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ABSTRACT

The performance oftaomatic speech recognition (ASR) systems degrades greatly when speech is cor-
rupted by noise. Missing feature methods attempt to reduce this degradation by deleting components of a
time-frequency representation of speech (such as a spectrogram) that exhibit low signal-to-noise ratio
(SNR). Recognition is then performed using only the remaining components of the incomplete spectro-
gram. These methods have been shown to result in recognition accuracies that are very robust to the effects
of additive noise. However, conventional missing feature methods, which modify the classifier used to per-
form the recognition, gter from the drawback that they arenstrained to use the log-spectral vectors of
the spectrogram as features for recognition. It is well known recognition systems that use log-spectral fea-

tures perform poorly compared to systems that use cepstral features.

In this thesis we propose two new approaches that recast the missing feature paradigm as a data com-
pensation problem, by reconstructing missing elements to obtain complete spectrograms. In the first
approach, referred to akister-based reconstruction, incoming log-spectral vectors from clean speech are
clustered. Missing spectrographic features from noisy data are recovered by first identifying thie close
cluster based on the values of the features that are present, and then estimating the missingjingalues
MAP procedures. The second approacfkerred to as covariance-basedaestruction, uses MAP proce-
dures to estimate the value of the missing components of the spectrogram based on theinrtométdati
the elements that are present. Both methods take into account the bounds on the clean spectrogram
imposed by additive noise. In either case, cepfatlres are coputed from the reconstructed spectro-

grams and used for recognition without any modification of the speech recognition system.

When corrupt regions of the spectrograne known a priori, recognition acctacies resting from
reconstruction methods are seen to be much higher than those obtained with the best current missing fea-
ture methods based on modification of the recognition system. The proposed spectrogram reconstruction

methods are also computationally less expensive than the best conventional missing feature methods.

We also propose two methods that attempt to identify corrupt regions of the spectrographic representa-
tions of incoming speech. The first method utilizes noise spectrum estimates of vector Taydi/IeSie
compensation for noise-corrupted speech, while the second method treats the identification task as a clas-

sic Bayesian classification problem. Combination of the best method to identify corrupt regions with the
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best method to reconstruct them produces recognition accuracies better than any other known algorithm for
speech in additive white noise. We also observe significant improvement in recognition accuracy for
speech in the presence of background music if the locations of corrupted spectrographic regions are known

apriori, but we have been less successful in blind identification of these corrupt regions for these signals.
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Glossary of terms

Bounded class-conditional imputation: Class-conditional imputation where estimates of missing compo-
nents are found using bounded MAP estimation using the distributions of the classes.

Bounded cluster marginal reconstruction: Cluster marginal reconstruction where missing elements

between—o and an upper bound are integrated out of cluster distributions to estimate cluster member-
ship of vectors. Missing elements are estimated using bounded MAP estimation based on the distribu-
tion of the estimated cluster.

Bounded covariance-based reconstruction: Covariance-based reconstruction, where missing elements
are estimated using bounded MAP.

Bounded MAP estimation: MAP estimation where the estimated value of the variable is forced to lie
within an upper bound.

Bounded marginalization: Marginalization where missing components of spectral vectors betw®en
and a given upper bound are integrated out of the distributions of speech classes.

Class-conditional imputation: Missing-feature method where recognition is performed with incomplete
spectrograms. In order to compute the likelihood of any sound class during recognition, missing com-
ponents of spectral vectors are estimated based on the distribution of that class.

Classifier-compensation methods: Methods which modify the distributions of classes within the recog-
nizer to compensate for the effect of noise.

Classifier-modification methods: Missing-feature methods where the classifier is modified to perform
recognition directly using incomplete spectrograms.

Cluster-based reconstruction: Spectrogram reconstruction methods where spectral vectors are assumed
to be segregated into clusters. Missing components of spectral vectors are estimated based on the dis-
tributions of these clusters.

Cluster marginal reconstruction: Cluster-based reconstruction method where the cluster membership of
any vector is estimated by marginalizing the missing components of spectral vectors out of the distri-
butions of the various clusters.

Cluster oraclereconstruction: Cluster-based reconstruction where the true cluster membership of incom-
plete vectors is knowapriori.

Cluster time-interpolated reconstruction: Cluster-based reconstrimh method where preliminary esti-
mates of missing components of spectral vectors are obtained by linear interpolation along time, and
the preliminary estimates are used in estimating cluster membership of vectors.

Cluster membership: The cluster that any spectral vector belongs to, in the cluster based representations
used by cluster-based reconstruction methods.

Covariance-based reconstruction: Spectrogram reconstruction method where missing elements in spec-
trograms are estimated on the basis of their covariance with observed elements within the spectrogram.

Covariance individual reconstruction: Covariance-based reconstruction where missing elements in
spectrograms are individually estimated.
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Covariance joint reconstruction: Covariance-based reconstruction method where all missing elements
within any spectral vector are jointly estimated.

Data-compensation methods: Methods which modify the incoming feature stream to compensate for the
effect ofnoise on speech recognition systems.

Geometrical-reconstruction methods: Spectrogram reconstruction methods where missing elements of
spectrograms are estimated by extrapolation of, or interpolation between, adjacent elements in the
spectrogram.

Incomplete-spectrogram methods: Missing-feature methods where no information is assumed regarding
the missing elements in the spectrogram.

Linear interpolation along frequency: Geometrical-reconstruction method evh mising elements are
estimated by linear interpolation between other observed elements within the same spectral vector.

Linear interpolation along time: Geometrical-reconstruction method where missing elements are esti-
mated by linear interpolation between observed elements within the same frequency band in adjacent
vectors.

Marginalization: Missing-feature method where recognition is performed with incomplete spectrograms.
Missing components in spectral vectar® integrated out of the distributions of the various sound
classes being considered by the recognizer.

MAP estimation: Maximum a posteriori estimation, where the value of a variable is estimated as the
value at which the posteriori distribution of the variable, conditioned on a set of observed variables,
peaks.

Missing-feature methods: Methods which model the effect of noise as missing features in spectrograms
and perform recognition based on the information in incomplete spectrograms.

Oracle masks: Spectrographic masks that have been obtained based on knowledge of the true SNR of the
elements in the spectrograms of noisy speech.

Polynomial inter polation along frequency: Geometrical-reconstrtion method where missing elements
are estimated by polynomial interpolation between other observed elements within the same spectral
vector.

Polynomial interpolation along time: Geometrical-reconstruction method where missing elements are
estimated by polynomial interpolation between observed elements within the same frequency band in
adjacent vectors.

Rational-function interpolation along frequency: Geometrical-reconstruction method where missing
elements are estimated by fitting a rational function to other observed elements within the same spec-
tral vector.

Rational-function inter polation along time: Geometrical-reconstrtion method where missing elements
are estimated by fitting a rational function to observed elements within the same frequency band in
adjacent vectors.

Single cluster reconstruction: Cluster-based reconstruction &k all spectral vectors arssamed to
belong to a single cluster.

Spectrogram reconstruction methods: Missing-feature methods wehe nissing regions of incomplete
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spectrograms aresemated, to reconstruct complete spectrograms. Recognition is performed with fea-
tures derived from the reconstructed spectrograms.

Spectral subtraction: Noise cancellation algorithm that maintains running estimates of the noise spectrum
and subtracts them from the spectrum of noigesh to estimate the spectrum of clean speech.

Spectral-subtraction-based mask estimation: Estimation of spectrographic masks based on the esti-
mates of the noise spectrum computed for spectral subtraction.

Spectrographic mask: Information relating to an incomplete spectrogram that tags individual elements of
the spectrogram as missing or observed.

Statistical-reconstruction methods: Spectrogram reconstruction methodsewen missing elements of
spectrograms are estimated based on their statistical relationships with the observed elements in the
spectrogram.

Unreliable-spectrogram methods: Missing-feature methods where the upper bound on the missing ele-
ments of the spectrogram is assumed to be known.

Vector Taylor Series (VTS): Noise compensation algorithm that obtains maximum likelihood estimates
of the noise spectrum and cancels this noise out of the parameters of noisy speech using an MMSE
estimator.

VTS-based mask estimation: Estimation of spectrographic masks for noisy speech that is based on the
estimate of the noise spectrum obtained by VTS.
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Chapter 1
| ntroduction

The performance ofudomatic speech recognition (ASR) systems degrades greatly when the speech

being recognized has been corrupted by noise [Acero 1993]. There are szasvak for this.

ASR systems are essentially statistical pattern classifiers that classify segments of sound as belonging
to one of a set of sound classes. The classification is not performed using the speech signal itself, rather, the
speech signal is parameterized into a sequendeatire vectors, and classification is performed using
these feature vectors. The feature vectors themselves are variously derived from the power spectrum
short windowed segments, foames, or speech. The ASR system learns the distribution of the feature vec-
tors belonging to any sound, from a corpus of training speech. During recognition, a segment of speech is
classified as belonging to the sound whose distribution is most likely to hagsgghthe feature vectors

belonging to that segment.

When speech is corrupted by stationary noise, one reselffiect is that thelistribution of the feature
vectors of the corrupted speech are no longer similar to the distributions learned from the training data.
This mismatch results in mis-classification and poor recognition [Moreno 1996]efféis can be mni-
mized by training the recognition system with speech that has the same level of noise as the speech being
recognized. But even in this situation, the addition of the noise results in increased error in the estimation
of the spectrum of any frame of speech [K&88], and therefore increases the inherent variability in the
feature vectors corresponding to any sound. As a result, the variance of the distributions of the various
sound classes increases, resulting in increased classification errorciadéd mis-regnition over the
situation where both training and test speech are fr@iseFinally, when the corrtipg noise itself is non-
stationary, even training the system with speech corrupted to the same overall noise level as the test speech
is not helpful. This is because, although the overall noise level in the training and testeddentical,
this does not imply that the various examples of a sound in the training data are corrupted with the exact
kind of noise that the test data has been corrupted by. Mismatches between distributions learned by the

classifier and the distribution of the test data still persist.

The problem of reducing the mismatch between the distributions modeling the classes in the classifier

and the distributions of the test data can be approached in two ways. In the first approach the test data ar
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“cleaned” in some manner in an attempt to make them similar to the training data whose distributions have
been learned by the classifier. We refer tohuds that attempt to compensate the test data for the effect of
noise in this manner atata-compensation methods. In the second approach the distributions used by the
classifier to models the various sound clasgsegwdified to be similar to the distributions of the test data.

We refer to methods that attempt to modify components of the classifier in this manner to compensate f

the noise aslassifier-compensation methods.

Several data compensation methods and classifier compensation methods have been proposed in the lit-
erature. Data compensation methods such as codeword dependent cepstral normalization (CDEN) [Acer
1993], vector Taylor series (VTS) [Moreno 1996], spectral subtraction [Boll 1979] and Wiener filtering
[Porter 1984] attempt to compensate for the effect of the noise on the data based on estimates of the spec-
trum of the noise. Others such as multivariate Gaussian based cepstral compensation (RATZ) [Moreno
1996] and probabilistic optimal filtering (POF) [Neumeyer 1994] use explicit comparisons between data
that have simultaneously been recorded in the training and test conditions to modify the test data. Classifier
compensation methods such as parallel model combination (PMC) [Gales 1993] and model composition
[Varga 1990] modify the distributions of the sound classes to account for the effect of additive noise. Oth-
ers such as maximum likelihood linear regression (MLLR) [Leggetter 1994] on the other hand simply

transform the parameters of the distributions to best fit the noisy test speech.

The drawback with all of these methods is that they assume, either explicitly or implicitly, that the
underlying noise is stationary, and furthermore that the effect of the noise is representable byrarisear
formation of the parameters of the distribution of the data. Thus, while all of these methods have been
fairly successful against low to medium levels of stationary namsenoisy speech with signal-to-noise
ratios (SNR) 10 dB or greater, they are less effective at higher levels of noise and comm@estyvimin

the presence of non-stationary noises [Raj 1997].

Two new approaches to robust speech recognition have been based on the observation that the human
auditory system pferentidly processes the high-energy components of the speech signal while suppress-
ing the weaker components [Moore 1997]. These new approaches attempt to improve speech recognition
performance by deweliging the contribution of the low SNR components of the speech to the recognition
in some manneiMulti-band based approaches [Hermansky 1996] [Bourlard 1996] consider the fact that

different frequency bands of the spes@mnal may be corrupted at different SNRs. They therefore decom-
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pose the speech signal into aede frequency Ilmals, and construct sefate speech regnition systems
for each band. The output of each of these recognition systems is then recombined to give the final output.
The weight given to the output of the recognition system corresponding to each frequency band is ideally

dependent on the SNR in that band, deweighting noisy bands with respect to the clean ones.

Missing-feature approaches [Cooke 1994] [Lippmann 1997], on the other hand, take into account the
fact that SNR may be local not only to frequency but also in time. Speech is transformed inte-fhe- tim
guency domain and represented as spectrographic images where the two axes of the image represent time
and frequency respectively, and the pixel value of each element in the image repressmsgihef the
signal in that time-frequency lodan. Different regions of this spectrographic picture are corrupted to dif-
ferent degrees by the noise. In missing feature based approaches, the low SNR regions of this picture are
selectively erased, and recognition performed on the basis of the remaaotmplete spectrogram. Since
recognition is prformed on the ts&s of incomplete spectrograms, we also refer to these methodsms

plete-spectrogram methods.

