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Abstract

Background: Biological networks connect genes, gene products to one another. A network of co-regulated genes
may form gene clusters that can encode proteins and take part in common biological processes. A gene co-
expression network describes inter-relationships among genes. Existing techniques generally depend on proximity
measures based on global similarity to draw the relationship between genes. It has been observed that expression
profiles are sharing local similarity rather than global similarity. We propose an expression pattern based method
called GeCON to extract Gene CO-expression Network from microarray data. Pair-wise supports are computed for
each pair of genes based on changing tendencies and regulation patterns of the gene expression. Gene pairs
showing negative or positive co-regulation under a given number of conditions are used to construct such gene
co-expression network. We construct co-expression network with signed edges to reflect up- and down-regulation
between pairs of genes. Most existing techniques do not emphasize computational efficiency. We exploit a fast
correlogram matrix based technique for capturing the support of each gene pair to construct the network.

Results: We apply GeCON to both real and synthetic gene expression data. We compare our results using the
DREAM (Dialogue for Reverse Engineering Assessments and Methods) Challenge data with three well known
algorithms, viz., ARACNE, CLR and MRNET. Our method outperforms other algorithms based on in silico regulatory
network reconstruction. Experimental results show that GeCON can extract functionally enriched network modules
from real expression data.

Conclusions: In view of the results over several in-silico and real expression datasets, the proposed GeCON shows
satisfactory performance in predicting co-expression network in a computationally inexpensive way. We further
establish that a simple expression pattern matching is helpful in finding biologically relevant gene network. In
future, we aim to introduce an enhanced GeCON to identify Protein-Protein interaction network complexes by
incorporating variable density concept.

Background
Cellular processes constitute complex systems and cannot

be described using a simplistic view. To fully understand

the functioning of cellular processes, it is not enough to

simply assign functions to individual genes, proteins and

other cellular macro-molecules. Biological networks

depicting interactions among components present an inte-

grated look at the dynamic behaviour of the cellular sys-

tem. Biological networks may be categorized [1] as

metabolic pathways, signal transduction pathways, gene

regulatory networks and protein-protein interaction (PPI)

networks [2]. The advent of micro-array technology

enabled the system biologist to study the dynamic beha-

viour of genes in multiple conditions. Due to the availabil-

ity of large collections of gene expression data, it is now
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possible to reconstruct or reverse-engineer the cellular

system in-silico.

A gene co-expression network (CEN) is a collection of

genes in a cell which interact with each other and with

other molecules in the cell such as proteins or metabo-

lites, thereby governing the rates at which genes in the

network are transcribed into mRNA. A CEN is normally

represented as an undirected graph, where a node repre-

sents a gene or gene product and an undirected edge

represents a significant co-expression relationship [3,4]

between the genes considering a series of gene expression

measurements. On the other hand, a Gene Regulatory

Network (GRN) is a directed graph, where a node repre-

sents a gene and a directed edge represents a biochemical

process such as a reaction, transformation, interaction,

activation or inhibition. Compared to a GRN, a CEN

does not attempt to draw direct causal relationships

among the participating genes in the form of directed

edges. A module extracted from a co-expression network

[5] may contain co-regulated gene clusters which interact

among themselves and take part in a common biological

process.

A number of techniques have been proposed for

genetic network construction [6-12]. Many approaches

use statistical, machine learning or soft-computing tech-

niques [7] as discovery tools.

Network models such as Bayesian [13] and boolean net-

works [14] are used to infer interrelationships among

genes. Kwon et al. [15] extract gene regulatory relation-

ships for cell cycle-regulated genes with activation or inhi-

bition between gene pairs. Regulatory relationships have

also been deduced from correlation of co-expressions,

between DNA-binding transcription regulators and target

genes, by using a probabilistic expression model [16].

Mitra et al. [8] propose a bi-clustering technique to

extract simple gene interaction networks. They use contin-

uous column multi-objective evolutionary bi-clustering to

extract rank correlated gene pairs. Such pairs are used to

construct the gene network for generating relationship

between a transcription factor and its target’s expression

level. Jung and Cho [9] propose an evolutionary approach

for construction of gene (interaction) networks from gene

expression time-series data. It assumes an artificial gene

network and compares it with the reconstructed network

from the gene expression time-series data generated by

the artificial network. Next, it employs real gene expres-

sion time-series data to construct a gene network by

applying the proposed approach.

Mutual information [17,18] or correlation [6,10-12]

based approaches have been proposed for extracting

genetic networks. It has been observed that two genes

with high mutual information are non-randomly asso-

ciated with each other with biological significance. Butte

et al. [18] compute comprehensive pair-wise mutual

information for all genes in an expression dataset. By

picking a threshold for mutual information (MI) and

using only associations at or above the threshold, they

construct what are called Relevance Networks (RN). Fol-

lowed by RN a number of promising techniques have

been proposed so far. Some of the well known algo-

rithms are CLR [19], ARACNE [20] and MRNET [21].

The CLR algorithm modifies the MI score based on the

empirical distribution of all MI scores. The ARACNE

algorithm filters out indirect interactions from triplets of

genes with the data processing inequality. MRNET uses

an iterative feature selection method based on a maxi-

mum relevance/minimum redundancy criterion.

