0

1

0

0

1

0

;   

0

1

0

0

1

0

+

0

-1

1

0

0

0

=

0

0

1

0

1

0

r4 x0 x
4

A 1 0 f
4

= A

B 1 1

C 0 0

D 0 0

E 1 1

F 0 1 f
4

= NOT F

f
4

1 0

r4 y2 x4

A 0 0

B 1 1

C 0 0

D 0 0

E 1 1

F 0 1 f
4

= NOT F

f
4

1 0

x
0

x
1

x
2

x
3

x
4

A 1 0 0 0 0

B 1 0 1 1 1

C 0 1 0 0 0

D 0 0 0 0 0

E 1 1 1 1 1

F 0 0 1 1 1

d
1

d
2

d
3

d
4

x
0

x
1

x
1

x
2

x
2

x
3

x
3

x
4

A -1 0 0 0

B -1 1 0 0

C 1 -1 0 0

D 0 1 -1 0

E 0 0 0 0

F 0 0 1 0

r
1

r
2

r
3

r
4

r
5

r
6

r
7

A -1 -1 -1 0 -1 0 0

B -1 -1 0 -1 0 -1 0

C 1 0 1 1 0 0 1

D 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0

d
1
== r

1
                (1 Permutation)

d
1
= r

2
+ r

7
         (2 Permutations)

d
1
= r

3
+ r

6
         (2 Permutations)

d
1
= r

4
+ r

5
         (2 Permutations)

d
1
= r

5
+ r

6
+ r

7
  (6 Permutations)

State Matrix

Difference Vector Matrix

Reaction Vector Matrix of d
1

Complete Decomposition of d
1
.

Reactions may occur in arbitrary 
sequence:

Reaction Vector d
1
 may be composed using the following reactions:

A

B

C

D

E

F

A

B

C

A

B

A

C

C

B

A

C

B

r
1

r
2

r
3

r
4r

5
r

6
r

7

Try all reactions with all terminal states:

Exclude all reactions r suggested to be on and  off with state vectors identical with a terminal state, i.e. at xn ym( ) =  xT , respectively.

r
4 F

r
4 F

r
4 A

Given Petri Net 

Control functions:

Control function:

or
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in panels b) to g).
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This allows to identify places that potentially do con-

trol the reaction through a control arc. Mathematical

details are given in [13].

Exhaustive decomposition of all difference vectors

into reaction vectors with all possible permutations in

the order (sequence) of the reactions and testing them

against the state vectors finally yields a complete list of

controled reactions (Rc = (r,fr)) as potential elements

of a reconstructed extended Petri net. Reverse engi-

neered Petri nets are then composed simply by com-

bining for each difference vector one arbitrarily chosen

set of controled reactions that results from the decom-

position of each of the subsequent difference vectors.

Figure 7a shows one possible trajectory for obtaining

one possible Petri net that is consistent with the input

data set. All Petri nets obtained accordingly through

different trajectories are compatible with the input

data [13]. An example of how sets of controled reac-

tions translate into Petri net structures is shown in

Figure 7b. The lower the number of sets of controled

reactions found for any given difference vector is, the

lower is the number of alternative Petri nets that are

compatible with the input data set. A unique Petri net

is obtained if there is only one reaction set for each

difference vector. If more or even many alternative

Petri nets are obtained, the implicit representation of

solutions is useful for the design of experiments as it

directly shows which parts of the underlying network

are still ill-defined.

The phosphate regulatory network as a test case

The phosphate regulatory network is a network of

interacting phosphate-sensing and signal transducing

proteins regulating the expression of a battery of genes

which are arranged in the pho operon. These jointly

controlled genes encode proteins related to the

phosphate metabolism of enteric bacteria [14,15]. The

network serves as a non-trivial test case as the corre-

sponding Petri net contains negative feed-back loops

[16] which have to be recognized by the reconstruction

algorithm. In the following, we will first briefly describe

the biological function of the phosphate regulatory net-

work and its implementation in the form of a Petri net

model as far as it is relevant for understanding the

in silico experiments on genetic (structural) perturba-

tion. Subsequently, we will describe the in silico experi-

ments performed to obtain the time series data set.