Incomplete-spectrogram methods have the advantage over other approaches that they make no assump-
tions, either explicit or implicit, about the stationarity of the corrupting noise. Also, they do not need to
have a knowledge of the fine structure of the spectrum of the noise, needing only the coarse descriptions of
the regions of the time-frequency plane as being either reliable or unreliable [Cooke 1994plébeom
spectrograms methods have been shown to result in recognition accuracies that are remarkably robust to

high levels of noise corruption [Cooke 1999] [Cooke 2000].

All current incomplete spectrogram methods that have been reported irethtitié so far are dai-
fier-compensation methods [Cooke 1994][Lippmann 1997][Renevey 1999]. They moedieitteof the
incompleteness of the spectrographic data on the classifiehadassifier is modified to compensate for
the incompl eteness of the data. We refer to these miisig-feature methods that modify the classifieclas-
sifier-modification methods in this thesis. In order for such methods to be feasible, the classifier has to be

trained with spectrographic features, spectra or log-spectra.

This is a serious drawback with these methods. It is well known that when recognition is performed
with log spectra, the recognition acaaies obtained are much poorer thlaose obtained with other fea-

tures, such as cepstra, that have been derived from the log spectra [Davis 1980]. As a result, esen the ba
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line recognition accuracy obtained with the cepstra of noisy speech with no compensation at all is
frequently superior to the accuracy obtained with log spectra, even after missing-feature basedacompen

tion has been applied.

What thisthesisis about

In this thesis we recast the missing-feature approach to noise robustnesgaasompensation prob-
lem. Instead of performing recognition directly with incomplete spectrograms we atteesitriate the
missing components of incomplete spectrograms and reconstruct complete spectpogratol assifi-
cation. Estimation of missing regions of incomplete data has been much reported on in the fields of statis-
tical analysis of data [Rubin 1987] [Quinlan 1989] [Ghahramani 1994]. However, to the best of our
knowledge, this approach has not been applied to noise compensation for speech recognition prior to this

work.

We refer to metbds that estimate missing (noisy) regions of incomplete spectrograms to reconstruct

complete spectrograms gsectrogram reconstruction methods.

The spectrogram reconstruction methods described in this thesis have several advantages over current
incomplete spectrogram methods:

1) Since the reconstruction of the spectrograneifopmed independently of the mgmizer, the recog-
nizer need not be maodified in any manner.

2) They are more computationally efficient than classifier-compensation methods.

3) Since the reconstructed spectrograms can be transformed to cepstra, or other related fehtures, a
recognition performed with them, much better recognition accuracies can be obtained than with

classifier compensation methods.

We approach the problem of estimating missing regions of spectrograms from two perspectives, one in
which the missing regions of the spectrogram are treated as being completely unknown, and the second in
which the noisy regions are assumed to be unknown, but bounded. We present methods which use simple
statistical representations, other than that used by the speech recognition system, in order to reconstruct the
missing regions. This gives us tfreedom of using representatis that are far simpler than that in the
speech recognizer, while also permitting us to utilize information that is not represented by the recognizer

to perform the reconstruction. We investigate several simple estimation techniques that reconstruct the
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missing regions of spectrograms based both on purely geometrical constraints, as well as statistically moti-
vated techniques that utilize the statistical correlations between various elements of a spectrogram. Experi-
ments show that the recognition performance obtained with cepstral features derived from such

reconstructed spectrograms is higher than that obtained with current missing feature methods that attempt

to perform recognition directly with the incomplete spectrograms.

This thesis is organized in two parts. In the first part, consisting of Chapters 2, 3, 4, 5 anckét the t
noisy regions of speech spectrograms as completely unknown, or missing. In the second part consisting of

Chapters 7 through 9 we treat them as missing but bounded.

In Chapter 2 we present a brief description of the speech recognition system, and also presknt a bri
overview of missing data methods in statistical analysis. We especially describe the statistical methods that
are applicable to techniques described later in the thesis. In Chapter 3 we describe the speechmpectrogra
and how the effect of noise can be modelled as missing features on the spectrogram. In Chapter 4 we
describe conventional missing-feature based recognition methods. In Chapter 5 we describe several infer-
ence methods that estimate the missing regions of incomplete spectrograms. In Chapter 6 we describe rec

ognition experiments obtained with methods described in Chapter 5.

In Chapter 7 we present inference methods that assume that the unreliable regions of inspetplete

trograms are bounded, and describe experimental results with these methods.

One serious problem with missing-feature based methods is that in order for them to beeéiigglied
tively, the reliable and unreliable regions of the spectrogram have to be correctly identified. Although,
missing feature methods only require very coarse information regarding the corrupted specfregram,
simple binary information about whether a particular element of the spectrogram is reliable anviog de
such information, especially when the speech has been corrupted by non-stationary noise, is very difficult.

In Chapter 8 we discuss this problem.

In Chapter 9 we summarize our findings and present our conclusions and ideas for future work.
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Chapter 2
Background Information

2.1 Introduction

This thesis deals with the reconstruction of incomplete spectrograms to improve the performance of
speech recognition systems on noisy speech. Reconstruction of incomplete spectrograms is an exercise in
the inference of missing data in incomplete datasets, which is a well studied problem in statistics. The
problem addressed in this thesis therefore involves three notions:

1) The manner in which automatic speech recognition systems function

2) The effect ohoise on speech recognition systems

3) Inference of missing data in incomplete data sets

In this chapter we aim to clarify these fundamental notions to establish a basis for the work described in
the following chapters. We first briefly outline the manner in which speech recognition systetimnfunc
We confine our discussion to recognition systems based on Hidden Markov Models (HMM) since the work
described in this thesis has been evaluated using CMU Sphiax HMM based gstem. Nevertheless,
the techniques described in the thesisnot specific to HMM based systems, and can be used with other
statistical speechecognition systems as well. We then briefly describe the effect of noise oerthe p
mance of speech recognition systems. We also describe several current methods of comfmmseating
effect of thenoise, and their drawbacks. Finally we present a brief review of existing literature on incom-
plete-data methods in other fields. Some methods which are explicitly used in thetbesiplained in

greater detail.

2.2 Overview of Automatic Speech Recognition (ASR) systems

ASR systems are essentially pattern classification systems [Rabiner 1993]. Any utterance of speech is
modeled as a sequence of sounds. These sounds may either be the phonemes in a language, words in that
language, or larger units, depending on the vocabulary of the system and the task being performed by it.
The complete set of sounds that the ASR system has to recognize forms the classes modeled by it. In this
discussion we assume without loss of generality that the sound classes modeled by the system are words.

The ASR system then classifies segments of speech as belonging to one of these classes.
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Classification is not performed using the speech signal directly. Instead, the speech signal is parame-
trized into a sequence fdature vectors, or parameter vectors, and classification isgeformedusing these
feature vectors. The feature vectors used are usually cepstral coefficients [Davis 1980]nts shdep-
stra [Hermansky 1990] derived from power spectra of short windowed segmefriames of speech.
Thus, a sequence of speech samples is transformed into a sequence of feature vectors each representing

singleframe of speech, which is used to performogggtion.

Let S represent the sequence of parameter vectors derived from the utterancedoginiged. Auto-

matic speech recadion systems identify the sequence of words in that utterance using the optimal classi-

fier equation

A

W = argmax,{ P(S|W)P(W)} (2.1)

whereW is the recognized sequence of words in that utterB{t¥) aipttivei probability that the
word sequenc&®V was uttered and is usually specifiedlaygaage model. Further details of language

models can be found in [Katz 198 R(S|W) is the likelihoo®of given thatthe  was the sequence of
words uttered. It is termed as the acoustic likelihood of the data and is obtained from the probability distri-

bution of all parameter vectors that could represent the sequence ofWords . In HMM-based speech rec-
ognition systems this probability distribution of sequences is modeled by an HMM. The following section

describes the hidden Markov model in greater detail.

2.2.1 HMM-based modeling of the distributions of sequence of vectors

In HMM-based recognition systems the mechanism that generates the sequence of parameter vectors
representing any word is modeled by an HMM [Rabiner 1993]. When generating the sequence, the genera-
tor is assumed to be in one of a finite set of states at any instant of time. A probability distribution function
is associated with each of these states, which are referred to as the state probabilities. Traratéctiyen
feature vector at any instant, the generator draws a vector from the distribution associatedsiatie the
is in at that instant. The vectors that the generator draws from a state distribution are said to belong to that
state. The HMM also has a settrdnsition probabilities associated with each state. The transition proba-

bilities of a state refer to the probability distribution of the states that the generator can be in at the next
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instant, given that it is in that state at the current instant. The generator draws frosttilbistidin in order

to determine which state it will be in at the next instant of time. If the generator is if state  astame i

t +1 after having been in state at tirhe , it is saittdosit from statel to statp  at time instdnt . The
transition probabilities and the state distributions are all specific to the word being modeled by the HMM.
Figure 2.1 shows an example of an HMM with 5 states. The HMM in this figure only permits transitions in
one direction. All transitions with probability O are not shown. This HMM has a non-emitting initial state,
and a non-emitting terminating state. Non-emitting statestatesvith which there are no probability dis-

tributions associated. Therefore no observations are generated when the generator is in these states. The
non-emitting initial state in figure 2.1 implies thattat= O i.e, justbefore the generator begins generat-

ing vectors, it is in the initial state where it does notegete anybservations. Similarly, if the generator
enters the terminating state it can no longer transit to any of the other states in the HMM, nor can it gener-

ate any more observations.

Figure 2.1 Example of a 5 state HMM with one non-emitting initial state, and a non-emitting terminategestah

of the circles represents a state. The arrows represent valid transitions fretatéheand the numbers below the
arrows represent the probability of that transition. For exammearttows from state 1 indicate that if the generator

is in state 1 at timg at timet+1 it can be in state 1 with probability 0.5, state 2 with probability 0.3 and state 3 with
probability 0.2. The dotted arrows point to the state distributions associated with thaAistaliservation is drawn

from this distribution every time the generator visits the state. The initial state (statetld¢ gemininating state (state

4) have no state distributions associated with them, and no data are generated whegrdher geim these states.
Note that in this figure all transitions point left to right. In a more generic HMM, transitions may occur in any direc-
tion, from any state to any other state.

Thus, to generate a sequenceNbf  vectors for the word, the generator transits through a sequence of

N +2 states in the HMM, beginning with the non-emitting initial state and terminating in the final,
absorbing state. At each time instant it draws observations from the state distribution of the state it is in at

that time instant. The sequence of vectors so generated is saigatetsed by the HMM.
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The model for the generating mechanism faeguence of words is also an HMM and easily con-

structed by concatenating HMMs for individual words. Figure 2.2 shows an example where the HMMs for

three words have been concatenated to obtain an HMM modeling a sequence of three words.

Figure 2.2 Example of constructing the HMM for a sequence of words from the HMMs of individual words. The
non-emitting terminating state of any word is merged with the non-emitting initial state of the nextherderged
state is no longer an initial state or a terminating state. However, it renmairesmitting, and no state distribution is
associated with it. The resulting HMM has a non-emitting initial state, a notirentérminating state and several
intermediate non-emitting states as well.

The statistical parameters of the HMM representing a sequence of Wérds are the set of transition
probabilities, represented as a matAy, , and the set of state probability distribution functions. The
matrix Ay consists of elemen®,(i,]) , which represents the probability that the generator will be in

statej in the next time instant, given that it is currently in dtate . Thus, for an HMMKwith  states, we

have
K

> ay(i,j) =10 (2.2)

=1

The state distribution of thk™ state is represented Iy, K(X) ,whefe represents any parameter

vector that belongs to tHe'" state. In speech recognition systems the various state distributions are usually
modeled as Gaussians or mixtures of Gaussians [Juang 1986]. Typically, for computdficiealcy,

these Gaussians are assumed to have diagonal covariance matricegariance matrices where the off-

diagonal elements are all 0. For simplicity we represent the state distributionkdf tstate as

Pw (X) = MG(X;9) (2.3)
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where MG(X;(p\liv) denotes a Gaussian mixture distribution corresponding folttetate of the HMM
representing the word sequeridé w‘p'(\'d represents the set of parameters associated wigmateWe

the set of(p\liv for all the states in the HMM &Y &g, Ay angl represent the complete set of

parameters needed to uniquely identify the HMM modelivig

The probability of any vector sequen8e  that is generated by the HMW for  is now given by

P(S|W) = Z P(S s|W) = Z P(s|\W)P(S|s) (2.4)

sl sz, p

wheres represents any state sequence that tlegagencan follow when generatityy , aAd represents
the set of all possible state sequences. The state sequience s, quite literally, a sequence of states, one for

every feature vector i . That is,

S = [S1,55, 53 ..., 5] (2.5)
whereN is the total number of vectors in the sequéice sand s the state associated Withe cher
in S, S(t) . The probability terms in the right hand side of Equation (2.4) can now be written as

P(S|s) = M MG(S(t);¢5)
t (2.6)
P(s|W) = a(0, 1) [ a(sn St+1)
t
wherea(0, s;) represents the probability of transiting from@H&state (i.e the initial non-emitting state)
of the HMM for W to the first state in the state sequetice ,&1$d S; ;1) represents the probability of
transiting from states, to stage,; . Equation (2.4) can now be rewritten as
P(S|W) Ea(o InEl )ED MG(S(t) W)E 2.7)
= ,S a(s, NO) :
SDZEpD 1|?| Stst+1DHT| )5

Ideally, recognition would be performed as
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- 0 [l
W = argm anEP(W) P(s|W)P(S| s)% (2.8)
sO

However, for easy implementation, HMM based speech recognition systems usually estimate not just
the best word sequence, but also the best state sequence associated with the word iseqeeageition

is performed as

A

W = argmaxy, { P(W)P(S, s|W)} = argmaxy, { P(W)P(s|W)P(S|s)} (2.9)
which can be further expanded into

~ O O 00 N
W = argmax,, LP(W)&(0, sy) [ a(s; S+ I TMG(S(t);05 )T (2.10)
°0 0 U DED >

In order to evaluate Equation (2.10) fully, the term within the braces would have to be computed for

every possible word sequence in the language. This would be impractical. In practice, dynamic program-
ming methods are used [Viterbi 1967] to obtain locally optimal estimated/for

The CMU Sphinxlll HMM based reognition system has been used exclusively to evaluate missing
feature methods in this thesis. This is a phone-based recognition system. Words are further decomposed
into sequences of phones and the HMMs for words are built by concatenating the phone HMMs. Further,
in order to reduce the total number of parameters needed to construct HMMs for all the pivatsetic
modeled by the system, the state distributions of states of the HMMs of the various phonetic units are

sharedj.e. the same distribution is used by the states of the HMMs of several phonetic units.