From biological point of view, expression patterns

convey significant meaning. Two genes happen to be

biologically associated, if their expression profiles show

pattern similarity. As a result, existing gene expression

analysis techniques give importance directly or indirectly

to the pattern based similarity. Below we present a brief

discussion on various expression patterns generally

observed in the gene expression data.

Patterns in expression profiles

Profile plots of gene expression data revels a number of

interesting patterns in the expression. From biological

point of view, patterns play an important role in disco-

vering functions of genes, disease targets or gene inter-

actions. Scaling and Shifting [22] are the patterns that

commonly discussed in majority of the literatures. In

shifting patterns [23] the gene profiles show similar

trends, but distance-wise, they may be away from each

other (see Figure 1).

In terms of expression values, gene patterns follow an

additive distance between them. Formally, shifting pat-

tern can be defined as follows.

Given two gene expression profile Gi = {Ei1, Ei2, · · ·,

Eik} and Gj = {Ej1, Ej2, · · · , EjM} with M expression

values, a profile is called as shifted pattern, if expression

value Eik can be related with Ejk with constant additive

factor ak under kth condition. This can be written as

follows.

Eik = Ejk + αk, for k = 1 to M (1)

Similarly, scaling patterns in gene expression follow

roughly a multiplicative distance between the patterns.

A profile is called as scaling pattern, if expression value

Eik can be related with Ejk with constant multiplicative

factor bk under kth condition. Scaling pattern can be

defined as:

Eik = Ejk × βk, for k = 1 to M (2)

As shown in Figure 1, values of G2 are roughly three

times larger than those of G3, and values of G1 are
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roughly three times larger than those of G2. In nature, it

may happen that due to different environmental stimuli

or conditions, the pattern G3 responds to these condi-

tions similarly, although G1 is more responsive or more

sensitive to the stimuli than the other two.

Most often the patterns in Figure 1 are termed as co-

expressed genes having similar expression patterns.

Co-expressed patterns signify positive regulation rela-

tionship between the genes. In such patterns increase or

decrease in expression level of gene Gi leads to increase

or decrease in expression level of gene Gj respectively

under the same conditions or time points.

We further note that two genes may be related to

each other even when their expression patterns show

negative or inverted behaviour [24]. In Figure 2, expres-

sion patterns of Rat genes Mrps26 and Pfn2, taken from

the NCBI dataset, GDS3702, clearly show negative beha-

viour. Gene ontology suggests that both are responsible

for regulation of interferon-beta production. Again, we

easily observe that in the Yeast datsets given in [25],

genes YBL002W and YBL003C have a similar pattern

and gene YBL006W has an inverted behaviour with

respect to the other two genes. If we observe Figure 3

more closely, we see that expression patterns also share

mixed regulation (i.e., both positive and negative). As

suggested by Gene Ontology all three genes are involved

in nucleosome organization, protein-DNA complex sub-

unit organization, chromatin and chromosome organiza-

tion and cellular macro-molecular subunit organization.

A group of genes may share a combination of both

positive and negative co-regulation under a few condi-

tions or at a few time points. A majority of existing

approaches capture genes with similar tendencies as co-

expression but ignores patterns like the ones we discuss

above. In computing similarity, many well-known tech-

niques do not consider positive- or negative-regulation

patterns as presenting co-expression or co-regulation

with associated biological significance.

Figure 1 Shifting and scaling patterns. In shifting patterns, expression values maintains a additive distance whereas scaling patterns show
multiplicative distance between the expression values of two expression profiles. Such patterns are also termed as positive or co-expressed
patterns.

Figure 2 Negative or inverted regulation patterns. Expression
profiles taken from Mrps26 and Pfn2 RAT genes clearly showing
negative regulation i.e., increase in expression level of one gene
leads to decrease in the expression level of other and vice versa.
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While computing association between a pair genes in

a network, most existing techniques extract network

using global similarity measures such as correlation or

mutual information. Correlation measures ineffective in

handling scaling and shifting patterns, where shape of

two expression patterns are similar although values are

not equal. Such patterns may affect the correlation mea-

sure in drawing out true associations among genes.

Mutual information (MI) based techniques are effective

alternatives to correlation measures. MI works well with

co-expressed or positively regulated patterns. However,

it fails in handling gene profile with negative and mixed

patterns. Moreover, MI discretizes the expression values

before computation that may lead to information loss.

Thus, pairwise correlation or mutual information may

not able to reveal proper relationships. Further, it has

been observed that two expression profiles may match

each other under some conditions or samples. Existing

approaches generally compute similarity considering

expression values in all dimensions. As a result, correla-

tion score sometimes penalized due to mismatch in the

expression values of two genes under some conditions.

To handle such situations bi-clustering techniques [26]

are found suitable in drawing relationship between a

pair [8] of genes in a network. Bi-clustering attempts to

find subset of genes under subset of conditions. On the

other hand in a network, associations are explored

between a pair of genes not within a group of genes. As

a result, bi-clustering may not be an effective way to be

applied while constructing co-expression network.

