
Reconstruction of Gene Regulatory Networks

from Gene Expression Data Using Decoupled
Recurrent Neural Network Model

Nasimul Noman, Leon Palafox, and Hitoshi Iba

Graduate School of Information Science and Technology,
University of Tokyo, Tokyo 113-8656, Japan
{noman,leon,iba}@iba.t.u-tokyo.ac.jp

Abstract. In this work we used the decoupled version of the recurrent
neural network (RNN) model for gene network inference from gene ex-
pression data. In the decoupled version, the global problem of estimating
the full set of parameters for the complete network is divided into several
sub-problems each of which corresponds to estimating the parameters as-
sociated with a single gene. Thus, the decoupling of the model decreases
the problem dimensionality and makes the reconstruction of larger net-
works more feasible from the point of algorithmic perspective. We applied
a well established evolutionary algorithm called differential evolution for
inferring the underlying network structure as well as the regulatory pa-
rameters. We investigated the effectiveness of the reconstruction mecha-
nism in analyzing the gene expression data collected from both synthetic
and real gene networks. The proposed method was successful in inferring
important gene interactions from expression profiles.

Keywords: Recurrent Neural Network model, gene network reconstruc-
tion, decoupled RNN, differential evolution.

1 Introduction

In recent years, with the advent of various gene expression assaying techniques,
the study of the relationship among genes has been highlighted extensively. Gene
expression data, whether in time-course format or steady state format, provides
an opportunity to observe the interaction among thousands of genes simulta-
neously. Given that sufficient amount of gene expression data is available, in
principle it is possible to derive the detailed quantitative model of the network
that adequately represents the dynamics of the underlying system [1].

Nevertheless, several practical issues such as small sample size compared to
the number of genes, the presence of biological noise and experimental noise, in-
adequate knowledge and representation of the complex dynamics and nonlinear
relationship among the genes, the problem dimension, makes the adequate re-
construction of the network a very challenging task [2]. Several techniques have
been proposed in the field of computational intelligence for algorithm based re-
construction of gene regulatory networks (GRN) that help biologists to form
new hypotheses about biological systems and to design new experiments [2–4].

Y. Suzuki and T. Nakagaki (Eds.): WSH 2011 and IWNC 2012, PICT 6, pp. 93–103, 2013.
c© The Author(s) 2013



94 N. Noman, L. Palafox, and H. Iba

In order to apply a computational approach for inferring GRN from experi-
mental data, a mathematical model is necessary to formalize the process of gene
regulation. The modeling endeavor for GRN, started long ago, produced a large
variety of models over the last couple of decades. The modeling of GRN has
diverged in many directions such as: discrete versus continuous, linear versus
non-linear, deterministic versus stochastic, graphical versus non-graphical, syn-
chronous versus asynchronous etc. All of these modeling paradigms have their
strength and weakness in terms of representation accuracy, computational fea-
sibility, noise proneness and data requirement [5].

In this work we have used the recurrent neural network (RNN) model [6] along
with a natural computational method to extract regulatory interactions among
genes from gene expression data sets. The canonical RNNs are neural networks
with delayed feedbacks. With the network of nonlinear processing elements, RNN
can adequately capture the nonlinear and dynamic interaction among genes [7].
Many of the reconstruction approaches applied to infer GRN using RNN belongs
to the field of natural computation. Some of the researchers used genetic algo-
rithms (GA) for reconstructing the target network using the single layer RNN
[6, 8] and the multilayer RNN [9] architecture. A couple of swarm intelligence
approaches have been proposed in which swarm algorithms (particle swarm opti-
mization and ant colony optimization) have been applied for estimating network
structure and parameters [7, 10]. Evolutionary algorithms other than GA have
also been used for estimating RNN parameters for GRNs [11]. Some hybrids
of natural computations with other approaches have been also used for reverse
engineering GRNs using RNN formalism [2, 12].

The RNN model offers a good compromise between the biological proximity
and mathematical flexibility for representing GRNs. However, inference of GRN
using RNN requires the estimation of N(N+3) parameters, where N is the num-
ber of genes in the network. Generally, with the increase of the dimension, the
problem complexity increases rapidly and locating the global optimum solution
becomes difficult for the search algorithm. Therefore, in order to deal with the
challenges of high-dimensionality, with increasing genes in the network, here we
use a decoupled form of the RNN model for inferring GRN. Other than reducing
the problem dimension, such decoupling facilitates the design of parallel algo-
rithms for GRN inference. In this work we have used a natural computational
approach called differential evolution (DE), belonging to the group of evolu-
tionary algorithm, for identifying the regulatory interactions form expression
profiles using the decoupled form of RNN. We tested the proposed method us-
ing artificial gene regulatory networks of different dimensions and a real network.
Experiments showed that the proposed approach can provide a good estimate
of the structure of genetic networks.