2.3 The effect of noise on speech recognition systems

Speech recognition systems function on the assumption that the distributions modeling the various
sound classes in the recognizer are representative of the speech being recognized. In other words, it is
assumed that the distributions of the feature vectors representing the various sound classes in the test data
are very similar to the corresponding distributions in the recognizer. When the distributions in the recog-
nizer have been trained from clean speech this is only true if the speech being recognized sswddlan a

When the speech being recognized has been corrupted in any manner the two distributions are no longer
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similar [Moreno 1996]. We can represent any noisy utterance as being a clean utterance that bas been r

dered noisy by some transformation. If we represent fheeature vector of an utterance of clean speech
as S(t) , and the corresponding feature vector of the corrupted utteraig#)as , we could represent the
relation between them as
Y(t) = T(S(t)) (2.11)
where T( ) is the transformation that converts any clean speech feature vector to a noisy speech feature

vector. If we represent the distribution of the feature vectors of clean speech representing & sound a

P(S(t)), and the distribution of the oesponding vectors of the corrupted speecR4¥ (1)) , we have
Ps(Y(1)) = Ps(T(S(1))) (2.12)
The recognizer models the sousd by BgS(t)) , the distribution of clean speech vectors for that
sound. However, the distribution of vectors in the test data for the sbundP¢(Y{t)) . We see from

Equation (2.12) thaP(Y(t)) # P(S(t)) unles§() s an identity transformation. This mismatch

betweenP(S(t)) andP,(Y(t)) causes the performance of the recognition system to degrade greatly.

This mismatch can be eliminated if the distributions in the recognizer are learned using speech that has
been subject to exactly the same kind of degradation as the test speech. However, even in this scenario, the
effect of corupting noise is to increase the inherent variability between different instances of any sound
and the resulting recognition accuracy is significantly lower than when the data used to train the recognizer
and the test data are both clean. Further, this requires precise control over the recording contligons of
test speech in order to keep them identical to that of the speech used to train the recogniseprirctiro
cal situations mismatches between the distributions used by the recognizer and the distributions of the test
data persist. Figure (2.3) shows the recognition performance of a speech recognizer lorhspdes
been corrupted by noise. As can be seen, the effect of noise is to degradéicgcagcuracy greatly even

when the distributions in the recognizer are perfectly matched to the distributions of the noisy staeech da

There are two possible approaches to reducing the mismatch between the distribution of test data and

the recognizer distributions. In the first approach the test data is transformed in some mannet gieh tha

distributions of the transformed test data match the distributions in the recogeiz¥i(t) is transformed
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Figure 2.3 Recognition accuracy as a function of the signal-to-noise ratio of the speech being recognifmdeilhe
curve represents a “mismatched” recognizer, where the recognition system hasibedrotn clean speech, but the
test speech is noisy. The upper curve represents a “matched” recognizer, hehezeognition system has been
trained with speech that has been subject to the same level of noiseess speech.

by a transformatioly( ) such that

P(T4(Y(1)) OP(S(1)) (2.13)

Recognition is now performed withiy(Y(t)) instead¥ft) . This approach ireeféo as thelata

compensation approach, since the noisy test data are being transformed to compensate for the corrupting

noise.

The second approach to reducing the mismatch between the distributions in the recognizer and the dis-

tribution of the test data is to transform the recognizer distributions in some manner, such tua tosy

similar to the test data distributione., the distributionsP4(S(t)) are transformed by a transformation

T( ) such that
Ti((Ps(S(1))) OP(Y(1))) (2.14)

Recognition is now @rformed sing T,,(Ps(S(t))) instead ofP¢(S(t)) . Since components of the

classifier are being modified to compensate for the noise, this appraaééried to as thelassifier-com-

pensation approach.

In HMM-based systems the recognizer distributions are transformed by transforming the parameters of

the mixture Gaussian state distributions of the HMMs modeling the various speech sounds.

Py, k(Y (1)) OMG(S(t); Tn(®)) (2.15)
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where Py (Y(t)) is the distribution that would have representedkthetate of the HMM for the word

sequencéV , had the recognizer been trained ¥(tf) . Recognition is performed’Meimvb) as the

parameters of the state distributions.

Several data-compensation and classifier-compensation methods have been proposed in the literature.
Among data compensation methods, methods such as CDC&dJA993] and VTS [Moreno 1996]
model the effect ohoise on the feature vectors of clean speech using a parametric model and learn the
parameters of this model based on samples of the noisy utterance being recognized pridrihaistri-
butions of clean speech. They then attempt to transform the feature vectors of the noisy speech back to
their clean counterparts using the learned parameters. Other methods such as RATZ [Moreno 1996] and
POF [Neumeyer 1994] use “stereo data” - data that have been simultaneously recorded in clean and noisy
environments - to learn the relations between the feature vectors of clean speech and those of noisy speech.
This relationship is later used to estimate the clean speech feature vectors corresponding to the vectors of
any noisy utterance. Still other methods such as spectral subtraction [Boll 1979] and Wiener fitaring [
ter 1984] estimate the spectrum of the corrupting noise and use it to reduce the noise level in the noisy

speectsignal, rather than on its feature vectors.

Among classifier compensation methods, methods such as PMC [Gales 1993] and model composition
[Varga 1990] use analytical models of the effect of noise on the feature vectors of clean speech and use
these models to transform the parameters of the Gaussian mixture state distributions of the HMMs. Meth-
ods such as MLLR [Leggetter 1994], on the other hand, simply transform the parameters of the mixture
Gaussian state distributions using an affine transform, to best fit the noisy speech. The parameters of the
affine transform are learned from “adaptation data” - data that have been regnddedhe same condi-

tions as the noisy speech being recognized.

All of these methods assume, either explicitly or implicitly, that the noise that is corrupting the speech
signal does not vary much over the course of the utterance. The noise is assumed to affect the feature vec-
tors (or the distributions of the feature vectors) of any instance of a particular sound in exasdin¢he
manner as it affects every other instance of the same sound. As a result, while these methods ace fairly s
cessful at compensating for stationary noises they are, in geneféégdine in the presence of non-sta-

tionary noises [Raj 1997].
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The effect of non-stanary corrupting noises on speech recognition amuis different from that of
stationary noises. Figure 2.4a compares recognition accuracy obtained on speech corrupted by stationary
white noise, with that obtained on speech corrupted by music, which is a non-stationary signal. Figure 2.4b
shows the improvement in recognition accuracy obtained when CDCN compensation is applied to both
cases. We observe that at any given SNR the recognition accuracy obtained with speech that has been cor-
rupted by music is greater than that obtained with speech corrupted by stationary noises.ethissis &t
any given SNR the energy in music is much more localized in time due to its non-stationary nature than the
energy in white noise. As a result, while some regions of the speech get corrupted to a greater degree by
music than they do by white noise, other regions do not get corrupted much. The higher recognfdtion p

mance of the recognizer in these less corrupt regions results in greater overall accuracy.

On the other hand CDCN compensation does not improve the recognition performance of speech cor-
rupted with music, while it is quiteffective onwhite noise. Similar results are obtained for speech cor-
rupted by other non-stationary noises, and for other compensation methods. In general, \wfigettbé
non-stationary noises is not as damaging to recognition accuracy, it is not possible to compensate for the
effect of the noise effectivelyith current compensation techniques. Clearly, new approachegquired

to handle non-stationary noises.
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Figure 2.4a Recognition accuracy obtained with speechFigure 2.4b Relative improvement in recognition error
corrupted by white noise, and speech corrupted by eate obtained by applying CDCN compensation to
segment of music, at various SNRs. speech corrupted by corrupted by white noise and music
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It is well known that human beings are sell able to comprehend speech that has been heavily corrupted
by both stationary and non-stationary noise [Lippmann 1997][Miller 1950]. It is also known that human
listeners are able to comprehend speech which has undergone considerable spectral excisions. For exam-

ple, normal conversation is possible with speech that has been either high-pass or low-pass filtered with a
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cutoff frequency of 1800Hz [Fletcher 1953]. Similarly, speech that is occluded bfeiitg signals and
corrupting noises is easily comprehended by humans. The human auditory system also exhibits the so-
calledcapture effect [Moore 1997] by which locally more intense signal components dominate the neural
response, suppressing the weaker components, sometimes completely. Phenomena such as excisions
occlusion, and the capture effect can be represented as occlusions of spectro-temporal regicfrein time
guency representations of the speech signal. Trergfitresuggest that there is sufficient redundancy in
the speech signal for it to be recognized based onlyffratton of spectro-temporal information present in
it.

This observation has motivated two new approaches to robust recognition of noisy speetiti-the
band recognition approach, and themissing-feature approach. In these approaches the recognition system

is modified to concentrate only on those portions of the speech signal that have been less corrupted by
noise, rather than the entire signal. Let us represemtﬂta)mponent of thé " feature vector of an utter-
ance of clean speech &t, k) , and the corresponding component for the corrupted spyééck) as

Let T, () be the transformation corruptit®(t, k)  such that
Y(t k) = Ty ((S(t k) (2.16)

The new approaches attempt to improve recognition by concentrating only of those components of the

noisy speech for whicl(t, k) 0T,  (S(t, k)) i.e. the components for which the difference between the

noisy speech and the clean spedeft, k) , is small, wihtrek) is defined as

E(t K) = [Y(t, K)=T, ((S(t, )| 2.17)

For these components the mismatch between the distributions in the recognizer and the distributions of

the test data is also small. Components for wikih k) is large are either deweighted or discarded com-

pletely.

Multi-band recognition approaches decompose speech into separate frequency bands and perform rec-
ognition independently on the various frequency bands. The recognition hypotheses of the individual
bands are combined to obtain the final recognition hypothesis. Drghiognition the contributions of fre-
guency bands where the error between the parameters of clean speech and those of noisy speech are

expected to be large are given less weight with respect to the bands whereoths expected to be
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smaller [Hermansky 1996] [Bourlard 1996].

Missingfeature approaches, on the other hand, do not decompose speech into frequency bands. Instead,
they assume that those components of a spectrographic representation of speech fatykijch is large
are in fact unknown or missing (hence the name “missing features”), andettiesnprecgnition based
only the remaining components [Cooke 1994][Lippmann 1997]. In other words, they model the effect of
noise on speech as that of obscuring some of the components of the spectrographic representation, result-
ing in incomplete spectrographic data for that utterance. The problem of recognizing noisy speech then
becomes one aflassification with incomplete data. We describe how the effect of noise on speech can be
modeled as missing spectrographic data in Chapter 3. Missing-feature approaches and the problem of clas-

sification with incomplete data are discussed in greater detail in Chapter 4.

Both multi-band and missing-feature approaches have the advantage that they do not make any explicit
assumption about the characteristics of the noise corrupting the speech. The procedure for ttoghpensa
for the noise is independent of whether the noise is stationary or non-stationary. They do however need to
know beforehand which components of speech have been badly corrupted by the noise, and which have
been less affected. Thegiem of estimating this information in the context of missing-feature approaches

is discussed inrgater detail in Chapter 8.

Missingfeature approaches have the advantage over multi-band approaches that they do not assume
that different frequency bands are independent of each other. However, they have the disadvantage that
they are restricted to performing recognition using spectral features. This restriction is discussaerin gre

detail in Chapter 4.

In this thesis we attempt to eliminate this restrictiorrdmpnstructing those components of a spectro-
graphic representation of speech for whieft, k) is lqmger to recognition. We are, in effece-for-
mulating the missing-feature approach as onefefence of missing data, rather than that of classification
with incomplete data. The problem of inference of missing data in incomplete data sets has been well stud-

ied in the field of statistics and other related fields. In the following section we briefly review the lgeratur

on the topic from these fields.
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2.4 Incomplete Data M ethods

Incomplete-data methods are methods that are applied for the analysis or study of data sets where some
of the components are missing. Usually they deal with the estimation of the missing components of the
data set. Alternately, they may deal with the estimation of the statistical properties of the statayriia

on the incomplete data set.