Moreover, bi-clustering based techniques are normally

computationally expensive in nature.

In our work, we demonstrate that a simple pattern

matching based technique can give promising outcomes.

We capture pair-wise similarity purely by pattern

matching that can handle all types of patterns as dis-

cussed above. We consider both positive- and negative-

regulation as co-regulation. Unlike available measures,

we use a support based approach to compute similarity

between two expression patterns and include the case

where two genes are similar only under some condi-

tions. Available techniques for finding co-expression

networks mostly discover only limited associations

among the genes without any regulation information.

Since creating a co-expression network is a preliminary

step towards gene regulatory network discovery, we use

signed edges between the genes to represent positive-

and negative-regulations, an important component in

gene regulatory networks. Majority of the techniques

ignore an important aspect i.e. computational costs.

Figure 3 Mix regulation patterns. Yeast genes YBL002W, YBL006W and YBL003C showing both positive and negative expression patterns with
respect to certain time-points or conditions. YBL002W and YBL003C are co-regulated and YBL006W shows inverted behaviour with respect to
other two genes.
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Computing correlation or mutual information for all

possible pairs is a costly affair. Over the decade, only a

few approaches have been developed to discover gene

co-expression networks most of which are expensive in

nature. We give due emphasis on development of a

computationally effective network reconstruction techni-

que. We compute the similarity between pair of genes

using a fast one-pass support count based approach.

Strong support between a pair of genes represent strong

association between them. Gene pairs showing high sup-

port, i.e., high pattern similarity are used to construct a

gene co-expression network. We apply our approach to

several synthetic and real expression datasets. We assess

our results from real datasets by evaluating the network

modules extracted from the network against biologically

significant Gene Ontology (GO) terms associated with a

group.

Results and discussion
This section provides details of experiments conducted,

the datasets used and validation of the results. We apply

GeCON to real and synthetic gene expression data con-

sisting of publicly available seven benchmark gene

expression datasets and thirteen in silico datasets from

the DREAM (Dialogue for Reverse Engineering Assess-

ments and Methods) Challenges.

Input parameters

During our experiments, we observe that higher number

of edge (discussed below) matches between a pair of

gene expressions give more significant outcomes. Thus,

in most experiments, we try to keep the value of θ

above 50% of the total number of edges present in the

dataset. In order to calculate similarity between two

expression profiles in terms of degree of fluctuation, we

achieve good results with τ ranging between 15 to 25.

In silico dataset

We use the DREAM Challenge data, available in [27],

for in silico regulatory network construction. Dream3

and Dream4 are the two Challenges for which data are

available. Dream3 involves fifteen benchmark datasets,

five each of various sizes (10, 50 and 100). The struc-

tures of the benchmark networks are obtained by

extracting modules from real biological networks. At

each size, two of the networks are extracted from the

regulatory networks of E. coli and Yeast. Dream4 dataset

is very similar to the Dream3 dataset, containing a total

of 10 networks, five each of size 10 and 100. The in

silico datasets generated based on [27] for our experi-

ments are characterized in Table 1.

We compare our predictions with three well-known

gene regulatory network reconstruction algorithms, ARA-

CNE [20], CLR [19] and MRNET [21]. R implementation

of the three algorithms is available in [28]. For the three

algorithms, we use the parameters as used in [28]. Predic-

tion effectiveness is compared against the in slico networks

given in Marbach platform [27] using three different

metrics for evaluating accuracy: AUPvR (Area under Pre-

cision vs Recall curve), AUROC (Area under Receiver

Operating Characteristics curve) and Fb score. ROC curves

are commonly used to evaluate prediction results. How-

ever, ROC curves may not be the appropriate measure

when a dataset contains large skews in the class distribu-

tion, which is commonly the case in transcriptional net-

work inference. As an alternative, precision vs. recall (PvR)

curves are used for measuring prediction accuracy [29].

The PvR curve may be more sensitive when there is a

much larger negative set than the positive set. Computing

the area under the curve (AUC) of a ROC or PvR curve is

a way to reduce ROC or PvR performance to a single

value representing expected performance. A compact

representation of the PvR diagram is the maximum and/or

the average F score [30], which is the harmonic average of

precision and recall. The general formula for F score with

respect to a non-negative b value is:

Fβ = (1 + β2)
precision.recall

(β2.precision) + recall
. (3)

Two commonly used F measures are the F2 measure,

which weights recall higher than precision, and the F0.5
measure, which puts more emphasis on precision than

recall. The F-score estimates the effectiveness of retrie-

val assuming recall is b times more important than pre-

cision. In our experiments we preferred F0.5 score. The

effectiveness of prediction by GeCON on all the datasets

compared to other algorithms are shown in Figure 4. An

average percentage improvement of GeCON over other

Table 1 In silico DREAM challenge datasets

Challenges Dataset In silico network Size of the network

D1 Ecoli1 10

D2 Ecoli2 10

D3 Ecoli1 50

D4 Ecoli2 50

Dream3 D5 Yeast1 10

D6 Yeast2 10

D7 Yeast1 50

D8 Yeast2 50

D9 insilico1 10

D10 insilico2 10

Dream4 D11 insilico3 10

D12 insilico1 100

D13 insilico2 100

Brief description about DREAM challenge synthetic datasets generated using

Marbach platform. Network size indicates the number of genes participated in

the network.
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algorithms along with performance scores are also pre-

sented in Table 2. In terms of AUPR, GeCON achieves

more than 200 times better performance than other

algorithms. Similarly for other scores we can easily

observe performance improvement of GeCON compare

to other algorithms.