The rest of the paper is organized as follows. The next section describes the
decoupled RNN model. In section 3, we present the DE algorithm for inferring
RNN model based gene networks. The fourth section reports the experiments
with the results to verify the effectiveness of the proposed method. In section 5
we conclude the paper with some general discussions.
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2 Recurrent Neural Network (RNN) Model

The recurrent neural network (RNN) model formulates the genetic interactions
in terms of a neural network in which the nodes correspond to genes and the
connections correspond to regulatory interactions among genes [6, 13]. In canon-
ical RNN model the interactions among genes is represented in terms of a tightly
coupled system given by

dei
dt

=
1

τi

⎛
⎝g

⎛
⎝

N∑
j=1

wijej + βi

⎞
⎠− λiei

⎞
⎠ (1)

where ei represents the gene expression level for the i-th gene (i ≤ N , N is
the total number of genes in the network). wij represents the type and strength
of the regulatory interaction from j-th gene towards i-th gene. The positive
(negative) value of wij represents activation (repression) control of gene-j on
gene-i. wij = 0 means gene-j has no regulatory control on gene-i. βi represents
the basal expression level and λi denotes the decay rate parameter of the i-th
gene. The function g(·) introduces non-linearity to the model which is often given
by the sigmoid function. In the canonical form the RNN model for GRN can be
described by the following set of N(N+3) parameters Ω = {wij , βi, λi, τi} where
i, j = 1, 2, · · · , N .

In this work we estimated the regulatory interactions towards a particular
gene at a time, independent of interactivity on other genes. In other words,
we have divided the N(N + 3) dimensional problem into N sub-problems of
size (N + 3) and solved each separately. In sub-problem i (i = 1, 2, · · · , N) we
estimated the model parameters Ωi = {wij , βi, λi, τi} (j = 1, 2, · · · , N). Then
we accumulate all the learned parameters to build the complete network model.
Similar procedure for learning the interactions separately has been applied with
other neural network models [14] or with some other GRN models [15, 16]. In
addition to reducing the problem dimension, this decoupling procedure makes
the parallel solution of each sub-problem possible.

3 Reverse Engineering Algorithm

Here we used a natural computational approach for reverse engineering GRN
modeled by decoupled RNN. We employed differential evolution (DE) [17] for
searching the optimal model parameters that can reproduce the target time
courses of genes. DE is a new generation EA proven to be very successful in
solving different complex problems arising in different domains. It has also been
very effective in reverse engineering GRN using the canonical RNN model [11,
18]. Hence, we chose DE for identifying the regulatory interactions among genes
using the decoupled RNN formalism.

Like most of the EAs, DE starts with a population of random solution where
each individual of the population encodes a candidate solution for the problem
under consideration. Here we apply a separate instance of DE for estimating the
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parameters of each target gene in the network. In other words, in sub-problem
i, every individual of DE represents the parameters for gene-i that is Ωi =
{wij , βi, λi, τi} (j = 1, 2, · · · , N). After random initialization, the fitness of the
individual is calculated using the fitness function described later. Then for each
individual xi

G, i = 1, · · · , P in the current generation, G, a mutated individual
is generated by the following mutation operation

yiG = xj
G + F (xk

G − xl
G) (2)

where xj
G, x

k
G and xl

G are random individuals selected from generation G such
that j, k and lε{1, · · · , P} and i �= j �= k �= l; P is the number of individuals in
G and F is called the scaling factor – a parameter of DE.

Afterwards, the mutated individual yiG participates in a crossover operation
with the current population member xi

G and generates the offspring yiG+1. In the
crossover operation, the genes (parameters) of the offspring yiG+1 are randomly
inherited from xi

G or yiG determined by a parameter called crossover factor CF ,
i.e. if r ≤ CF (where r is a uniform random number in [0, 1]) then it is inherited
from xi

G otherwise from yiG. Finally, the offspring is evaluated and replaces its
parent xi

G in next generation if its fitness is the same or better than its parent.
This is the replacement process for producing new generation. And this process
is iterated generation after generation until a satisfactory solution is found or a
maximum number of generations (Gmax) have elapsed.