Data sets could be incomplete for severatoea. For example, data could be missing due to the char-
acteristics of the process that generated the samples. Incomplete data are frequemtgreddawsample
surveys [Madow 1983] where some respondents chose not to respond to certain queries in the survey, or
prefer not to repond to the questionnaire at dllata occlusion is another reason for incomplete data
[Ahmed 1993]. This could happen, for example, where some of the regions of interest in a picture are
occluded by irrelevant objects, or when some portions of a sound recording are occluded by noise. Incom-
plete data may also result frdwss of data. Segments of sound recordings may be lost due to damage to
the recorthg media. Portions of data may be lost during transmission over a communication channel. Data
points that are obviously non representative can also give rise to missing data [Rubin 1987]. For example,
in a survey where one of the queries is the age of a person, a response such as 937 is obviously erroneous
and needs to be treated as unknown. Similarly, speech samples that are corrupted by very high levels of

noise can be treated as unknown.

We note from the above examples that there are several mechanisms that render data unobservable to
the observer. These mechanisms themselves, in turn, can have different characteristics. In the case of the
incomplete or erroneously completed sample surveys, the non-response to a particular query may be
related to the query itselé.g. people who are unwilling to divulge their incomes), or to the actual response
to the query €.9. people belonging to a particular demographic group being unwilling to identify them-
selves as such). The non-response to a particular query may even be related to the response to sther querie
in the survey €.g. people belonging to a particular demographic group being unwilling to divulge their
incomes). Similarly, in the case of the picture with occluded regions also the missing dataisneciaa
vary. The mechanism can be completely random, as in the case of cars moving down a street occluding the
objects on the other side of the street. The mechanism could be related to the content of the.gicture,

bees occluding regions of flowers. In speech corrupted by noise, the mechanism causing incomplete data
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depends on the content of the sound. The high energy and clearly enunciated regions of the signal are more

likely to remain comprehensible than low energy regions.

In all the above cases we are able to distinguish between a truth and a missing data mechanism. By truth
here we refer to theue value of the missing components of the data. In the case of the sample survey, for
example, this would be the response that the respondent would have given to a query had he responded to
it. For the picture this would be what the camera would have captured had the occluding object not been in
place. When data is lost in transmission or storage this would be the value the data point had before it was
lost. For all of these cases there exists a hypothetical data set corresponding to the incomplete data se
where all the components are present. The terminology we adopt [Little 1987] refers to this hypothetical
data set, where no components are missing, asthgete data. Data sets that are missing some of their
components are referred toiasomplete data. The missing data elements or components arereelféo as
missing data, or missing features. The mechanism that renders some of the complete data unobservable,

thereby resulting in incomplete data, is referred to astb®ng data mechanism.

Missing data mechanisms are usually categorized into three types [Ghahramani 1993]. The three cate-

gories are:

1) Missing Completely At Random (MCAR): The missing data mechanism in this case is completely
random. As a result, the probability that any component of the complete data will be deleted by the
mechanism is independent of both the component itself and the rest of the data set.

2) Missing At Random (MAR): Here the probability that any component of the complete data will be
deleted depends on the value of the observed data.

3) Not Missing At Random (NMAR): Here the probability that any component of the complete data
will be deleted depends both on the value of the observed data, as well as the value of the deleted

data point itself.
Of these, MCAR missing data patteare the most difficult to predict (based on the complete data), but
the least problematic, because of the unsystematic nature of the deletions. MAR and NMAR missing data
mechanisms on the other hand cause systematic deletions of data, and while the missing data patterns are

more predictable, they can be very damaging to any analysis based on the data.

It is difficult, if not impossible, to erform any meaningful stgtical analysis of the processes underly-

ing any data if the data are incomplete. Similarly, classification of, or prediction on the besmsgflete
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data is not simple. Standard statistical procedures cannot be directly applied to such data sets since such

procedures assume the existence of complete data.

Most incomplete data methods in the literature deal with the estimation of the missing data. The process
of estimating the missing data components fisrred to asmputation. The earliest used method of impu-
tation was the so-calleahean imputation [Ahmed 1993]. In mean imputation missing components of a
vector are filled in by the average value of that ponent. This problem has the obvious disadvantages
that it under represents the variability in the data, and also ignores the correlations between the various
components of the data completely. The US Census Bureau attempts to handle missing data points in its
sample surveys by a procedure knownHas Deck Imputation [David 1983]. The hot deck procedure
finds, for each incomplete data vector, a matching complete data vexttre data vector that is closest
in terms of the components that are present in both vectors. The missing components of the incomplete
data vector are then filled in with the corresponding components of the matching complete vector. Hot
deck imputation, once again, has the shortcoming that the estimate of the missing data components are
based on a single complete vector in the data set, ignoring any global properties of the data set. It also
ignores the possibility that the matching vector itself may have been an outlier in the components of inter-

est.

Several imputation methods have been proposed in the literature that use demésido impute the
values of missing data points [Quinlan 1989]. Of these, methods based on Classification And Regression
Trees have been most popular [Breiman 1984]. In these methods, the set of all completeatatis yer-
titioned recursively into a tree based on a set of logical “questions”. Individual complete vectors form the
leaves of this tree. Incomplete data vectors are paksed the tree based on their answers to the questions
at each node in the tree, until they reach a leaf. The missing components of the vector are obtaihed from
vector at the leaf. Whilents procedure is simple and useful for multinomial data sets, their use becomes

very complicated for data that can take values from a continuous range.

A more statistically motivated procedure that is frequently usBdgsession Imputation [Mendenhall
1996]. The missing components of incomplete data vectors are imputed as a linear regressiamof the ¢
ponents of the vector that do exist. The regression coefficients are estimated from any existiogrset of
plete data vectors. The drawback of this procedure is that all imputed values fall along a siagioregr

line thereby under representing any variation inherent in the data. Also, there are implicit gsymmetr
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assumptions about the distribution of the data that may not be valid.

Expectation Maximization, or EM, is a statistical technique that is highly suited to the estimation of the
distributions of incomplete data sets [Dempster 1977]. The procedure iteratively finds the “expected
value” of each of the missing elements in the data set, and uses these expected values to find the distribu-
tion of the data. EM can be further reinforced by the usepfori statistics of the value of the missing

components. This procedure is usually referred to as Bayesian EM [Ghahramani 1994].

Most missing data methods described in the literadmeemossuited to handle multinomial data sets
and data such as incomplete sample surveys. Also, most of them assume that the incomplete data has
occurred due to the deletion of elements from the complete data, and that no other data coreghing m
nisms aranvolved. Additionally, in most of the missing data methods described above, the missing com-
ponents of an incomplete dataset are estimated based only the properties of observed portion of the

incomplete data.

In the following section we describe three methods that asawrieri knowledge of the distribution
of complete data, and use these in conjunction with the observed data to estimate the missing components

of the data.

2.5 Satistical methodsfor estimating missing data

Statistical methods assunaepriori knowledge of the distribution of the complete data, and use this
knowledge to estimate the missing data. It is useful to introduce some mathematical notation here in order

to simplify the explanations presented in the rest of the chapter. We represent the hypothetical complete

data by the symboK X in turn has two components, the observeXdata and the misskg data

The complete data is the combination of the two, a relation that we den¥te=hyX ,, X,

Statistical estimation methods assume that either the probability distribution of the complete data, or

that some of the statistical properties of the data that are derivable from this distribution, are known. Let

P(X;@) represent a parametric model for the distribution of the complete data, @here  represents the
parameters of the parametric model PIfX;®) were Gausglan, would refer to the mean and the va

ance of the distribution. From this distribution the conditional probability distrib@i@ﬁm‘xo;(p) and
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the conditional distributiorP(Xo‘Xm;(p) , can be derived. Statistical estimation methods can be employed

where any of these distributions are known.

2.5.2 Minimum Mean Squared Error (MMSE) estimation

In MMSE estimation the missing data are estimated to minimize the expected mean squared err
between the estimates and the true value of the elements, conditioned on the observed data [Therrien

1992].

Xm = argmin EE[HXm—XﬁnHZ‘X ]E (2.18)
X ol

where Xm is the estimate for the missing data, thl is the true valig of . Only the first and second

moments of the conditional distribution of the missing dEl(a),(m‘Xo;(p) are needed for MMSEséma-

tion.

2.5.3 Maximum Likelihood (ML) estimation

In ML estimation the missing data are estimated so as to maximize the conditional likelihood of the val-

ues of the observed daxg,  [Therrien 1992].

A

Xm = argmaxy { P(Xo‘xm,(p)} (2.19)

This method bases the estimates of the missing values entirely on the observég data  , with no refer-
ence to the inherent statistical distribution of the missing data. It has the advantage howeveia firat the

ori distribution of the missing dat®(X,,;9) need not be known.

2.5.4 Maximum A-Posteriori (MAP) estimation

MAP estimation has been extensively used in the methods described in this thesisréfdeethe
describe the MAP estimation procedure in somewhat greater detail than the previous methods. In MAP

estimation the missing data are estimated to maximize their likelihood, conditioned on the values of the
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observed data [Therrien 1992].

A

Xm = argmaxy { P(Xm\Xo;(p)} (2.20)

We note that wheiP(Xm‘Xo;(p) is Gaussian, MMSE and MAP estimates are identical since a Gauss-
ian distribution is completely described by its first and second moments.

MAP estimation can be simplified to a linear regression when the distribution of the complete data is
Gaussian. For simplicity, we assume that the elements of the complet data  have been atcaaged i
vector, such that the observed components of the complete data form the initial portion of this vector, and
the missing components form the training portion. The observed and missingdata, X, aace also

arranged into vectors, such that

X = [Xo Xy (2.21)

This assumption does not lead to any loss of generality since anyMet of  elements can be represented

as a vector in atM  dimensional space, and the order in which the components are listed in this vector

merely denotes the order in which the various dimensions are arranged.

Let P(X;u, ©®) be a Gaussian distribution with mean ve¢tor  and covariance raatrix . The distri-
butions of X, andX,, P(X,:H, @) andP(X,;lL, ©) would therefore also be Gaussian [Papoulis
1991]. If the mean vectors &(X,;1, ©) al(X,;1, ©) aregivenlty  ppd respectively, and

their covariance matrices y,, afd,,,,  respectively, we have

B = [Ho M (2.22)
and
0, O
© = | [00 —om 2.23
{@mo emnj ( )

where®,,, is the cross covariance between  Xdpd  @pgd = ©'om

It can now be shown theE’(Xm‘Xo, M, ®) s given by
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P(X,Y)

Figure 2.5a Gaussian distribution of a 2 dimensional  Figure 2.5b The same Gaussian slicedXat 2. The flat
random vector. The mean of the Gaussian is at [1,1]. surface in the figure represents the distribution of all
The X andY components have covariance 1.0, and the vectors whos& componentis 2. This distribution peaks
covariance betweeX andY is 0.5. atY =Yl. ThusY1 is the MAP estimate of whenXis 2

_ T _ -1
P(X|Xor 1 ©) = Cexp(—0.5(X 1~ Hym©,100 " 00(Xo — Ho)) (On—Orro@o0@om)  (2.24)
(Xin= M1 ® " 00(Xo = Ho)))

whereC is a normalizing constant. Combining Equation (2.20) and Equation (2.24), we get
Xm = argmaxy { P(Xp|Xo, O} = X+ 0@ 00(X, — Ho) (2.25)

The MAP solution given in Equation (2.25) is best visualized using the two dimensional example
shown in figures 2.5a and 2.5b. In this exam}le is a two dimensional vector, with compénents , and
Y, of whichX has been observed avid is missing. In the example the observed Yalue2of is . The dis-

tribution of X , P(X|H, ©) , is a Gaussian, and is shown in figure 2.5a.

SinceX is known to be 2, we are only interested in the distribution of vectorXwith2 . Figure 2.5b
shows the slice of the distributioR(X|H, ®) % = 2 . The vertical face in figure 2.5b represents

aP(Y|X =Xy M, ©), wherea is a scaling constant. This distribution is observed to peék=atY, ,
which indicates that the most frequently occurring value¥ of  lie in an small region &gund . The MAP

estimate forY is therefor¥,
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X

Figure 2.6 Cross section of Gaussian in figure 2.5a. The solid horizontal line shows the observed Xallieeofir-

cle on the intersection of the solid diagonal line, and the dotted line, shows where the distrflugaiore withX=2
peaks. This is the MAP estimateYofvhenX=2. The solid diagonal line shows how the position of this peak varies at
each value of X.

Figure 2.6 shows a projection of the Gaussian shown in figure 2.54 tie - plane. The solid line in the

figure traces value of  at which a slice of the Gaussian peaks at any vafue.efthe line traces the

MAP estimate forY as a function of the observed valu¥ of . As can be seen, the relationship thetwee

two is a line, the equation for which is given by Equation (2.25).

2.6 Summary

In this chapter we have presented a brief overview of automat@ckpeognition systems and a brief
survey of current literature on missing data methods. We have also explained some statistical missing data

inference methods in relatively greater detail.