From the figures it is evident that GeCON outper-

forms all other algorithms in terms of network predic-

tion on all three scores. In case of dataset D6, GeCON

achieves a very high AU(PvR) score of .84 and AUROC

of .78 and Fb score of .86. Other algorithms exhibit con-

sistent and almost similar trends in all experiments. To

justify our claim of one-pass nature of GeCON, which is

fast in general, we perform execution time comparison

of GeCON with ARACNE. Due to unavailability of

executable codes of all other target algorithms on a Java

platform, we used only the Java version of the original

ARACNE code (http://wiki.c2b2.columbia.edu/califano-

lab/index.php/Software/ARACNE) for comparison with

GeCON.

We generate different in-silico expression datasets

using the Marbach platform [27] by varying the number

of genes, keeping the number of time points at 50. The

results given in Figure 5 clearly show that GeCON is

much faster than ARACNE.

Real datasets

We analyze the results from various real datasets for

biological significance in terms of the GO annotation

database. The details of the datasets are presented in

Table 3.

As discussed, we use the concept of support to draw

links or inter-relationships among genes. We hypothe-

sise that two gene expression profiles having more sup-

port (positive and negative), i.e. their expression profiles

matches more number or cases, more they are biologi-

cally related. A gene pair satisfying the support criterion

with respect to a user defined threshold θ is considered

connected. We display only those genes that are linked

to others with support higher than the threshold. We

use the in silico regulatory network construction plat-

form provided by Marbach et. al. [27] for visualizing the

networks. In the network, nodes represent genes and

lines between nodes represent hypothesized associations

among genes. A blue colored arrowhead edge shows

positive regulation, whereas a red colored blunt head

edge indicates negative regulation between a pair of

genes. Some networks we generate are presented in

Figure 6. The genes participating in a co-expression net-

work form a group of coherent or co-expressed genes

responsible for common biological activities. We con-

sider such a group a module and analyse the biological

significance of the modules in terms of Gene Ontology

in the next section. Figure 6 also shows the profile plots

of selected modules and the corresponding heat map.

The largest gene expression values are displayed in red

(hot), the smallest values in blue (cool), and intermedi-

ate values in shades of red (pink) or blue in the heat

Figure 4 Performance comparison of four algorithms on in

silico dataset. Results show prediction accuracy of GeCON
compare to other three algorithms based on 13 in-silico DREAM
challenge data. Performances are measured using precision-recall
curve, ROC curve and F-score. In all cases GeCON exhibits superior
performance.
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map. From the map it can easily be observed that cap-

tured modules contain a mix of both up- and down-

regulated differentially expressed genes. The cluster pro-

file plot shows the gene expression values of the genes

within that cluster with respect to the conditions or

time points for each co-expressed group. From the pro-

file, it is evident that GeCON is able to detect both

positively and negatively co-regulated gene groups as

well as identify scaling and shifting patterns [22] in the

expression.

Biological significance

We determine the biological relevance of the modules

comprising of all the genes participating in a common

co-expression network, in terms of p [1] and Q [31]