Because of the flexibility of the model, the search space contains many lo-
cal optimum that traps the search algorithm and the global optimum remains
undiscovered. In order to help the algorithm to get out of a local optimum we
embedded a random restart strategy in DE that randomly reinitializes all the
individuals except the elite one, if the difference between the best fitness (fbest)
and the worst fitness (fworst) of the current generation falls below a threshold
(δ · fbest). After the random restart, the algorithm proceeds in its regular mode.
When the optimization of one instance of DE finishes, we receive the set of pa-
rameters for one gene. Repeating this process for all genes and compiling them
together we get the complete set of parameters for the whole network.

3.1 Fitness Evaluation Criteria

We need some assessment mechanism for evaluating the alternate GRN models
we come across in course of the evolutionary process. The most commonly used
model evaluation process is the quantitative difference between the response gen-
erated by the candidate model and the experimentally collected response. This
evaluation process calculates the model fitness using a function called mean
squared error (MSE). The reverse engineering of GRN, like other dynamic sys-
tems, can be done with higher accuracy if multiple time series for the same gene
could be used. Since we are estimating the parameters of each gene separately,
the fitness evaluation process takes the time courses of a particular gene in con-
sideration. Using M sets of time dynamics, the MSE based fitness function for
the sub-problem i, corresponding to gene-i, is given by
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f(Ωi) =
1

TM

M∑
k=1

T∑
t=1

(
ecalk,i (t)− eexpk,i (t)

)2

(3)

where eexpk,i (t) and ecalk,i (t) represent the expression levels of i-th gene in the k-th
set of time courses at time t in experimental and simulated data respectively.

Generally, very few genes or proteins regulate the expression level of a spe-
cific gene [19]. But the general model of RNN considers every possible interaction
from each gene. Because of the model flexibility, if we allow all possible regu-
lations then the search algorithm gets stuck to some local minimum that can
generate the time course very closely. One effective way of recovering the target
skeletal structure is to penalize the fitness score in proportional to the network
complexity [20, 21]. Here we use a penalty term similar to that used in [22]. The
penalized fitness function that was used for evaluating the models are given by

f(Ωi) =
1

TM

M∑
k=1

T∑
t=1

(
ecalk,i (t)− eexpk,i (t)

)2

+ c

N−I∑
j=1

(ŵij) (4)

where ŵij are the weights of interactions towards gene-i sorted in ascending order
of their magnitude. I indicates a limit on the maximum allowed regulations for
a gene. If the number of interactions exceeds this limit then the pruning term
will penalize the fitness function. c represents the penalty constant.

4 Experimental Results

In this work, the suitability of the GRN inference using the decoupled RNN
model was primarily validated using synthetic networks since the actual struc-
ture and parameter values are unknown for real networks. Two different networks
of different sizes and architectures were used for this purpose. The reconstruction
experiments were carried out under the ideal noise-free condition and with sim-
ulated noise corrupted gene expression data. We also attempted to reconstruct
the SOS DNA repair network of Echericha coli using the proposed method.

4.1 Artificial Network Inference

In our first experiment with in silico networks, we investigated whether it is
possible to infer the regulatory interactions and correct parameter values for a
target gene network using the decoupled form of RNN model. In the reconstruc-
tion experiment we used a small scale network that has been studied by others
in canonical RNN model [6, 10, 11]. The parameters for the RNN model for this
four gene network, called NET1 hereafter, is shown in Table 1. In NET1 λi = 1
used for all genes as done in other work [6, 10, 11].

The artificial gene expression data was generated by simulating the canonical
model of RNN in Table 1. The initial gene expression level was selected randomly.
We generated M = 10 sets of gene expression profiles for NET1 where each time



98 N. Noman, L. Palafox, and H. Iba

Table 1. RNN model of the target synthetic network NET1

wij 1 2 3 4 βi τi
1 20.0 -20.0 0.0 0.0 0.0 10.0

2 15.0 -10.0 0.0 0.0 -5.0 5.0

3 0.0 -8.0 12.0 0.0 0.0 5.0

4 0.0 0.0 8.0 -12.0 0.0 5.0

Table 2. Inferred RNN model for NET1 from 5% noisy data

wij 1 2 3 4 βi τi
1 49.99 -20.14 -7.79 0.00 -3.33 10.04

2 18.15 -12.28 0.51 0.00 -6.21 5.19

3 0.00 -8.19 11.46 -0.77 0.48 4.25

4 0.00 -0.29 6.51 -9.20 -0.27 4.48

courses contains T = 50 time samples. In order to simulate the noise experienced
in the real gene expression data we generated expression profiles adding 5%
Gaussian noise. Then we tried to reverse engineer the target network from both
the noise-free data and noise-corrupted data.