In the next chapter we describe time-frequency representations of speech, and éffectiodnoise

on speech can be modeled as missing features in these representations.
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Chapter 3
M odeling the effect of noise as missing features

3.1 Introduction

Missingfeature methods model thedfect of noise on speech as the deletion of regions of-frme
guency representations of the speech signal. While there are severfietjoency representatis where
the effect of noise can be so modeled, the time-frequency representation most commonly used is the spec-

trogram [Rabiner 1978]. This is the representation that has been used in this thesis.

In this chapter we describe the spectrogram, and its mel-spectral variant, which we specifically use. We

also describe how noise affects the spectrogram, and how the effects can be modeled a&atissing

3.2 The Spectrogram

The spectrogram is a commonly used two dimensional representation of the speech signal. It is a picto-
rial representation of the short-time periodogram [Therrien 1992] of the signal. The short-time peri-

odogram of a signal is given by

1
2L +1

P(l,w) = IX(1, w)|? (3.1)

where

X(hw) =y x[Kwll-K g Iek (3.2)

k = —o0
where W[Il] is a window of lengtBL +1 . Each windowed segment of the signatise@fo as &rame
of the signal. X(l,w) is the value at  of the Fourier transform of a frame of speech centeredl around
X(I, w) is also called the short-time Fourier transform [Rabiner 1978] of the signal.
The short-time periodogram of a speech signalefloee @nsists of a sequence of power spectra, one

for each sample in the sign#, (I, )  represents the power in frequency  attimelinstant in the signa

In practice, the short-time periodogram is not computed for every frequency, or at eveinstane It is
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Figure 3.1 This figure shows the wideband spectrogramFigure 3.2 This figure shows the narrowband spectro-
of the utterance “Redefine Area Alert”. The length of gram of the same utterance. The length of the analysis
the analysis windows was 10ms. Adjacent windowswindow was 30ms. Adjacent windows were overlapped
were overlapped by 5ms. The dark bands represebly 5ms. The harmonic nature of speech is evident in the
peaks in the spectral envelope. These peaks are calléidure due to the length of the analysis windows. How-
“formants” and their trajectories are characteristic of thesver the formants are not so clearly visible in this figure.
sounds in the speech signal.

sufficient to computeX(l,w) atonlgL +1 points along the frequency axis, and for &ve2y point

in the sequence, for it to be completely invertible. In practice, for speech recognition systaime txés

is sampled less frequently: typically the short-time Fourier transform is computed forLetUesa{mpIe in
the sequence. The short-time periodogram derived from it therefore consists of a sequence of pewer spe

tral vectors, each of whichh&t +1  components and represents a short segment of the speech signal

The spectrogram represents the short-time periodogram as a picture as in Figures 3.1 and 3.2. In these
figures the abscissa represents the tilne () axis, the ordinate represents the freguency () axis, and the
color, or the intensity of the picture at any locati¢h k) in the picture encodes the value of
log(P, (I, w,)), whereP, (1, w,) is th&™ component of thé" power spectral vector in the short term

periodogram. Although the tergpectrogram usually refers to these pictorial representations, we also use
it to refer to thdogarithm of the short-time periodogram. Thus the spectrogram consists of a sequence of
log-spectral vectors wher®(l, k) , thé" component of thé™ log-spectral vector in the spectrogram is
given by

(I, k) = log(P(l, wy)) (3.3)
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The difference between Figures 3.1 and 3.2 is in the length of the analysis winfigw, . Longer win-
dows result in greater frequency resolution, but lower resolution of quick changes in the spectrum with

time.

The MEL spectrogram

A variant of the short-time Fourier transform of the speech signal that is used commonly by speech rec-
ognition systems is the mel-spectral representation [O’'Shaughnessy 1987]. The mel spectrum, in principle,
tracks the power at the output of a band of filters, called the mel filters. In prab&amel spectrum of a

frame of speech is approximated by integrating over the DFT of the windowed speech signal as follows:
2L _ 0D
Py(l k) = Zomk(J)|X(|, il (3.4)
j =

whereP, (1, k) is thek' component of the mel spectrum in th8 analysis window anan,(j) is tHé"

DFT coefficient of the irpulse response of tHe" mel filter. X(1, j) is thej " frequency component of the

DFT of thel " analysis window of the speech signgh] . The mel spectrum can be viewed as an spec-
trally smeared version of the short-time periodogram. Frames are typically 25 ms long, eyl loyd 5

ms for the mel-spectral representation.

Themel spectrogramis simply obtained from the mel spectrum as

S(1, k) = log(Py(l, k)) (3.5)

Thus, the mel spectrogram consists of a sequence of log mel-spectral vectors, each of whicbrhas-

nents, wherdK is the total number of mel filters.

The mel spectrogram can be viewed as a variant of the spectrogram that uses aly §peetnadd ver-
sion of the short-time periodogram. In subsequent chapters of this thesis we therefore use the term “spec-
trogram” to refer tdoth the spectrogram described in Section 3.2 as well as the mel spectrogram. We use
the term “spectral vector” to represent both the log-spectral vectors of the spectrogram,lagertbke
spectral vectors of the mel spectrogram. We generically refer to the componespgofral vector ase-
guency components of that vector, irrespective of whether the underlying spectrogram is a true

spectrogram or a mel spectrogram. This should not cause any confusion, however, since allapectrogr
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related methods described in this thesis apply equally to both kinds of spectrograms.

All experiments in this thesis were conducted with mel spectrograms. Typically, speech recognition
systems use 40 mel filters to parametrize broadband speech. However, for all the experiments in this thesis
we have used only 20 filters covering the frequency range. Figure 3.3 shows the mel speafagram

speech utterance. The abscissa represents the frame index, the ordinate representsténénahek fiThe
color/shade of the picture at afly k)  encodes the value of the corresp&(ink) . Since the normal

spectrogram described in Section 3.2 is obtained from the short-time Fourier transform of the samal, it
in principle, be inverted to retrieve the speech signal (provided the phase information in the short-time
Fourier transform is available). The mel spectrogram, on the other hand, cannot be invetrégeveothe

speech signal, except to a very crude approximation.

-

"
in

Figure 3.3 Mel spectrogram of the utterance “Redefine Area Alert”. 20 mel filters covering the frequegeylz0
Hz to 8 KHz have been used for this representation. The vertical axis represents the index of the. mBEfittori-
zontal axis represents the index of the mel-spectral vectors in the spectrogram. The wiradysvs were 25 ms
long. Adjacent windows are overlapped by 15 ms.

3.3 Effect of noise on the spectrogram

When the speech signal is corrupted by additive noise, we have
y[ll = x[I] +n[l] (3.6)

wherey[l] is the noisy speech signg|] is the clean speech signai[ldnd is the noise that has been

added to the signal. The short-time Fourier transform of the noisy signal is given by
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Vo) = § (X[K] + n[K])w[l —K] e7<¥ (3.7)

k = —o0

Y(I,w) = X(I,w) +N(I, w) (3.8)

whereN(l, w) is the short-time Fourier transform of the noise. If we assume that the noise is uncorrelated
to the speech signal, the short-time periodogram of the noisy signal is given by [Oppenheim 1989]

Py(l,oo) = P(l,w) +P,(l,w) (3.9)

whereP, (I, w) is the short-time periodogram of the noise. The signal-to-noise ratio (SNR) in the spectro-

gram of the noisy signal at arfy, k) is given by

SNR(I, k) = 10log gzg—zggg (3.10)

As can be seen from Equations (3.9) and (3.10) above, the SNR of the elements of the spectrogram is a
function of both time and frequency. Typically, for any level of noise, the spectrogram would have regions
of very high SNR, as well as regions of very low SNR. As the global SNR of the noisy utterance decreases
the proportion of high-SNR regions decreases, while the proportion of low-SNR regions increases. Figure
3.4 shows a quantized version of the wideband spectrogram of an utterance of speech corrupted to 20 dB
by white noise. All regions of the spectrogram where the local SNR is less than 0 dB are colored white and
all regions where the SNR is greater than 0 dB are colored black. Figure 3.5 shows a similaedjuantiz
spectrogram of speech corrupted to a global SNR of 0dB. As is apparent from the two picturastioime fr
of the pictured covered by the black regions is considerably lesser in Figure 3.5 than in Figure 3.4. Con-
versely, the fraction of the picture colored white, low SNR regions, is considerably higher in Figure

3.5.

The same logic can be applied to the mel spectrogram to show that the mel spectrogram of the noisy
speech signal given in Equation (3.6) can be expressed as the sum of the mel spectrum of the clean speech

signal and the mel spectrum of the noise

Py(l, k) = Py(l, k) + Py(l, k) (3.11)

Similarly to the spectrogram, the local signal to noise ratio of the mel spectrogram of the noisy speech sig-
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Figure 3.4 Quantized spectrogram of an utterance ofFigure 3.5 Quantized spectrogram of the same utter-
speech that has been corrupted to 20 dB by additivance, when corrupted to O dB by additive white noise.
white noise. All regions of the spectrogram where theéDnce again, all regions of the spectrogram with local
local SNR is greater than 0dB.g, where the speech SNR greater than O dB have been colored black, and all
energy was greater than the noise energy) are coloredgions with local SNR less than 0 dB have been col-
black. All regions with local SNR less than 0 dB are col-ored white. Once again, only frequencies up to 5 KHz
ored white. Only frequencies up to 5 KHz have beerhave been shown. The fraction of white regions here is

shown in the figure. clearly much greater here than in figure 3.4.
nal, given by
_ Px(L K)o
SNR(I, k) = 10|09EPn(I, R (3.12)

varies with both frame indek and filter indkx . The mel spectrogram of naéeglsgso exhibits both

regions of high SNR and regions of low SNR. Figure 3.6 shows the SNR of the mel spectrogram of an
utterance of speech corrupted to 10 dB by white noise. The abscissa represents the frame index and the
ordinate the mel filter index. The SNR is coded by gray shade - the darker the color, the greater the SNR
As can be seen from the figure, there are several regiorigloSINR, and several other regions of very

low SNR. In this figure the lowest SNR regions correspond to segments where there is no speech at all and

the signal consists entirely of noise.

3.4 Modeling the effect of noise as missing featuresin the spectrogram

As mentioned in Chapter 2, there is empirical evidence tefteet that human listeners concentrate on
the high energy regions of the speech [Moore 19%ffdctivelyignoring the low energy regions in dealing

with noise. In other words, the evidence is taken from the so-cadliethle spectro-temporal regions of
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Figure 3.6 Local SNR of the elements of the mel-spectrogram of an utterance corrupted to 10dB by additive wh
noise. The SNR is gray coded - the darker the color the higher the SNR of the element.

speech, while ignoring or deweighting the so-callextliable regions. It stands to reason that an identical
concept could be applied to automatic speech recognition systems as well. If the evidence used for recogni-

tion were derived only from the reliablegiens of the spectrogram, eliminating the unreliable regions, the

recognition rformance of theystem would be expected to become much more robust to noise.

One way of measuring the “reliability” of any region in the tifrequency plane is to measure the SNR
of the signal component in that region. The higher the SNR the greater the reliability of the signal compo-
nents in that region, and the lower the SNR the lower the reliability. In order to eliminate lowitgliabil
regions from the spectrogram we would there@ese all low-SNR regions of the spectrograms, retaining

the high-SNR regions of the spectrogram alone.

Figure 3.7 shows the spectrogram of a noisy utterance. Figure 3.8 shows the same spectrogram, where
all those portions of the spectrogram where the noise energy was greater than the speecleanbeegg,
the local SNR was less than 0 dB, have been termed unreliable and erased. The resultant picture has several
elements missing. We refer to the pattern of present and deleted regions in the spectrdygapecisot
graphic mask for the spectrogram. We would now have to perform the task of recognizing what has been

said in the utterance, a statistical inference task, based on this incomplete picture.

In the Figures 3.7 and 3.8 all regions of the spectrogram where the local SNR was less than 0 dB have
been deemed unreliable. The threshold of O dB used here was arbitrarily chosen. Cooke et. al. [Cooke

1999] report that regions of the spectrogram where the SNR is lower thandrg dBreliable, and con-
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Figure 3.7 Wideband spectrogram of an utterance ofFigure 3.8 Wideband spectrogram of the same utterance

speech that has been corrupted to 15 dB by additiveshen all regions with a local SNR less than 0 dB have

white noise. The utterance is “Redefine Area Alert”.  been deleted. The white regions in the figure represent
the deleted regions of the spectrogram.

tribute negatively to recognition performance. Using their definition, all regions of the spectrogreen whe
the local SNR is less than 15dB would be deemed unreliable and erased. Our experiments (reported in
Chapter 6) indicate that the optimal SNR threshold below which the spectrogram regions begin to affect

recognition rformancepoorly lies between 5 dB and -5 dB.

All statements in the above discussion apply to mel spectrogram as well. All regions with a local SNR
below a preset threshold could be deemed unreliable and erased. Recognition would have to be performed

on the remaining figure. Figure 3.9 and Figure 3.10 show the mel spectrogram of an utterance of noisy

Figure 3.9 Mel spectrogram of an utterance of speechFigure 3.10 Mel spectrogram of the same utterance

that has been corrupted to 10 dB by additive whitewhen all regions with a local SNR less than 0 dB have

noise. The utterance is “Redefine Area Alert”. been deleted. The white regions in the figure represent
the deleted regions of the spectrogram.