values against statistically significant GO terms validated

using the GO annotation database. For evaluating func-

tional enrichment of a module in terms of p values we

use FuncAssociate [32]. The Q-value is the minimal

Table 2 Performance scores of different algorithms

Dataset AUPR AUROC F Score

GeCON ARACNE CLR MRNET GeCON ARACNE CLR MRNET GeCON ARACNE CLR MRNET

D1 0.7 0.177 0.23 0.218 0.63 0.416 0.59 0.517 0.62 0.271 0.37 0.35

D2 0.74 0.229 0.27 0.22 0.68 0.35 0.49 0.35 0.71 0.35 0.39 0.35

D3 0.55 0.04 0.03 0.04 0.52 0.45 0.43 0.42 0.21 0.063 0.06 0.06

D4 0.53 0.06 0.06 0.06 0.53 0.47 0.48 0.49 0.26 0.09 0.1 0.08

D5 0.5 0.14 0.17 0.14 0.56 0.36 0.46 0.32 0.41 0.24 0.26 0.24

D6 0.84 0.43 0.45 0.43 0.78 0.43 0.47 0.43 0.86 0.56 0.6 0.56

D7 0.56 0.05 0.06 0.06 0.53 0.46 0.49 0.5 0.25 0.08 0.08 0.1

D8 0.58 0.11 0.11 0.11 0.56 0.48 0.48 0.49 0.41 0.16 0.15 0.17

D9 0.74 0.31 0.34 0.38 0.67 0.51 0.64 0.62 0.71 0.45 0.45 0.51

D10 0.75 0.32 0.29 0.33 0.68 0.6 0.63 0.65 0.73 0.52 0.39 0.44

D11 0.74 0.3 0.32 0.3 0.67 0.5 0.56 0.5 0.71 0.4 0.42 0.4

D12 0.48 0.02 0.03 0.02 0.51 0.45 0.46 0.41 0.15 0.042 0.044 0.041

D13 0.52 0.04 0.04 0.05 0.52 0.46 0.51 0.55 0.2 0.069 0.066 0.09

Average 0.633 0.171 0.184 0.181 0.603 0.456 0.514 0.480 0.479 0.253 0.26 0.260

Performance improvement of GeCON
(%)over

269.72 242.91 249.024 32.07 17.18 25.50 89.07 84.31 83.72

The performance scores of four algorithms and the performance improvement of GeCON compare to other algorithms in terms of three measures namely, AUPR,

AUROC and F-score.

Figure 5 Execution time comparison. Due to GeCON’s one-pass
nature it consumes less time compare to ARCNE. Several synthetic
expression datasets are generated using Marbach platform with
varying number of gene expressions and tested in terms of CPU
time requirements.

Table 3 Short description of the datasets

Organism Dataset No.
of
genes

No. of
samples

Source

Yeast
Sporulation

Yeast 474 7 http://cmgm.stanford.edu/
pbrown/sporulation

Yeast Yeast KY 237 18 http://faculty.washington.
edu/kayee/cluster/

Yeast Yeast cell
cycle

384 18 http://faculty.washington.
edu/kayee/cluster

Human GDS825 277 8 NCBI

Mouse GDS958
(Subset)

4000 12 NCBI

Rat GDS3702
(Subset)

3000 12 NCBI

Rice Thaliana 517 13 http://homes.esat.kuleuven.
be/~sistawww/bioi/thijs/
Work/Clustering.html

Characteristics of different real expression datasets used for the experiments

along with their sources.
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Figure 6 Network, nodule profile plot and heatmap for each selected module from different datasets Selective network modules from

different real datasets are visualized using Marbach platform. Negative regulations between the genes are represented using red coloured
edge and positive regulations are depicted in blue coloured arrow. The profile plots and heatmaps of each module shows the effectiveness of
GeCON in detecting both co-regulated and co-expressed network modules.
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False Discovery Rate (FDR) at which a gene appears sig-

nificant. The GO categories and Q-values from an FDR

corrected hypergeometric test for enrichment are

obtained using GeneMANIA [33]. Q-values are esti-

mated using the Benjamini Hochberg procedure [31].

We report p and Q-values of selected modules from sev-

eral datasets. Along with Q-values, GeneMania also pro-

vides Co-expression, Physical and Genetic interaction

scores for the networks. The co-expression percentage

indicates the level of similarity in expressions across

conditions. On the other hand, the physical interaction

percentage shows the level of protein-protein interaction

within a module. In Table 4, we present results from

GeneMANIA for selected modules.

Module 1 obtained from the Yeast Sporulation network

is mainly responsible for cytosolic ribosome formation

with Q-value 1.11e-47 and module 3 exhibits 96.96% of

co-expression where the module is responsible for sporu-

lation in yeast. On the other hand, module 4 is responsi-

ble for DNA replication and preinitiation complex

formation and shows very high protein-protein interac-

tion of 95.08%. Kayee’s Yeast dataset shows a very high

Q-value of 2.16E-130. However, the same module shows

very poor physical interaction. We also observe 100% co-

expression from GDS3702 where module 2 (Dad1,

BI281185, Eif4h, Gnb1, Ahcy, Dpyd, Aldh3a1, Pex6 ),

module 3 (Eif4a3, Psmc2, Cat, Pick1, Zranb2, Erap1,

Sacm1l) and module 4 (AI411286, Mrps26, Pim3, Thra,

Uso1, Apcs, Cacna1a, Pfn2, Ptp4a2, Hrsp12) are responsi-

ble for oxidoreductase activities, aging regulation and

lipid catabolic process. The modules extracted from

Mouse (GDS958) are responsible for vacuolar proton-

transporting V-type ATPase complex formation and cell

cortex formation. We also observe 92.48% of co-expres-

sion in the Thaliana network module.

Table 5 presents p-value obtained by FuncAssociate

for selected modules submitted from different datasets.

For Kayee’s dataset, GeCON shows better perfor-

mance in terms of high enrichment with p-value, e.g., a

p-value of 5.20E-96. Similarly, GDS825, GDS958 and

Sporulation datasets also contain modules with good

functional enrichments.