Finally, we will demonstrate step by step how the net-

work was reconstructed on the basis of this data set.

Biology of phosphate regulation

Growth of micro-organisms requires the presence of

inorganic phosphate (Pi), an essential component for the

synthesis of nucleic acids (DNA and RNA). Inorganic

phosphate is taken up by the PstSCAB complex, which

transports inorganic phosphate into the cytoplasm

against its concentration gradient (see legend of Figure

8 for details). Under natural growth conditions, the con-

centration of inorganic phosphate may become a

growth-limiting factor. When inorganic phosphate is

absent, the phosphate transporter lacks substrate and

relays this information through a cascade of three pro-

teins, PhoU, PhoR, and PhoB to cause, among others,

the transcription of the phoA gene which encodes alka-

line phosphatase. This enzyme is synthesized and

exported from the cytoplasm into the periplasm where

it accumulates in considerable amounts. By degrading

organic phosphate compounds that may originate from

decaying organisms, alkaline phosphatase provides inor-

ganic phosphate which is taken up into the cell by the

PstSCAB complex. As the biosynthesis of high amounts

of alkaline phosphatase is energetically expensive, tran-

scription of the phoA gene is tightly controled by the

concentration of inorganic phosphate through negative

feed-back loops that stop the transcriptional activation

of the phoA gene when sufficient Pi is available.

Note that this paper does not make any scientific con-

tribution to the biology of phosphate regulation. The

Petri net model of the phosphate regulatory network is

only used as a test case for the network reconstruction

algorithm.

Petri net model of the phosphate regulatory network

The biochemical interaction of the proteins of the phos-

phate regulatory network and established feed-back

mechanisms [15] have been translated into a Petri net

model (Figure 8) [16] with the help of the Petri net tool

Snoopy [9,17,18]. Influences of protein conformation on

the activity of biochemical reactions, e.g. the phosphory-

lation of PhoR caused by the active form of PhoU has

been modeled by read arcs. Using the simulation mode

of Snoopy, the response of the network to addition and

removal of inorganic phosphate has been analysed in

silico to obtain time series data sets. In silico experi-

ments were chosen to mimic common experimental

methodology and, therefore, produce realistic input data

for the reconstruction.

Reconstructing the phosphate regulatory network

For reconstructing the phosphate regulatory network, we

started with protein components. The task was to find

the wiring diagram based on the simulated time-series

data sets. The time series data indicated the phosphoryla-

tion status of PstSCAB, PhoR, and PhoB in response to

external inorganic phosphate. We did not use any kinetic

information on the interconversion of the PhoU protein

between its inactive and its active state supposing that

the corresponding conformational change cannot be

directly measured, but the algorithm was told that these

two forms, active and inactive, exist. We then generated

in silico deletion mutants for the pstSCAB, phoU, phoR,
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Figure 7 Composition of Petri nets from controled reactions. a) The algorithm described with the help of Figure 6 provides the complete

set of possible controled reactions Rc = (r,fr) for each difference vector dm, here arrayed in a table where all possible controled reactions of

subsequent difference vectors are listed in subsequent columns. Any arbitrary sequence of controled reactions obtained by taking one difference

vector from each of the subsequent columns gives one functional extended Petri net which is compatible with the time series data set that

originally served as input [7]. There are no combinations of controled reactions generated in the described way that would give dysfunctional

Petri nets because all invalid or contradictory reaction vectors have been filtered out as described. Red arrows indicate one possible trajectory of

assembling a valid Petri net. Panel b) shows two reconstructed network motifs according to sets of controled reactions computed by the

algorithm for difference vector d1 (see Figure 6) both of which are compatible with the input data: in a molecular interpretation, chemical

reaction of B to C may depend on the absence of F (left) or the presence of A (right). A vanishes in a separate reaction in both cases. The two

network motifs shown correspond to the decomposition d1 = r4 + r5 (see Figure 6g). None of the two displays the wiring of the original Petri

net (Figure 6a) which can be retrieved using the decomposition d1 = r1.
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and phoB genes by adjusting the initial marking of the

net accordingly (Tables 1,2) and analysed the response of

each of those mutants to the removal of inorganic phos-

phate as compared to the wild-type.