In our experiments, we inferred the regulators of gene-i (i = 1, · · · , N) under
the same experimental condition. For every sub-problem the algorithmic setup
was as follows: F = 0.5, CF = 0.9, P = 100, Gmax = 10000, δ = 1×10−3, c = 10
and I = 4. The setting for DE parameters (F , CF , and P ) is very typical [23] and
other parameters were chosen based on the setting used in [22] or empirically.
The search ranges for RNN parameters were as follows: wij ∈ [−30.0, 30.0], βi ∈
[−10.0, 10.0], τi ∈ [0.0, 20.0]. We did not include λi in our search as it was fixed
in the target model. We implemented the algorithm in Java and experiments
were run in a Intel R© CoreTMi7 CPU 2.67 GHz computer with 8GB RAM. Each
experiment was repeated 10 times to confirm the reliability of the stochastic
search algorithm.

In the reconstruction experiments from noise-free gene expression data we
could precisely estimate the network structure and the parameter values. In
almost every optimization run the fitness score for the models reached to zero
or very close to zero (< 1 × 10−15) and the estimated parameters were exactly
the same as the target. Although it was a very simple and small network, these
experiments verify that if sufficient expression data is given and the dynamics
are free from noise, then it is possible to estimate the network structure and
kinetics using the decoupled form of RNN model.

We also analyzed the performance of the reconstruction algorithm in inferring
NET1 from noisy expression data. The experimental condition was exactly the
same as before except I = 3 was used. Table 2 shows the estimated network
structure and parameter values achieved in a sample run. From Table 2 it is
evident that even in presence of noise all the regulatory interactions among the
genes were identified correctly. However, the estimated parameter values for the
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Table 3. Summary of the results of NET1 reconstruction from 5% noisy data

Measure 5% noisy data

Sensitivity 1.000

Specificity 0.500

Accuracy 0.750

MCC 0.577

Table 4. RNN model of the target synthetic network NET2

wi,j w1,14 = −15, w5,1 = 10, w6,1 = −20, w7,2 = 15, w7,3 = 10, w8,4 = 20,
w9,5 = −20, g9,6 = 10, g9,17 = 10, w10,7 = −10, w11,4 = −15, g11,7 = 15,
w11,22 = −15, w12,23 = 10, w13,8 = 20, w14,9 = 15, w15,10 = −10, w16,11 = 15,
w16,12 = −15, w17,13 = −20, w19,14 = −15, w20,15 = 10, w21,16 = −20, w23,17 = −10
w24,15 = −15, w24,18 = −20, w24,19 = 15, w25,20 = −10, w26,21 = 20, w26,28 = 20,
w27,24 = −15, w27,25 = 10, w27,30 = 15, w28,25 = −15, w29,26 = 10, w30,27 = 15,
other wi,j = 0.0

βi βi = 5 for i = {2, 5, 6, 10, 16, 24, 28} βi = −5 for i = {15, 17, 27} otherwise βi = 0

τi τi = 10 for i = {1, · · · , 30}
λi λi = 1 for i = {1, · · · , 30}

network kinetics were not very precise. Additionally, some false positive regula-
tions were predicted. Nevertheless, if we consider the magnitude of these false
positives then it is obvious that those were pretty small compared to real regula-
tions. The summary of the prediction in terms of sensitivity, specificity, accuracy
and Mathew’s correlation coefficient (MCC) is presented in Table 3. Here, we
used the standard definitions for these measurements based on positive/negative
value of wij . These results show that the prediction had a full 1.00 sensitivity and
a MCC greater than 0.5, however, the specificity was 0.5 which indicates predic-
tion of 50% false positive regulations. In an overall, the approach did a correct
estimation of NET1 structure and good approximation of the parameters.

Next we experimented with a larger network (NET2) with N = 30 genes
to investigate the inference capability of the algorithm. The structure of the
network was very sparse and it is the same architecture that was used in [21].
The parameters of NET2 were chosen arbitrarily as shown in Table 4. We per-
formed the reconstruction experiment both in noise-free condition and 5% noise
corrupted environment. The experimental conditions were once again kept the
same except I = 5 was used to limit the maximum number of regulations for a
particular gene.