Conclusion
In this paper, we present an effective gene co-expression

network finding algorithm called GeCON for discovering

biologically related gene pairs that may form a network

of co-expressed genes. The GeCON algorithm exploits a

fast correlogram matrix based technique for capturing

the support for each gene pair in order to compute rela-

tionships between gene pairs. Gene pairs with strong

relationship are used to construct the network. When

constructing networks, GeCON exploits regulation rela-

tionships among genes. We report results to show that

GeCON is effective in predicting in slico networks based

on the DREAM Challenge data. We provide results to

show that network modules extracted have high biologi-

cal significance. Moreover, we further establish that the

simple expression pattern matching is helpful in finding

biologically relevant genes. Gene co-expression networks

Table 4 Q-value, co-expression and physical interaction score for different modules from different datasets

Dataset Module No GO Annotation Q Value Co-expression (%) Physical Interaction (%)

1 cytosolic ribosome 1.11E-47 74.71 7.24

2 nucleolus 2.32E-30 72.46 8.96

Sporulation 3 sporulation 9.87E-20 96.96 0

4 DNA replication preinitiation complex 2.92E-09 3.07 95.08

1 cytosolic ribosome 2.16E-130 69.1 3.56

Yeast KY 2 structural constituent of ribosome 2.64E-126 69.1 3.56

3 DNA-dependent 2.38E-27 65.05 8.08

DNA replication

1 mitochondrial inner membrane 8.29E-07 68.5 5.41

2 oxidoreductase activity 3.29E-02 100

GDS3702 3 aging regulation of 1.55E-01 100

4 lipid catabolic process 1.40E-03 100

5 iron-sulfur cluster binding 5.51E-03 43.75 9.72

1 vacuolar proton-transporting 4.67E-16 27.59 32.75

GDS958 V-type ATPase complex

2 cell cortex 5.01E-03 27.59 32.75

1 negative regulation of cellular process 2.19E-04 29.41 29.41

Thaliana 2 response to wounding 1.36E-08 92.48 5.63

3 receptor binding 2.49E-03 29.41 29.41

Statistical significance of selected network modules from real datasets are shown with respect to Q-value based on GO database.
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can be used further to predict more complex biological

networks. Work is underway to discover gene regulatory

networks with causality information.

Methods
Global similarity measures such as Euclidean distance or

Pearson correlation coefficient may not always capture

true gene-gene relationships [34]. In addition, most

existing techniques give low emphasis to pattern match-

ing based on local similarity. It has also been observed

that genes share local rather than global functional simi-

larity in their gene expression profiles [8]. Moreover,

another observation is that most existing techniques are

computationally expensive. In this section, we develop

an approach based on local expression pattern similarity,

to construct co-expression networks with signed edges

to represent regulatory relationships among genes. In

general, comparing pair-wise gene profiles requires mul-

tiple passes over the database, which often is quite

expensive, especially for datasets with large numbers of

genes. In this work, we perform pair-wise comparison

using a one-pass approach, and we compute supports

using a single scan of the dataset. Pairs of genes show-

ing similarity above a user-defined threshold θ are used

to construct the adjacency matrix which is used, in turn,

to construct and visualize the network. A preliminary

version of the work can be found in [35].

To capture the patterns in an expression profile, we

consider the line between two consecutive expression

values, termed as edge. Thus, for an expression data with

M conditions or time points, there are (M − 1) edges. To

represent the edge we use two measures, degree of fluc-

tuation and regulation pattern of the edge. The degree of

fluctuation of an edge is the angular deviation of the edge

on the 180-degree normal plane. Regulation pattern

represents the up- and down-regulation of an edge. The

method is discussed in details below.

Capturing expression patterns

Now, we discuss the preprocessing steps involved in

capturing the degree of fluctuation and regulation pat-

tern information for each expression profile. We com-

pare two gene expressions both in terms of degree of

fluctuation [36] and pattern of regulation between two

adjacent conditions (edges), simultaneously [26]. To cap-

ture both regulation pattern and degree of fluctuation of

each gene, we read rows of original data with M expres-

sion values or conditions and convert them into another

row of (M − 1) columns, each column of which contains

the degree of fluctuation and the regulation pattern of

an edge between two adjacent conditions. We represent

regulation information as 1 and -1 to denote up-regula-

tion and down-regulation, respectively. The regulation

value in the kth edge of a gene Gi, Gi(rk), based on two

consecutive conditions (say, Ok−1 & Ok) is calculated as:

Gi(rk) =

{

1 if Ok−1 < Ok

−1 if Ok−1 > Ok.
(4)

To calculate the degree of fluctuation for kth edge of Gi,

Gi(ak), we compute the arctangent between two adjacent

expression levels (Ok−1, Ok) corresponding to the kth edge.

We use two argument arctangent function arctan2. The

purpose of using two arguments instead of one is to gather

information on the signs of the inputs in order to return

the appropriate quadrant of the computed angle, which is

Table 5 p-values for different modules from different datasets

Dataset Module GO Annotation p value

1 folic acid and derivative biosynthetic process 3.10E-15

GDS825 2 cullin-RING ubiquitin ligase complex 5.40E-08

3 chemoattractant activity 5.60E-07

4 biotin binding 8.30E-07

Yeast KY 1 cytosolic ribosome 5.20E-96

2 DNA replication 9.64E-20

1 response to neutrient 1.47E-05

GDS3702 2 hydrolase activity 1.60E-05

3 protein complex 8.00E-04

1 intracellular part 9.83E-19

GDS958 2 intracellular membrane-bounded organelle 2.57E-05

1 cytoplasmic translation 2.22E-22

2 anatomical structure formation 1.25E-17

Sporulation 3 ribonucleoprotein complex 1.07E-10

4 cell cycle phase 2.36E-06

5 cellular component assembly 4.66E-06

Significant modules are shown based on p-score and GO terms.
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not possible for the single-argument arctangent function.