Starting with the initial marking as shown in Figure

8a, we generated a time series data set for the wild-

type by allowing the tokens to step by step move

through the net, which directly gave the first part of

the state matrix (Tables 3 and 4; see also Figure 6).

The state matrix was subsequently extended by adding

compiled time series data for all experiments listed in

Table 1 to represent the subsequent occurrence of all

states of the system observed in all in silico experi-

ments in the form of one comprehensive data set. The

state matrix was then used to calculate the difference

vector matrix as described (see Figure 6). The differ-

ence vectors obtained in all experiments are listed only

once, i.e. the same difference vector observed in sev-

eral experiments gives only one entry as a column in

the difference vector matrix. Decomposition of the dif-

ference vectors into all possible sums of reaction vec-

tors yielded the reaction vector matrix. At this point

P-invariants restricted the number of possible

reactions.

Each single reaction vector was then analysed whether

it is applied to carry the system from one state xi to a

subsequent state xi+1. If a reaction was applicable to a

state xi which is also a terminal state, the reaction must

be disabled in the terminal state, as defined by the

appropriate control function (see Figure 6g). If the reac-

tion could not be switched off, the reaction was deleted

from the set of solutions. Finding appropriate control

functions for all corresponding reaction vectors as

described above, and excluding contradictory reactions

from the set finally lead to the wiring of places and

transitions and to the control of certain transitions by

read arcs or inhibitory arcs.

The original phosphate regulatory network and the

result of the reconstruction procedure are shown in Fig-

ure 8. The algorithm reproduced the wiring of the origi-

nal Petri net. For four transitions of the original Petri

net however, the algorithm found alternatives some of

which in fact suggest alternative molecular mechanisms

that would give rise to the same dynamic behaviour in

the considered experiments while others merely make

sense and can be ruled out accordingly.

The algorithm suggested that inorganic phosphate (Pi)

is transported by the PstSCAB complex into the cell

(Figure 8b). The alternative mechanism that Pi disap-

pears in the periplasm and appears in the cytoplasm

mediated by independent, non-coupled reactions both

catalyzed by the PstSCAB complex would imply the

existence of additional pools of inorganic phosphate

different from cytoplasm and periplasm that would

serve as source and sink, respectively. This alternative is

ruled out as unlikely mechanism.

Alternative mechanisms of PhoU inactivation that

occur by conformational coupling with the PstSCAB

complex are more difficult to distinguish (Figure 8c).

The algorithm suggests biochemically meaningful

mechanisms, namely that inactivation of PhoU may be

catalyzed by the phosphorylated form of the PstSCAB

complex, or inhibited by the dephosphorylated form of

PstSCAB. In principle, both mechanisms could be true

but in the context of a minimal model, only one regula-

tory interaction, catalysis or inhibition is allowed. The

third alternative suggests that inactivation of PhoU is

catalyzed by periplasmic Pi. This alternative is discarded

since the two molecules reside in different spatial

compartments.

A reaction where the molecular mechanism is

unclear based on the results of the reconstruction

algorithm concerns the dephosphorylation of PhoBP

(Figure 8d). PhoBP dephosphorylation may be cata-

lyzed by inactive PhoU or by the phosphorylated form

of the PstSCAB complex or by periplasmic Pi. While

direct interaction with periplasmic Pi again is dis-

carded, other alternatives cannot be ruled out by argu-

mentation. PhoBP dephosphorylation may be inhibited

by active PhoU or by the dephosphorylated form of

the PstSCAB complex. In silico phenotypes of deletion

mutants did not allow to discriminate between these

alternatives, suggesting to investigate these alternatives

with the help of in vitro experiments where the bio-

chemical activity of the individual proteins on the

phosphorylated form of PhoB is analysed. Such in vitro

data could certainly also be fed into the reconstruction

algorithm.