It is known that with the increase of dimensionality the problem complexity
increases rapidly and the GRN prediction problem is not an exception. There-
fore, in predicting the correct regulations, even in ideal condition, the inference
algorithm had some difficulty. In noise-free condition, the method identified more
than 50% regulations correctly and identified most of the true negatives. How-
ever, the algorithm inferred many false positives and some true negatives. The
summary of the prediction from noise-free condition and 5% noisy condition is
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Table 5. Summary of the results of NET2 reconstruction

Measure Noise free data 5% noisy data

Sensitivity 0.611 0.305

Specificity 0.996 0.981

Accuracy 0.981 0.954

MCC 0.7246 0.329

presented in Table 5. It is shown in Table 5 that when the gene expression data
was noisy, the prediction accuracy deteriorated in terms of sensitivity and MCC.
However, the specificity and accuracy was not affected much because these val-
ues were dependent on the choice of I. If we had chosen a smaller value of I, then
it was possible to increase the prediction accuracy even more. However, it can
be summarized that the prediction method could made an overall estimate of
the network structure for a reasonably large and sparse network given sufficient
gene expression data and a reasonable level of noise.

4.2 SOS DNA Repair Network Inference

We tested the proposed algorithm in the reconstruction of well-known SOS DNA
repair network in Escherichia coli. The SOS network, consisting of 40 genes, is
initiated when any damage in DNA or interference in DNA replication process is
detected [24, 25]. However, the core repair system is controlled by the interplay
between RecA and LexA proteins. More details about the working mechanism of
the SOS DNA repair system in E. coli could be found in [26].

We used the gene expression data set collected in Uri Alon Lab1. The data
set contains expression levels of 8 genes (uvrD, lexA, umuD, recA, uvrA, uvrY,
ruvA and polB) of the SOS DNA repair network. Gene expression levels were
measured after irradiation of the DNA with UV light. Four experiments were
done for various light intensities (Exp. 1 & 2: 5 Jm−2, Exp. 3 & 4:20 Jm−2)
in each of which 50 samples were collected at 6 minutes interval for the above
8 genes [27]. For reconstructing the network we used only the first data set and
preprocessed it by ignoring the sample at first time point (which was zero) and
normalizing in the range [0,1].

We identified the regulators of each gene under the same algorithmic settings
except we included the decay rate as a search parameter. The search ranges
were as follows: wij ∈ [−10.0, 10.0], βi ∈ [−10.0, 10.0], τi ∈ [0.0, 10.0] and λi ∈
[0.0, 1.0]. The reconstruction algorithm was repeated for 10 independent trials
for each gene. In each run the reconstruction process achieved a very small
fitness score indicating that the estimated model could match the target time
course pretty well. Fig. 1 compares the target dynamics and the estimated model
generated dynamics for some selected genes of the target network. From Fig. 1
it is evident that the estimated decoupled models for the genes captured the
system response adequately.

1 http://www.weizmann.ac.il/mcb/UriAlon/

http://www.weizmann.ac.il/mcb/UriAlon/
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Fig. 1. Target and estimated dynamics for the SOS DNA repair network (y axis repre-
sents normalized expression level and x axis represents samples at six minute intervals)

Table 6. Predicted regulatory interactions in SOS network

uvrD lexA umuDC recA uvrA uvrY ruvA polB

uvrD + −
lexA + +

umuDC − + +

recA + −
uvrA +

uvrY − +

ruvA − +

polB + − +

+ (−) represents activation (repressive) control

However, the predicted regulations and parameter values were very different
from run to run in our experiments. We applied Z-score analysis to identify
the robust regulators from multiple trial runs. Based on our analysis we re-
constructed the network structure presented in Table 6. As shown in Table 6,
the essential regulatory interactions were identified by the proposed method.
Inhibitory interactions of lexA gene on most of the other genes were identi-
fied correctly in addition to the activation of lexA by recA. Nevertheless, the
prediction also includes a number of false positives which are either unknown
regulations or the side effect of noise.



102 N. Noman, L. Palafox, and H. Iba

5 Conclusion

Large scale gene network inference has been always impeded by the computa-
tional requirement imposed by the underlying model. Recurrent neural network
(RNN) model has been found to be a good candidate for estimating the GRN
from gene expression data in terms of biological flexibility and computational
feasibility. However, the model contains a large number of parameter which still
makes the search very complicated for large scale networks. In this work, we in-
vestigated the decoupling of the model in which the regulators of each gene are
identified independently in separate search instances. We used a natural com-
putation based search algorithm, called differential evolution, for inferring the
regulators of each gene. Experimenting with two artificial GRNs and analyz-
ing a real gene expression profile, we verified the practicability of the proposed
approach. Moreover, such decoupling mechanism not only makes the identifica-
tion of large networks computationally feasible but also facilitates the immediate
parallelization or distributed implementation of the reconstruction algorithm.

Open Access. This chapter is distributed under the terms of the Creative Commons
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