Since, arctan2 returns value in the range −π to π, we con-

vert the angle to be in the 180 degree plane as follows:

Gi(ak) =

{

180 − abs(arctan2(Ok, Ok−1)) if Ok < Ok−1

abs(arctan2(Ok, Ok−1)) otherwise.
(5)

The fact is illustrated in Figure 7 taking an example of

a gene expression dataset with a single gene, G = {343,

314, 409} with three expression values. After transform-

ing the values into angular deviation and regulation pat-

tern, it becomes G = {138, −1; 52, 1}.

To formulate the pattern similarity based co-expres-

sion networking problem we define the following terms

based on angular deviation and regulation pattern of a

gene expression profile.

Terminologies used

Let G = {G1, G2, · · · , GN} be the set of N genes and T =

{T1, T2, · · · , TM} be the set of M conditions or time

points of a microarray dataset. The gene expression

dataset D is represented as an N × M matrix DN ×M

where each entry di,jcorresponds to the logarithm of the

relative abundance of mRNA of a gene. The following

definitions and lemmas provide the theoretical basis for

the proposed GeCON algorithm.

Definition 1 (Pattern Similarity). Given degrees of

fluctuation A = {a1, a2, · · · , aM −1} and regulation pat-

terns R = {r1, r2, · · · , rM −1} of a gene, derived from

the gene expression profile, two gene Gi and Gj s’ kth

expression patterns, Gik and Gjk, are similar if the

difference in the degrees of fluctuation of the two

genes’ kth edges (Gi(ak) and Gj(ak)) is less than some

given threshold τ.

In calculating similarity between two genes, we consider

two patterns: positive similarity, Pos_sim, when the regula-

tion patterns are the same (in case of up-regulation) and

negative similarity, Neg_sim, when the patterns are inverted

(in case of down-regulation) for a particular edge (inverted

pattern). Both the similarities are defined as follows:

Pos sim(Gik, Gjk) =

⎧

⎪

⎨

⎪

⎩

1, if Gi(rk) = Gj(rk)

and|Gi(ak) − Gj(ak)| < τ

0, otherwise,

(6)

Neg sim(Gik, Gjk) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, if Gi(rk) = −Gj(rk)

and

|180 − Gi(ak) + Gj(ak)| < τ

0, otherwise,

(7)

where Gi(rk) and Gj(rk) are the regulation value of kth

edges of gene Gi and Gj respectively. In case of Neg_sim,

we subtract 180 from the sum of degree of fluctuation

values of Gi and Gj to keep the difference in the range

of 0 to 180.

Definition 2 (Support). It is the ratio between the num-

ber of edges for which genes Gi and Gj are similar and the

total number of edges i.e. (M − 1). We consider both posi-

tive and negative supports to measure the number of

edges where both genes have similar or inverted pattern

tendencies, respectively. The formulas are given below.

Figure 7 Degree of fluctuation for three expression values of a gene. An illustration of converting the expression values of an expression
profile in terms of angular deviation and regulation pattern of edge between two consecutive expression values.
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Pos support(Gi, Gj) =

M−1
∑

k=1

Pos sim(Gik, Gjk)
/

(M − 1)(8)

Neg support(Gi, Gj) =

M−1
∑

k=1

Neg sim(Gik, Gjk)
/

(M − 1)(9)

Definition 3 (Strongly Connected). Two genes Gi and

Gj are said to be StronglyConnected (or have an inter-rela-

tionship) if Pos_support(Gi, Gj) + Neg_support(Gi, Gj) >θ,

where θ is a user defined threshold to indicate that the

minimum number of edges of two expression profiles

must match.

Definition 4 (Co-expression Network). A Co-expres-

sion network is a graph T = {G’, E} containing a subset of

genes that are strongly connected. If two genes (Gi, Gj) ∈

G’ are connected by an arc Eij ∈ E, then Gi and Gj are

strongly connected to each other. Here, E = {(Eij, Sk), · · ·

(Emn, Sk)} is a set of pairs, where Eij represents an arc

connecting Gi and Gj, and Sk represents the sign of the

arc Eij. A value of Sk = +1 indicates up or positive regula-

tion and -1 indicates down or negative regulation. To cal-

culate the value of Sk of edge Eij, we use Pos_support and

Neg_support. This is defined as:

Sk(Eij) =

{

+1, if Pos support(Gi, Gj) > θ

−1, if Neg support(Gi, Gj) > θ .
(10)

Lemma 1. For any two genes Gi and Gj, if Gi ∈ T, a

gene co-expression network, and Gi is strongly con-

nected to Gj, then Gj ∈ T.

Proof. The lemma can be proved by contradiction.

Assume, Gi and Gj are two strongly connected genes

and Gj ∈ T, but Gj ∉ T. As per Definition 4, T is a sub-

set of strongly connected genes and since Gi and Gj are

strongly connected, Gj ∈ T, which is a contradiction and

hence the proof. □

Similarly the following lemma is trivial based on the

Definitions 1 through 4 and Lemma 1.