A final ambiguity in mechanisms can simply be

resolved (Figure 8e). The algorithm suggests that the

cytoplasmic PhoA protein is transported into the peri-

plasm. Alternatively, cytoplasmic PhoA would disappear

into an unknown pool and appear in the periplasm from

an unknown pool in independent non-coupled reactions.

As a protein appearing in the periplasm must have been

synthesized in the cytoplasm at some point, transport

across the cytoplasmic membrane in a prokaryotic cell

seems to be the right mechanism rather than exocytosis

through cytoplasmic vesicles.

In summary, the algorithm found a core network with

defined wiring (Figure 8a). Wiring alternatives found for

four transitions can be discarded based on biological

knowledge or suggested biochemically meaningful alter-

natives: activation of a reaction by one form of a protein

or inhibition of the same reaction by its covalently mod-

ified or otherwise differently active form.
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Figure 8 Implicit representation of the phosphate regulatory network reconstructed and graphically displayed in extended Petri net

format. a) This Petri net model of the phosphate regulatory network in enteric bacteria [16] was predefined and used to perform the in silico

experiments listed in Table 1 to give the data set compiled into the state vectors of Tables 3 and 4. Phosphorylation sites of the PhoR and PhoB

proteins are represented as places (PhoR-S and PhoB-S, respectively). Site-directed deletion of the phosphorylation sites is modeled by removing

the token from the respective places to give the initial marking of the Petri net used for simulation of the token flow in the mutants. The net

shown in a) was also returned as one result of the reconstruction algorithm. It represents the combination of one controled reaction choosen

for each difference vector obtained as shown in Figure 7a. The core of the Petri net as drawn in black is identical in all solutions. However, there

are alternatives to the wiring of transitions and places due to the existence of more than one controled reaction for each of the corresponding

difference vectors. Transitions with alternative wiring are drawn in red. The alternative controled reactions for each of those difference vectors

are shown in panels b) to e). A detailed explanation of these alternatives is given as supplementary material in Additional file 1.
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Discussion
We have described a new algorithm for the reconstruc-

tion of extended Petri nets from time series data sets.

The algorithm delivers a complete list of solutions

expressed in the form of Petri nets all of which are com-

patible with the input data. As for the previously pub-

lished method [6] there is a guarantee through

mathematical proof that the list of provided minimal

models is complete, in that no possible alternative Petri

net is missing that might also be able to explain the

data [13]. The new algorithm however provides a signifi-

cant advance in delivering Petri nets with read arcs and

inhibitory arcs, so-called extended Petri nets. Extended

Petri nets are more powerful and straigt-forward in

representing regulatory interactions in signal transduc-

tion and genetic networks. Encoding regulatory interac-

tions including catalysis and inhibition with the help of

simple place/transition Petri nets (nets without control

arcs) is possible but it requires the introduction of addi-

tional places and transitions leading to an explosion of

the number of generated solutions in network recon-

struction through multiple alternative combinations of

symmetric motifs redundant in terms of the encoded

regulatory properties. By avoiding redundancy, the pre-

sent algorithm allows to reconstruct networks from time

series data sets that are obtained with mutants or e.g.

after pharmacological intervention both of which can be

regarded as structural alterations introduced into a net-

work by targeting elements that exert regulatory control.

Using a model of the phosphate regulatory network of

enterobacteria as a test case, the algorithm correctly

reconstructed the Petri net which was used to generate

in silico time series data sets for wild-type cells, deletion

mutants and site-directed mutants. For four transitions

of the original network the algorithm found alternatively

wired transitions that would also be consistent with the

data set. The alternative wiring translates into reason-

able alternative molecular mechanisms which might be

tested experimentally.