Chapter 3. Modeling the effect of noise as missing features 34
speech, and the same spectrogram where unreliable elements have been spastidehe

3.5 Summary

In this chapter we have described the spectrographic and mel-spectrographic representations of the
speech signal. We have also described howvetfeet of noise couption can be modeled as deletions of
regions of the spectrogram. The result of such deletions are incomplete spectrograms. In the next chapte

we will describe conventional methods of recognizing speech with incomplete spectrograms.
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Chapter 4
Recognizing speech with incomplete spectrograms

4.1 Introduction

As explained in Chapter 2, a speech recognition system is a statistical pattern classifier. Statistical pat-

tern classification is the problem of identifying which of a seLof classes a given data set  belongs to

[Duda 1973]. Given a set of class€s , and the distribution of the data belonging to each of the classes

P(X|C;), the optimal statistical pattern classifier estimates the class(X) that a dfta set  belongs
to as [Duda 1973]

class(X) = argmax{ P(X|C,)P(C,)} 4.1)

whereP(X|C,) is the likelihood oK given that it belongs to k8 classC, , and®(C,) is the prior

probability of thek ™ class.P(X|C,)P(C,) is the posteriori probability of the clas€,

Consider a situation vere some coponents of the data set are missing or occludedlitey cannot be
observed or measured due to some reason)X} et represent the observed pHrtion of,, , and the miss-
ing portion. The complete data is the combination of the observed and missinigedata= (X,, X)) -

In this case Equation (4.1) becomes

class(X) = argmax{ P(X,, Xm‘Ck)P(Ck)} 4.2)

Clearly, this cannot be directly evaluated sinGg is not known anefdhe its likéihood cannot be

computed. We are therefore faceith the problem otlassification with incomplete data.

In the context of speech recognition systems the problem would be stated in the following manner. Let
S represent the sequence of parameter vectors derived from the utterance being recbigmiaptmal

classifier given by Equation (4.1) becomes

A

W = argmax,{ P(S|W)P(W)} (4.3)

whereW is the recognized sequence of words in that utterB(& W) is the likeliBod of  given that
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W was the sequence of words uttered, B{dV) is the prior pritpabét W was uttered. L€ be a
spectrogram with some components missfig.  can be decomposed into its observed and missing compo-
nentsasS = {S,, S} .wher§, isthe observed portion of the spectrografs,and is the missing por-

tion. Equation (4.3) then becomes

A

W = argmaxy{ P(S;, S| W)P(W)} (4.4)

Once again, this cannot be evaluated directly since the valSg, of is not known. Thus the problem of
recognizing speech with incomplete spectrograms is also one of classification with incomplete data.

In order to perform classification (or recognition) with incomplete data (or spectrograms) it becomes
necessary to develop procedures that can compensate for the missing data in some manner. When applied
to speech recognition systems, weerdo these procedures asomplete-spectrogram methods of recog-
nition. Traditional incomplete-data methods such as those described in section 2.4 deably#hk of
data with components missing, or witiference of missing data. However, the final goal here is not to
analyze spectrograms with missing regions, or even to infer the values of the missing regions, but rather to
perform classification or recognition when some of the data are missing. The solution to the incomplete
data problem in this situation has to keep the final goal (of classification or recognition) in mind, and in

this respect it varies significantly from missing data inference methods.

There are two possible approaches to handling the problem of classification with incomplete data. The

first approach is the so callethta imputation approach where the missing portion of the daig, , are

estimated somehow. Classification is then performed using the estimatedXalue,

A

X, = estimate(X,)
i (4.5)
class(X) = argmax{ P(X, Xm|C,)P(C\)}

One specific imputation based solution that is well suited to estimates used for classification is the so-
called class-conditional imputation. Class-conditional imputation utilizes the distributions of the data as
modeled by the classifier, in order to obtain statistical estimates for the missing components. This has been

the imputation method of choice for speech recognitioearefiers and has been extensively stigated
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and reported on [Cooke 1994][Lippmann 1997].

The other approach to recognizing speech with incomplete spectrograms is to reformulate the classifi-
cation so as to perform the classification based on the observed components alone. This approach is
referred to as thenarginalization method since the unobserved components are marginalized out of the
classification procedure. This has been the most successful method for recognition with incomplete spec-

trograms, and has also been extensively reported [Cooke 1999][Lippmann 1997][El-Maliki 1999].

Both class-conditional imputation and marginalization modify the manner in which the classifier, or
recognizer, computes thaeposteriori probabilities of the various classes in order to facilitate classification

or recognition with incomplete data. We therefore refer to thedhaasfier-modification methods.

The following sections describe class-conditional imputation and marginalization in greater detail.

4.2 Class-conditional imputation

In class-conditional imputation a separate estimate of missingXjata is obtained for each of the

classesCy , using the distribution of that class, conditioned on the observed data . The Maximum A

Posteriori (MAP) estimation procedure described in section 2.5.4 is used for the estimatiapo3tes-
ori probability of any of the classes computed using the estimates of the missing data obtained using the
distribution of that class. The classification procedure is therefore given by

Xm k = argmax{ P(X| X, C)}

(4.6)
class(X) = argmax{P(X,, Xm,k‘ck)P(Ck)}

where Xm, k is the MAP estimate of the missing data obtained assuming that the comple¥ data
belonged to th&™ classC, , conditioned on the observed d§ga . This procedure gets its name because

the estimates of the missing data are conditional to the class beingetedsidd are specific to that class.

Figure 4.1 shows a schematic representation of the class-conditional imputation procedure.

When applied to a speech recognition system class-conditional imputatfonnps reognition as

A

W = argmax,{ P(S,, ém, w‘VV)P(W)} (4.7)
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A R T e S
X
Figure 4.1 Schematic example for class-conditional imputation. The two ellipses represerigheections of the
Gaussian distributions of the two classes in a two-class classification prétiencomplete vector is to be classi-
fied as belonging to one of these classes. The solid line shows the X component of the vector whosa&htisnpo
missing. The MAP estimate for the complete vector obtained using the distribution odskeeapresented by the
dashed ellipse, is given by the dashed line. Similarly, the MAP estimate obtained usiigjrimtidn of the dash-
dotted ellipse is shown by the dash-dotted line. In class-conditional imputaticen ptseeriori probability of the
dashed class is computed using the dashed line, amdotiseriori probability of the dash-dotted class is computed
using the dash-dotted line. The class with the higher likelihood is chosen as the eftimatdass that the complete
vector belongs to.

whereSm w , the MAP estimate &, , is dependent on the particular word hypothesis being considered.
Smw = argmaxs{ P(S|S,, W)} (4.8)

As explained in section 2.2.1, in HMM-based speech recognition systems the recognizer estimates not
just the best word sequence, but also the best state sequence associated with the word sequence. Equation

(4.7) and Equation (4.8) therefore get modified to

A

W = argmaxy, { P(S, ém, W,s, S‘VV)P(W)}
(4.9)

A

W = argmax,, { P(S,, ém, W, s

s, W)P(s|W)P(W)}
where s represents any valid state sequence that can be generated by the HMM for estimate for
the missing data is given by

Smw,s = argmaxg{ P(S|S,, s, W)} = argmax{P(S|S,, s)} (4.10)

where the second term is dependent onlyson  silice is redundarsg once is knawoal\fbat the

state sequencg is simply a sequence of states, one for every spectral V&ctor in

S = [S1,55,S3, .-+ S\l (4.11)
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whereN is the total number of spectral vectorSin §nd is the state associated Wibhvttor in

S. The estimate for the missing components is therefore given by
Smw,s = argmaxy{ P(S|S,, S1, S5, S, ---» SN} (4.12)

If we refer to the individual spectral vectors$h  $d) and separate the missing and observed com-

ponents ofS(t) intdS,(t) an&,(t) respectively, we get
ém, w,s = [Smw,s(1), Smw,s(2), Smw,s(3), ..., Sm w,s(N)] (4.13)

where Sm,w, s(t) refers to the estimate 8f,(t) , the vector afsing components iB(t) , tHé" vec-

tor of S, when the word hypothesis being consideréd/is and the state sequence being considered is
Since HMMs assume that the individual vectors of the spectrogram are independent, Equation (4.12) leads

us to
Smw,s(t) = argmaxg{ P(S|S(t), )} (4.14)

The right hand side of Equation (4.14) is independent of both the word sedlence  and the complete

state sequence , and is only dependent on the particularsstate ~ whose likelihood is being considered.

Therefore in computing the likelihood of any state sequence that inciudes  we woSah, uge(t) as

the estimate of the missing componentsS¢f) . The implication of Equation (4.9), Equation (4.13) and
Equation (4.14) is that the missing components of a vector are estimadeatskypfor every stateoasid-

ered during recognition, conditioned on the observed components of that vector, and based on the distribu-
tion associated with that state. In the computation of the likelihood of any state for any vector, the
estimates for the missing components of that vector that were obtained using the distribution of that state

are used.

4.3 Marginalization

Another method of solving the problem of classification with incomplete data is to perform the classifi-
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cation based on the observed data alone. The optimal classifier in this case is given by

class(X) = argmax{ P(XO‘CK)P(CK)} (4.15)

where P(Xo‘Ck) is the likelihood of the observed data, given that the data belongski$) thass.

Distribution of the classes are usually defined on the completeXdata  and not on the observed components

X, alone.i.e. the defined distribution for any clas§,  B(X[Cy) = P(Xy, X|Cy) and not

P(Xo‘ C,) . Indeed, it may be difficult to specify the distributions of the observed components alone since

the precise set of observed components may vary from data set to data set. As a resultdt hecessary
to obtain the distribution of the observed components by integrating the distribution of the complete data
over all the missing components:

[ee) [ee)

P(Xo‘Ck) = IP(XO, Xm‘Ck)de = IP(X|Ck)de (4.16)

P(Xo‘Ck) is traditionally réerred to as thenarginal distribution of X, and the process of obtaining

P(Xo‘Ck) from P(X|C,) is referred to asarginalization. Optimal classification is performed using the

marginal distributions obtained using Equation (4.16).

| o [l

Ul [l
class(X) = argmax[P(C P(X|C,)dX 4.17
(X) g ng(k)_{;(|k) rr@ (4.17)

Since the classification is being performed using distributions that have been obtained by marginaliza-
tion, the procedure of classifying with marginal distributions is alsoreefdo agnarginalization. Figure

4.2 shows a schematic representation of marginalization based classification with incomplete data.

When applied to a speech recognition system marginalization based recognition with incomplete spec-

trograms is performed as

A

W = argmax,{ P(SO‘W)P(VV)} (4.18)

Once again, since the distribution of the data associated with any word se§lence is defined on the
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Figure 4.2 Schematic example for marginalization. In the left panel the two ellipses show theemtss of the
Gaussian distribution of each of the classes. The sold line shows the X component of the vect¥reohgsenent

is missing. In marginalization the Y component of the two class distributions is eliminated bgtingedrout of the
distributions. The resulting distributions give only the distribution of the X components of the classgéghiTenel
shows the distribution of the X components of the two classes. Since the original distribution was Ghassiane
also Gaussian. The Y component no longer figures in the problem. In this reduced situatipostéréori probabil-

ity of the classes is computed based on the likelihood of the X component of the incomplete vector (givealigy the
line) is computed on the Gaussians shown and the class with the &igbsteriori probability is chosen as the esti-
mate of the class that the complete vector belongs to.

complete spectrogram rather than on the observed components alone, the marginal distributions of the
observed components of the spectrogram would have to be obtained by integrating out the missing compo-
nents from the distribution. The optimal recognition would now be defined over the marginal distributions
so obtained as

W = argmaxWEP(W) Im P(S, sm\vv)dsr@ (4.19)

HMM-based speech recognition systems jointly estimate the best state sequence along with the word

sequence. Equation (4.19) therefore gets modified to

~ 0 o 0
W = argmaxwargmaxS%P(W)I P(Sy, Si|S, \/V)P(s|\/\/)dSrrH

(4.20)
- 0 o 0

W = argmamargma&EP(sW\/)P(W)I P(S, Sm‘s)dSrrE

wheres represents any valid state sequence that can be generated by the HMM for . As mentioned

in Equation (4.11)s = [S;, S5, S3, ..., S\] , Wherg, is the state associated with theector in'S .
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Referring to theridividual vectors ofS a$(t) and the missing and observed compone8(g)of as

Sin(t) andSy(t) respectively as before, we get

P(Se: Su|S) = P(So(L), Sin(1), $5(2), Sp(2), -+ So(N) . S(N)[S1, S5 ... Sy)

(4.21)

N
P(So: Snl9) = ] P(So(), Sn()[)
n=1

Combining Equation (4.20) and Equation (4.21), the HMM assumption of independence of individual

vectors in the spectrogram leads us to

[l N [l

A [l 00 [l

W = argmax,argmaxP(s\WP(W) [ [ P(S,(n), Su(m[s)dSy(md  @.22)
O n=1 O

An alternate way of viewing Equation (4.22) is that the missing components in each vector ofthe spe
trogram arantegrated out of the distributions of all the states in the recognizer, in order to compute the
likelihood of that vector. Since the set of missing components can vary from vector to vector this integra-

tion would have to be performed for every vector in the spectrogram.