Lemma 2. Let Gi and Gj be two genes, and T1 and T2 be

two gene co-expression networks. If Gj ∈ T1 and Gj ∈ T2,

then Gi and Gj are not connected.

Lemma 3. Genes belonging to the same gene co-

expression network are co-regulated or similar.

Proof. This lemma can also be proved by contradiction.

Let us assume that any two genes Gi and Gj ∈ T are not

co-expressed. If Gi and Gj are in the same network, they

are strongly connected (as per Definitions 3 and 4), and

hence Gi and Gj are strongly connected. Again, any two

strongly connected genes are similar or co-expressed (as

per Definitions 1 through 3), which contradicts the

assumption, hence the proof. □

Similarly, the proof of the following lemma (the

reverse case of lemma 3) is trivial.

Lemma 4. Genes belonging to different gene networks

are not co-expressed.

Construction of co-expression network

This section discusses the counting of pair-wise support

between genes using only one pass over the database to

construct the co-expression network of connected

genes. We use a correlogram matrix approach [37] for

computing similarity between two target genes based on

the degree of fluctuation and regulation between them.

Later, similarity values are used to calculate the support

values needed to construct the co-expression network.

We first invert the preprocessed database obtained

using the above technique, by placing edges as rows and

genes as columns. We read each row from the database,

and check whether two consecutive genes (say, Gi and

Gj) satisfy the similarity criterion (in terms of degree of

fluctuation and regulation information) or not, using (6)

and (7). If two genes are similar, the content of the cor-

relogram matrix cell with index (i,j) is increased. This

step is repeated for all pairs of genes for each row. This

continues for all the rows to be processed.

From the correlogram matrix, it is very simple to

extract the support count of gene pairs. Using these sup-

port counts, we compute all strongly connected genes

that satisfy the given θ constraints. Based on all strongly

connected pairs, the adjacency matrix is computed as:

A(i, j) =

⎧

⎪

⎨

⎪

⎩

+1 if Gi and Gj are strongly connected and Sk(Eij) = +1

−1 if Gi and Gj are strongly connected and Sk(Eij) = −1

0 otherwise

(11)

where 0 indicates the lack of any relation between the

genes. A gene co-expression network connecting various

genes is constructed using the adjacency matrix.

Our approach is advantageous because (i) it requires

only single scan over the database; (ii) it is faster, (iii)

our approach does not use any standard proximity mea-

sures, (iv) since it is pattern based, it is insensitive to

normalization of data as normalize data maintain similar

pattern or tendency with original data even after nor-

malization and (v) it does not require any discretization

step where continuous values are mapped into pre-spe-

cified intervals or classes. The preprocessing steps dis-

cussed above are only for an internal representation of

expression profile into angular deviation and regulation

pattern. Apparently regulation pattern calculation looks

like discretization step. However, regulation values, +1

and -1, are simply a symbolic representation of upward

and downward inclination of an edge between two con-

secutive expression values that helps only in choosing

appropriate pattern matching formula and calculating
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Pos_support and Neg_support. There is no information

loss incurred during the conversion.

GeCON: the algorithm

The steps in GeCON are given in Algorithm 1. Step 1 of

the algorithm, is dedicated to the first phase of the

approach, i.e., preprocessing dataset D to D’. Step 2

deals with construction of the correlogram matrix. In

step 3, all connected genes are extracted and the adja-

cency matrix is constructed. Finally, the algorithm

returns the adjacency matrix A.

input : D (Expression Dataset), θ (Support

threshold)

output: A (Adjacency matrix)

1 Preprocess original database D to D’ wrt. τ;

2 Generate correlogram matrix from D’;

3 foreach gene pair (Gi, Gj) ∈ D’ do

4 Compute all connected gene pairs by using

support count from the correlogram matrix wrt. θ;

5 Construct adjacency matrix A using all con-

nected genes with regulation information;

6 end

7 Return A;

Algorithm 1: The GeCON Algorithm

Complexity analysis

GeCON uses a correlogram matrix for storing support for

pairs of genes. Thus for N genes, GeCON requires fixed

memory of size N × (N − 1)/2. GeCON needs time for

preprocessing and network construction using the correlo-

gram matrix. For a dataset with N genes and C conditions,

the preprocessing step requires O(N * C) time and to

transpose the preprocessed data it requires O(C * N ) time.

To construct the network, it traverses the correlogram

matrix. Thus, the time required for network construction

is O(N × (N − 1)/2). The total computational cost of

GeCON is:

CostGeCON = O(N ∗ C) + O(C ∗ N) + O
(

N × (N − 1) /2
)

≈ O(N) + O
(

N × (N − 1) /2
)

,
(

generally, C % N and so we can ignore C
)

≈ O
(

N × (N − 1) /2
)

,
(

which is even < N2/2
)

.

Availability of supporting data
A Java implementation of GeCON (as executable) and few

sample expression datasets used in this paper are available

at https://sites.google.com/site/swarupnehu/publications/

resources.
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