Attempts to reconstruct a network from a time series

data set where multiple components were measured in

response to a specific perturbation (stimulation) typically

gives a large number of alternative networks. The impli-

cit representation of these networks e.g. as a column of

controled reactions listed for each difference vector

(Figure 7a) is useful to identify those difference vectors

and in turn those components of the system, the ill-

resolved wiring of which greately increases the number

of alternative network structures [19].

Comparative analysis of time series measured with

wild-type and mutants in different genes is an efficient

way to reduce the number of alternative network struc-

tures delivered by the reconstruction algorithm. When

Table 1 In silico experiments performed to obtain time series data sets on wild-type cells and deletion mutants by

following the token flow through the Petri net of Figure 8a

Experiment Genetic background Experimental perturbation Petri net implementation

Exp #1 Wild-type Addition of organic and inorganic phosphate token in pi_pp and po_pp

Exp #2 Wild-type Absence of organic and inorganic phosphate Petri net as shown in Figure 8

Exp #3 Wild-type Inhibition of transcription/translation no token in phoA, token in po_pp

Exp #4 ∆ pstSCAB Absence of organic and inorganic phosphate no token in Pst-P

Exp #5 ∆ pstSCAB Addition of organic phosphate no token in Pst-P, token in po_pp

Exp #6 ∆ pstSCAB Addition of organic and inorganic phosphate no token in Pst-P, token in pi_pp and po_pp

Exp #7 ∆ phoU Absence of organic and inorganic phosphate no token in PhoU-I

Exp #8 ∆ phoR Absence of organic and inorganic phosphate no token in PhoR

Exp #9 ∆ phoB Absence of organic and inorganic phosphate no token in PhoB

Exp #10 phoR ∆ Psite Absence of organic and inorganic phosphate no token in PhoR-S

Exp #11 phoB ∆ Psite Absence of organic and inorganic phosphate no token in PhoB-S

For each experiment, the type of experimental perturbation and the implementation of this perturbation in the form of the intitial marking of the Petri net of

Figure 8a is indicated. Genetic background column: ∆phoR means that the phoR gene is deleted and that the PhoR protein is absent accordingly, etc. ∆Psite

means that the phosphorylation site in the respective protein is deleted, while the protein as such is present.

Table 2 Modeled molecular events that, starting from the

initial marking, lead to successive states of the Petri net

Process leads to State

Initial marking, inorganic phosphate present x0

Uptake of Pi, depleting Pi from the periplasm x1

Dephosphorylation of PstSCAB-P x2

Activation of PhoU x3

Phosphorylation of PhoR x4

Phosphorylation of PhoB x5

Biosynthesis of PhoA x6

Transport of PhoA into the periplasm x7

Degradation of Po_PP (organic phosphate) x8

Phosphorylation of PstSCAB x9

Deactivation of PhoU x10

Dephosphorylation of PhoB-P x11

The table is useful to assign the state vectors listed in Tables 3 and 4 to the

subsequently occurring molecular events.

Durzinsky et al. BMC Systems Biology 2011, 5:113

http://www.biomedcentral.com/1752-0509/5/113

Page 13 of 17



Table 3 State vectors used for reconstructing the phosphate regulatory network

Exp. # 1 2 3 4 5 6 7 8

State vectors (compiled from time-series)

Vector # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

pi-pp 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

pi-cp 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

po-pp 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0

Pst-P 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0

Pst 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 0 1 1

PhoU-I 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0

PhoU-A 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1

PhoR 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0

PhoR-P 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

PhoR-S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PhoB 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1

PhoB-P 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

PhoB-S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PhoA-T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1

PhoA 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PhoA-pp 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Term. state T T T T T T T

States are assigned to the experiments during which they occurred. The state vectors of experiments 1 to 8 are shown in this table, the state vectors of experiments 9 to 11 are shown in Table 4. States of Pst, PhoU,

PhoR, and PhoB were considered as P-invariants. Phosphate, PhoR, PhoRP and the cytoplasmic PhoA protein were excluded as catalytic factors based on biological knowledge.