4.4 Experimental results

The effectiveness of classiuditional imputation and marginalization in recognizing speech based on
incomplete spectrograms was evaluated on incomplete spectrograms with simulated patterns of missing
elements. Incomplete spectrograms wereegated by ersing random elements of a mel-spectrographic
representation of speech so as to obtain the desired fraction of missing elements. No noise was added to the
observed regions in the spectrogram. We refehitoggrocedure of generating incomplete spectrograms as
the random-drop mechanism, and the paradigm of evaluating incomplete-spectrogram methods on such

spectrograms as tmandom-drop paradigm.

It is important to note here that the random-drop mechanism is not a realistic model for the effect of
noise on the spectrograms of speech by any means. It is merely a useful paradigm for the quidknevaluat
of missing-data techniques, and is used only as a preliminary test for the techniques developed in this the-

sis. The true performance of these techniques can only be evaluated on speech corrupted by noise. The



Chapter 4. Recognizing speech with incomplete spectrograms 43

deletions induced by noise tend to be much more systematic and occur in blocks. We describe the true
nature of deletions induced by noise in Chapter 6 in greater detail. Nevertheless, the random-drop para-
digm remains a very useful paradigm for evaluating the efficacy of missing-feature methodtesiette

terns of missing regions are not biased by the systematic behavior of any corrupting noise. Furthermore,

the additional effect of noise on the observed regions of the spectrogram need not be considered.

Figure 4.3 shows a typical mel spectrogram whéfereéint fractons of the spectrogram have been ran-
domly erased. In all of our experimts the mel-spectral representation with 20 mel filieesa mel spec-

trogram where the individual vectors have 20 components, has been used.
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Figure 4.3 Examples of a mel spectrogram with randomly missing regions. The top left paneltbbawiginal mel
spectrogram for the utterance “Redefine Area Alert”. The top right panel shows the samegsgecivhen 40% fo
its elements have been randomly deleted. The white portions of the picture repredetdtdteregions. The bottom
left panel shows the spectrogram when 60% of its elements have been randomly deketeattorh right panel
shows it with 90% of its elements deleted.

Experiments were run using the DARPA Resource Management (RM) database [Price 1988] on the
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CMU Sphinx-11 HMM based recognition system. Continuous HMMs with single Gaussian state distribu-
tions were trained. The 20 dimensional log-mel-spectral vectors were used as the featurethoria-

ognition system. The system was trained with 2880 utterances of uncorrupted spectrograms. The test set
consisted of 1600 utterances from the RM database. Random elements were dropped fromrohe spect

grams of the test data as described above.

Figure 4.4 shows the recognitiaccuracy obtainedsing class-conditional imputation and marginal-

ization as a function of thizaction of elements migy in the test spectrograms. As can be seen, these
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Figure 4.4 Recognition accuracy as a function of drop fraction for class-conditional imputation and marginalization.
The horizontal axis show the drop fractiowe, the fraction of elements deleted from the spectrogram. The vertical
axis shows the recognition accuracy obtained using the incomplete spectrograms.

methods are highly effective at handling missing data in spectrograms. Class-conditional imputation
results in recognition accuracies comparable to those obtained with uncorrupted spectrograms when 70%
of the elements in the spectrogram are missing. Marginalization performs recognition using the optimal
classifier, given only the observed elements of the spectrogram. Irésaiteeexpected to perform better

than class-conditional imputation. We observe from Figure 4.4 that marginalization is indeed far more
effedive than class-conditional imputation. The recognition accuracy obtained when 90% of the spectro-
gram is missing is only slightly worse than that obtained with the uncorrupted spectrogram. While these
results speak highly of the these methods, they also seem indicative of the high degree of redundancy in the
speech signal. This is in Egment with human performance which is vetyust to high degrees of degra-

dation or spectro-temporal excision of the speech signal.

We would like to point out the anomalous results seen in Figure 4.4 whereby the recognition accuracy

obtained with spectrograms where 80% of the elements have been deleted is actually superierfts-the p
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mance obtained with complete spectrograms. We do not have a satisfactory explanation for this behavior.
We hypothesize that this behavior isaddcteristic to the RB®urce Management database used in these
experiments. Other researchers who have used this database have obtained similar results with the random

drop paradigm [Cooke 1994]. However, this behavior has not been seen with other databases.

4.5 Drawbacks with classifier modification methods

While class-conditional imputation and marginalization are effgdive at recognizing speech based

on spectrograms with random elements missing, thiégrdoom several drawbacks.

Both class-conditional imputation and marginalization are classifier compensation methods. They
attempt to compensate for the missing data either by estimation on the basis of, or modification of, the dis-
tributions of the classes. In order to be able to either estimate the missing components based on the distri-
butions of the classes, as in class-conditional imputation, or to be able to marginalize out the missing
components, it becomes essential that the distributions be defined on the same parameters where the miss-
ing components are identifieBince components of the spectrogram are missing, it becomes necessary to
train the recognizer using spectrographic features. As a result recognition can only be performed using log

spectral vectors. Figure 4.5 explains this limitation schematically.

This limitation gives rise to several problems:

1) It is known that, with uncorrupted vectors, the performance of HMM based recognition systems is

FEATURE EXTRACTION RECOGNIZER
Extract spectro] [Locate missing ar Perform recognit | Hypothest
Speech hic f & d d . . ith |
|| graphic features damaged region |n »| tion with incom- -
from speech the spectrogram plete spectrogram

Compensation for
missing features per-
formed here

Figure 4.5 Block diagram explaining classifier compensation methods of recognition with incompletmgpeus.
The speech recognition system has the two modules. The feature extraction modutefeatres from the speech
signal. The recognition module performs recognition with the features. In aassifnpensation techniques, the fea-
ture extraction module generates incomplete spectrograms. The recognizer escegaech based on these incom-
plete spectrograms. Thus, the recognizer has to be trained on spectrographic features.
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much better when the recogar is trained Ling cepstra, rather than log spectra [Davis 1980]. Table

4.1 compares the recognition accuracy obtained on clean speech using cepstra with that obtained
using log spectra. Clearly, the accuracy obtained with cepstra is much higher. Similamsitagte

with other kinds of classifiers which may perform better with other features than with spectral vec-

tors.

Recognition Recognition
accuracy with log accuracy with
spectral vectors cepstral vectors

63% 82%

Table4.1 Comparison of the recognition accuracy obtained with log-spectral vectors with the recognition accuracy
obtained with cepstral vectors on the RM database. In both cases an HMM-based recognizer with 2@6#stied st
each modeled by a single Gaussian, was used.

2) Difference anddouble-difference parameters are commonly used to improve recognéitor-p

mance. Difference parameters are computed as the difference between vectors.

ds(t) = S(t+1) - S(t—1)
(4.23)
ddS(t) = dS(t+1) —dS(t—1)

whereT typically takes values between 1 anddS(t) is the doufideedice parameter vector
attimet ,dS(t) is the difference parameter vector at time ,3(dl is the spectral vector at time

t. If an element of eitheB(t + 1) dB(t—T) is missing the corresponding elemet$(it) can-
not be computed, and would therefore also be missing. It is easy to see that the fraction of missing
elements can be up to twice as high in the difference parameters as in the spectral vectors. Similarly,
the fraction of missing elements in the double-differerarameters can be up to four timesagh
as the spectral vectors themselves. Thus, the missing feature methods described in this chapter
would have to compensate for the much higher fractions of missing elements in the difference and
double-difference parameters, reducing the doations of these parameters to recognitienfqr-
mance greatly.

3) Mean normalization is a procedure by which the mean of the spectral vectors in any utterance is sub-
tracted from all the vectors in the utterance. Variance normalization simitariyatizes the vectors
in the utterance by their variance. Both procedures have been shown to improve the recognition per-
formance of speech recognition systems. However, when the spectrograpmueters that are

used for recognition have missing elements, the estimates of the means and the variance of the spec-
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tral vectors can be biased by the patterns of the missing elements. This can render both mean nor-
malization and variance normalizatioreffective.
The main reason for all of the problems above is that class-conditional imputation and marginalization

attempt to perform classification with incomplete spectrograms, directly.
The data-compensation approach to the missing feature paradigm

In this thesis we recast the problem of recognition with incomplete spectrograndatasampensa-
tion problem. Instead of performing recognition directly with incomplete spectrogramecevstruct all
the missing regions of the spectrograms in a preliminegyppocessing step. We cHiiis thespectrogram
reconstruction approach. Cepstral features can now be derived from the fully reconstructed spectrogram
and used to perform recognition. Since the reconstruction of spectrograms is done independently of the
recognizer, the recognizer need not be modified in any manner. Figure 4.6 represents the proposed

approach as a block diagram.

FEATURE EXTRACTION RECOGNIZER
s Extract spectrg- [Locate missing gr Reconstruct Perform recognit
PeeCl,| graphic features,, [damaged region in,missing regions g.tion with complet ..
from speech the spectrogram  |of spectrogram, spectrogram

Compensation for
missing features per -
formed here

Figure 4.6 Block diagram explaining the data-compensation approach to recognition with incomplétegspets.
The missing regions of the incomplete spectrograms are reconstructed in the feataterextradule itself. Thus,
the output of the feature extraction module is a complete, reconstructed spectrogram. THisic¢edspectrogram
can then be transformed to any feature of choice, if desired, before being passed oectugthizer. The recognizer
works on complete features, and can work with any feature extracted from thetospgctrogram.

If recognition is to be grformed umg spectrographic features, the data-compensation approach is sub-
optimal to classifier-modification methods. This is because the reconstruction approaetti msdss of
the missing data, and these are bound to be erroneous to varying degrees, depending on the manner in
which they are obtained. In such a situation it can be argued that classification based on the observed data
alone is more optimal than classification that uses estimates for the missing data [Moreno 1996]. This

argument is also borne out by the fact that recognition accuracies obtained using marginalization, which
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uses only the observed data, are higher than that obtained using class-conditional imputation which uses

estimates of the missing data.

There are, however, many advantages to the data-compensation approach. The primary advantage is
that, since the complete reconstructed spectrogram is now available, the recognizer is no longer con-
strained to perform recognition using spectrographic features. We can derive a more optimal aet-of par
eters from the reconstructed spectrogram and use these featuee®iio phe recogition. It is expected
that the improvement in classification acacy obtained due to the use of the mop&imal feature set
more than offsets the reduction in accuracy occurring due to the use of estimated values fesitige m
data in classification. Furthermore, since the complete spectrogram, or the set of oepsirad features
derived from the complete spectrogram, are how available computatioffieoéice parameters and vari-
ance and mean normalization can be performed in the usual fashion. Another advantage is that since
complete spectrogram is now available for recognition, the recognizer itself need not be modified in any
manner to account for the missing data. The missing feature estimation procedure can toegénfie-
pendently of the recognizer, permitting any standard rezegto be used. Finally, the prased procedure
permits reconstruction methods that use different models for speech than that used by the recognizer. The
spectrogram reconstruction procedure can be performed using very simple statistical and panaatetric
els of speech spectrograms. The resulting methods can be much simpler and much more computationally

efficient than classifier compensation meds such as class-conditional imputation and marginalization.

We investigate spectrogram reconstruction methods for recognition with incomplete spectrograms in

the following chapters.
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Chapter 5
Spectrogram reconstruction methods for missing data

5.1 Introduction

In this chapter we address the problem of estimating missing regions of incomplete spectrograms to
reconstruct complete spectrograms. We investigate several sipgoteogram reconstruction methods
that estimate missing elements based on the geometric structure of speech spectra and on simale statistic
information culled from available corpora of uncorrupted speech. Since this thesis is primarily concerned
with speech recognition, our goal is not simply good reconstruction or analysis of spectrograms but also
that of achieving good recognition performance with the reconstructed spectrograms. The developed tech-
nigues are therefore evaluated based on the recognition performance achieved with the reconstructed spec

trograms.

The simplest manner of reconstructing missing regions in spectrograms would be to do it based only on
the geometrical placement of the observed regions of the spectrograrefeNeorthese ageometrical
reconstruction methods since all the information used to reconstruct the missing regions is present within

the spectrograni,e. it is local to the spectrogram. No additional sources of information are used.

The features of a spectrogram show continuity across both frequency and temefofieh it can be
expected that the frequency components of the spectral vectors in the spectrogram show digpistical
dencies both with other components within the same vector as well as with the components of the other
vectors in the spectrogram. Where additional corpora of uncorrupted sgreeahiailable, the statical
relations between the various components of the spectrogram can be learned from these corpora. The sta-
tistical relations learned can be “vector statistic®€,the distribution of spectral vectors and the statistical
relationship between the various frequency components within spectral vectors, or “covariance statistics”,
i.e. the statistical relationship between the components of different vectors in the spectrogram. These statis-
tical relations can then be used to condition the reconstruction of missing features. We refer to these spec-

trogram reconstruction methodsshatistical reconstruction methods

In the following sections we investigate three types of reconstruction algorithms:

1) Geometrical reconstruction methods based on linear and non-linear interpolation
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2) Statistical reconstruction methods that utilreetor statistics learnt from uncorrupted spectrograms

of clean speech to reconstruct incomplete spectrograms

3) Statistical reconstruction methods that oseariance statistics learnt from uncorrupted spectro-

grams to perform reconstruction.