D
u
rzin

sky
et

a
l.
B
M
C
System

s
B
io
lo
g
y
2
0
1
1
,
5
:1
1
3

h
ttp

://w
w
w
.b
io
m
e
d
ce
n
tra

l.co
m
/1
7
5
2
-0
5
0
9
/5
/1
1
3

P
a
g
e
1
4
o
f
1
7



sufficient experiments with different mutants are evalu-

ated, the algorithm may give only one or few solutions

as in the phosphate regulatory network that served as a

test case in the present study.

Feeding the algorithm with even more data indeed

might lead to a situation where not even a single solu-

tion is found without that additional components (in the

form of additional places) are introduced. The current

algorithm does not support the introduction of addi-

tional components as an earlier implementation without

read arcs did. This feature is to be implemented in a

future version of the algorithm.

According to the original definition, Petri nets repre-

sent concurrent processes. Transitions that have the

licence to fire do not necessarily fire immediately which

makes the behaviour of the network nondeterministic.

Reaction rates corresponding to rate constants in chemi-

cal kinetics can be introduced by assigning a probablilis-

tic hazard function to each transition, yielding a

stochastic Petri net [9]. For network reconstruction pur-

poses, relative reaction rates can be encoded in the form

of priorities to enforce in which temporal sequence

competing transitions fire [7,20,21]. Considering priori-

ties in the reconstruction process may again consider-

ably reduce the number of alternative solutions. The

present form of the algorithm does not consider

priorities.

Conclusions
The algorithm described in this work reconstructs

extended Petri nets from time series data sets by finding

all alternative minimal networks that are consistent with

the data. It suggested reasonable alternative molecular

mechanisms for certain reactions in the network that can

be tested experimentally. The algorithm integrated data

obtained for wild-type and for mutant cells and may, in

the way shown, be useful to integrate physiological, bio-

chemical, pharmacological, and genetic data into a consis-

tent Petri net model. The algorithm works with discretized

data or with data that are per se discrete like e.g. the pre-

sence or the absence of a phenotype. We consciously keep

computational methods of data discretization or statistical

treatment of data strictly separated from the reconstruc-

tion algorithm. With reliable, i.e. statistically significant

and reproducible experimental data sets, the algorithm

can be used to obtain certified results based on the proven

property to deliver all possible minimal networks. With

enough input data, one may obtain one unique network.

Having data sets that give more or even many possible

networks as solutions, the implicit representation of the

networks can clearly show which firm conclusions can be

drawn from the experimental data in terms of proven cau-

sal connections that are identical in all deliviered net-

works, and alternatives for the causal connection of

components may be used for experimental design. The

Table 4 State vectors used for reconstructing the phosphate regulatory network, difference vectors and additional

decomposed reactions as obtained in the course of network reconstruction

Exp. # 9 10 11

State vectors (compiled from time-series) Difference vectors Additional decomposed reactions

Vector # 35 36 37 38 39 40 41 42 43 44 45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

pi-pp 0 0 0 0 0 0 0 0 0 0 0 -1 +1 -1 +1

pi-cp 0 0 0 0 0 0 0 0 0 0 0 +1 +1

po-pp 0 0 0 0 0 0 0 0 0 0 0 -1 -1

Pst-P 1 0 0 0 1 0 0 1 0 0 0 -1 +1

Pst 0 1 1 1 0 1 1 0 1 1 1 +1 -1

PhoU-I 1 1 0 0 1 1 0 1 1 0 0 -1 +1

PhoU-A 0 0 1 1 0 0 1 0 0 1 1 +1 -1

PhoR 1 1 1 0 1 1 1 1 1 1 0 -1 +1 +1

PhoR-P 0 0 0 1 0 0 0 0 0 0 1 +1 -1 -1

PhoR-S 1 1 1 1 0 0 0 1 1 1 1

PhoB 0 0 0 0 1 1 1 1 1 1 1 -1 +1 -1

PhoB-P 0 0 0 0 0 0 0 0 0 0 0 +1 -1 +1

PhoB-S 1 1 1 1 1 1 1 0 0 0 0

PhoA-T 1 1 1 1 1 1 1 1 1 1 1

PhoA 0 0 0 0 0 0 0 0 0 0 0 +1 -1 -1

PhoA-pp 0 0 0 0 0 0 0 0 0 0 0 +1 +1

Term. state T T T

States are assigned to the experiments during which they occurred. The state vectors of experiments 1 to 8 are shown in Table 3. Difference vectors and

additional decomposed reactions that appeared in more than one experiment are listed only once. States of Pst, PhoU, PhoR, and PhoB were considered as P-

invariants. Phosphate, PhoR, PhoRP and the cytoplasmic PhoA protein were excluded as catalytic factors based on biological knowledge.

Durzinsky et al. BMC Systems Biology 2011, 5:113

http://www.biomedcentral.com/1752-0509/5/113

Page 15 of 17



results presented in this work were obtained by manual

computation. We are currently exploring the potential of

Answer Set Programming (ASP) to efficiently compute

large data sets to reconstruct large networks [22].

Methods
The Petri net model of the phosphate regulatory net-

work was drawn using the graphical editor of the Petri

net tool Snoopy [17,18]. Time series data used as input

for the reconstruction algorithm was obtained as fol-

lows: After setting the initial marking for an in silico

experiment, the flow of tokens through the net was gen-

erated by selecting the firing transitions in the anima-

tion mode of Snoopy and the successive marking states

of the nets were annotated manually to give the state

vectors listed as columns in Tables 3 and 4. In those

cases where the net entered a dead state because no

transition was able to fire any more, the current state

vector was flagged as a terminal state. This procedure

was repeated for each of the in silico experiments with

initial markings as shown in Table 1 and the state vec-

tors obtained during the simulation runs again were

sequentially listed in Tables 3 and 4.

Starting with the state vector matrix, the difference

vector matrix was computed by substracting each state

vector from its successor. Each difference vector was

then split into a corresponding set consisting of all pos-

sible reaction vectors having entries which are either

equal to or partially contribute to the entries of the dif-

ference vector. The complete set of reaction vectors is

called reaction vector matrix.

For each reaction vector, the set of terminal states was

identified at which that reaction vector is applicable. This

was done by testing for each terminal state and any reac-

tion vector, whether the entries of the sum of the two

vectors is within the bounds to give a valid state vector.

For each difference vector, the list of all combinatorial

possibilities to write the difference vector as a sum of

vectors from its reaction vector matrix was computed.

For each combination of reaction vectors as a decom-

position of a difference vector, all permutations in the

sequences of the reaction vectors were generated.

For each permutation, the sequence of intermediate

states was computed by starting from the first state of

the difference vector and successively adding the reaction

vectors in the order as they appear in that sequence. For

each reaction vector in such a sequence, the information

about its control function was evaluated by comparing

the corresponding intermediate state vector (at which

the function is 1) with the previously computed set of

terminal states (at which the function is 0). If for any

reaction the intermediate state was equal to a terminal

state, then no control function exists and therefore the

sequence was deleted. Otherwise, all logical representa-

tions with a minimal number of terms that give the

required values for the control function were com-

puted using the Quine-McCluskey Algorithm [23].

The described procedures delivered, for each difference

vector, the complete list of sequences of controled reac-

tions which are able to generate that difference vector. For

each of those sequences of controled reactions, the corre-

sponding Petri net representation was drawn in Snoopy as

an alternative sub network as part of a possible solution.

All described computational steps were executed

manually.

Additional material

Additional file 1: Supplementary material to Figure 8. The pdf

contains a detailed explanation of the alternative network motifs of

Figure 8 b-e.
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