We evaluate all the spectrogram reconstruction methods described in this chapter both on the basis of
the accuracy of the reconstruction and on the recognition accuracy of a speech recognition system which
uses the estimated spectrograms. The random-drop paradigm described in Section 4.4, wherdin random
chosen elements of the spectrogram deleted, has been used to evaluate all thesgaotion methods.

We would like to reiterate here that the random-drop paradigm is not a realistic model for the effect of
noise on speech spectrograms. When deletions in spectrograms are noise induced the missing regions in
the spectrogram do not occur at random. Instead they occur in blocks and are systematic. Afeother di
ence between deletions generated by the random-drop paradigm and noise-induced deletions is that in the
random-drop paradigm it is assumed that the locations of the missing elements are knimsin When

deletions in the spectrogram are noise induced, the locations of the deleted regions would not lze known
priori and would have to be estimated. Thus, it should not be expected that recognition results obtained
with deletion patterns generated by the random-drop paradigm would carry over to spectrograms with
noise-induced deletions. However, the random-drop paradigm is a useful tool for preliminary evaluation of
the spectrogram reconstruction methods, and has been used only to that end in this chapter.té/hevalua
efficacy of the spectrogram ratstruction methods developed in this chapter on noise-induced deletions in

Chapter 6.

In the rest of this chapter we follow the notation introduced in earlier chapters to denote a spectrogram
by S. The observed portion of the spectrogram is denotefg, by and the missing poSgn by . We rep-
resent an arbitrary spectral vector@s  andtfAespectral vector in the spectrogra®n  8B{t) . The
entire spectrogram consists of the sequence of spectral v&{tbysS(2), S(3), ..., S(N) , represented
more compactly asS(t), L<t<N ,wheld represents the total number of spectral vectors in the spec-
trogram. The missing components of th® spectral vectorS(t) are represented 8y(t) and the

observed components Ky, (t) . Thé" frequency component of tHe" spectral vectorS(t) |, is repre-

sented byS(t, k) . The sequence of componéts 1), S(t, 2), S(t, 3), ..., t, K) , represented more
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compactly asS(t, k), 1 < k< K , comprises the entire spectral vesfby , WKere s the total number
of frequency components in the vector. In a mel spectroggam  would refer to the total numbékfilef

ters being used (Section 3.2).

The following section deals with geometrical reconstruction methods.

5.2 Geometrical reconstruction methods

The simplest method of reconstructing a missing element in a spectrogram is by interpolating between
adjacent observed elements in the spectrogram. Since the spectrogram has a twordihsepgior(fre-
guency and time) these elements could be adjacent along either of the axes, frequency\dreimtae
elements used for interpolatiane adjacentlang the frequency axis, we refer to it as interpolation along

frequency. When the elements are adjacent in time fge teeit asinterpolation along time.

The interpolation used could be simple linear interpolation, or it could use other-bigler fundbnal
forms such as polynomials, rational functions, or splines. We will now describe and evaluate missing-fea-

ture reconstruction by linear and non-linear interpolation, both along frequency and along time.

5.2.1 Linear interpolation

The simplest form of interpolation is &ar interpolabn. Consider any sequence of numbers
s[1],9[2],...,s[M], where the samples in the inten{d, |,] are unknown or misstghe values
s[l], 1, <1<, are missing. Linear interpolation based estimates of the missing values are obtained by
drawing a straight line between the nearest known neighispirs — 1] Sldnd- 1] , and reading the

estimated values o$[l,]  througs[l,] off this line. Mathematically, the estimated §Eall]1e for any

missing elemensg[l] intherande<|<I, isgiven by [Press 1992]

(sl + 1 —s[l, ~1)(I =1, + 1)
=l +2

S[I] = s[l; —1] + (I,<1<ly) (5.1)

Linear interpolation along frequency: Linear interpolation can be used to estimate the missing compo-

nents of a spectral vector based on the observed components within the same vector. In this case, the
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sequence consided inEquation (5.1) would be the components of the spectral veshrk), 1< k< K
Here if frequency componenfk,, k,]  in th& vector,i.e, S(I, k), k; <k <k, , are missing the esti-
mate for the missing values would be given by

LK) = S, ky —1) + Xk -l:ll_);ls_l_(l’zkl_l)(k—kl+ 1) (5.2)

Since the estimates for the missing components are obtained by interpolation between other frequency

components within the same vector, wiereo this metod adinear interpolation along frequency.

Linear inter polation along time: Missing components of the spectrogram can also be estimated by linear
interpolation between the same frequency components in adjacent spectral vectors. In this case, the

sequence of points considered for interpolation would be a single slice of the spectrogram, parallel to the

time axis,i.e. (I, k), 1 <1< N. For brevity we refer to such a slice of the spectrogramtiasealice of
the spectrogram. Here if tHeé" frequency component in vector numbgts, 1] i.e,S(I, k), I, <1<1,,

were missing, the estimate for these missing values would be given by

~ [ k) —S(I, -1, k
S0, = S0~k + 2R e 53)

Since the estimates are now obtained by interpolation between the same frequency components at other

time instants, we refer to this method iexgar interpolation along time.

For both interpolation along frequency and interpolation along time, if the missing elements being esti-
mated lie at the boundaries of the spectrogram, they cannot estimated by interpolation. For example, if
(1, k), ky <k<k, are missingané; =1 dt, = K , these elements cannot be estimated by interpo-
lation along frequency since the spectral vector has observed components on only one side of the missing
elements. Similarly, i§(l, k), [{ <1 <|, are missingafg =1 lgr= N , they cannot estimated by
interpolation along time since all the observed values of frequency complonent are to one side of the

missing segment. In both these cases the missing elements have to be estimated by linear extrapolation of

the two closest observed elements instead of interpolation. For the case of estimation by linear extrapola-

tion along frequency, if the closest observed components of the eee®(l, k;) andS(l, k,) , the iss-
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ing boundary elements would be given by

1) = S, k) + X kﬁi:zl’ %a) (—k,) (5.9)

Similarly, where elements are being estimated by extrapolation along time, if the closest obgerved el
ments to the missing components in the time sliceSgtg, K) Séhd k) the missing boundary ele-

ments are obtained as

S(1, k) = S(Ig, k) +

S (D 9

Alternately, missing boundary points could be filled in by simple replication of the last observed ele-

ment.
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Figure 5.1 Plot of a single spectral vector. The dottedFigure 5.2 Plot of the trajectory of a single frequency
regions are linear interpolation/extrapolation estimategomponent with time. The dotted regions are linear
of missing values. interpolation/extrapolation estimates of missing values

Figure 5.1 shows an example of estimation by interpolation along frequency. The figure plots the values
of the frequency components of a single spectral vector against the index of the frequency compenent. Ele
ments that are missing in the middle of the vector have been estimated using interpolation while those
missing towards the edges have been estimated by extrapolation. Figure 5.2 similarly illustrates estimation
by interpolation along time. The trajectory of a single frequency component is tracedtinme slice of
the spectrogram). Data points missing in the middle of the plot have been estimated by interpolation and

those missing towards the edges have been estimated by extrapolation.
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5.2.2 Nonlinear interpolation with polynomial functions

A polynomial of ordetM relating two variables ayd is a function of the form
— 2 M
y = gt aiX+ax +... +ayX (5.6)

A line is a polynomial of order one. There is a unique line through any two points. Extrapolating that

statement it can be shown that through Bhy  points there is a unique polynomial d&f erder . Given a
set ofL points on a plang(Xq, Y1), (X2, ¥2), ..., (X, Y )} ., the unigue-1" order polynomial that

passes through tHe  points can be determined using Lagrange’s formula [Press 1992]

Y=t (x) = (X=X5) (X=X%3)...(X=X%) (X=X (X=X%g)...(Xx=x)
L-1 (Xg —=X2) (X —X3) ... (X3 =X )71 7 (%o —X) (Xa = X3) ... (Xp — X )72
(X=X)(X=X5) ... (X=X, _4)

(XL =X) (X, =Xp) oo (X =% _1)” "

(5.7)

+...+

While Lagrange’s formula gives us aefit plynomial formulaic relation between an arhiy X and
the correspondiny , a procedurally and computationally simpler method to gbtain  for &given is to
use Neville’s algorithm. Neville’s algorithm is a recursive procedure that begins by computing  zeroth
order polynomials (constants) aretursively computes theM M_order polynomial as a lear interpolation
between two polynomials of ord8 —1 . The details of the algorithm can be found in [Press 1992].
Polynomial functions can be used to estimate missing values in a sequence. Consider any sequence of
numberss[1], S[2],... where the values of the sequence in the intdiydl  unkmewn or missing,
i.e the valuess[n],l <n<r , are missing. We can denote any elesiéht in the sequence as a point
(I, s[l])on a plane. Le(l4, s[14]), (15, S[15]), ..., (Ip, S[lp]) be the set Bf  observed points in the
sequence immediately preceding the pdins[l]) i.e (4,15, ...,1p<I). Similarly, let the set of points
(rg,s[ral), (r slral), ..., (ro, s[rgl) be the set oQ  observed values immediately following the
point (r, s[r]) (e rq,ry ...,Tg>T). A polynomialfp .5 _;(n) of orde® +Q —1 can be fitted to

theseP + Q points using Equation (5.7). The estimates for values of the points in the missing interval can

now be derived from the polynomial as
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S[nl = fp,q_(n), I<n<r (5.8)

This procedure is referred to asywbmial interpolationP an€) can be chosen according to the kind
of polynomial fit desired. Typically when polynomial interpolation with a polynomial of otderl is
desired, thé® = L/2 points immediately preceding the missing points ard thel./ 2 points imme-

diately following them are used to determine the polynomial.

Missing regions in spectrograms can be estimated using polynomial interpolation. Once again, the
interpolation can be gsgformed either across frequency oross time. As before, when estimates are
obtained by interpolating between thequency components of the same vector we refer to the procedure

aspolynomial interpolation along frequency. To interpolate across frequency the sequence of points con-
sidered in Equation (5.7) consists of the components of a single spectral &tth), 1 < k< K . Here,
if the frequency componenfs, r]  in th¥ vector,i.e. S(t, k), | < k< r, are missing, we would locate

the L/ 2 closest observed frequency components of the vector preceding the missing regiorL @& the
closest frequency components following it and use these in Equation (5.7) to obktainf order poly-

nomial, f_ _4(l) . The estimates of the missing components are obtained as
S(t, k) = f _1(Kk), l<ksr (5.9)

If the missing points are estimated by interpolating between the same frequency components of adja-
cent spectral vectors we refer to the procedurpogomial interpolation along time. In this case the

sequence of points consigtd inEquation (5.7) consists of a single time slice of the spectrogram,

S(t, k), 1<t < N. Here, if thek™ frequency component in vector numbgksr] i.e,S(t, k), I <t<r,

were missing, we would locate the/ 2 vectors immediatebcquing the misng region whosek !
components are present and similarly kh€2 vectors immediately following the missing regions and use
these in Equation (5.7) to obtain bn-1" order polynomialf, _;(t) . The estimates of the missing com-

ponents are obtained from this polynomial as
S(t,k) = f _q(t), Istsr (5.10)

In both interpolation along frequency and interpolation along time, some missing regions may not have
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Figure 5.3 Plot of a single spectral vector. The dottedFigure 5.4 Plot of the trajectory of a single frequency

regions are polynomial-interpolation estimates of misscomponent with time. The dotted regions are polyno-
ing values. The order of the polynomial used is givermial-interpolation estimates of missing values. The
above the dotted lines. Missing boundary elements arerder of the polynomial used is shown. Missing bound-
obtained by extrapolation. ary elements are obtained by extrapolation

L/ 2 observed components preceding or following thieeneither P orQ (or both) in Equation (5.9)

would be less thah /2 . Here a polynomial of lower order is fitted to the available points and the esti-
mates for the missing values are obtained from this lower order polynomial. Also, interpolation is not pos-
sible for missing elements on the boundaries of the spectrogram. These regions are estimated by linear

extrapolation as described in Section 5.2.1.

Figure 5.1 illustrates estimation by polynomial interpolation along frequency pictorially. The values of
the frequency components of a single spectral vectoratteg against the index of the frequency compo-
nent. Figure 5.2 similarly illustrates estimation by polynomial interpolation along time pictorially. The tra-
jectory of a single frequency component isced {.e. a time slice of the spectrogram). In both figures,
polynomial interpolation with a polynomials of order 3 has bemfiopmed. Where the number of points
available for interpolation was insufficient a polynomial of lower order has been used. Missing regions at

the boundaries have been estimated by linear extrapolation.

5.2.3 Nonlinear interpolation with rational functions

A rational function is defined as a quotient of polynomials. For example, the function



Chapter 5. Spectrogram reconstruction methods for missing data 57

Pn(X) 1+a1x+a2x2+...+a,\,x'\I
Qm¥)  by+byx +bx® + ... +byx™

Ry m(X) = (5.11)

is a rational function, with a “numerator polynomial” of ordér and a “denominator polynomial’ of order
M. We refer to such a furioh as a rational function of orddN, M) . A rational function of order
(N, M) such as the one given in Equation (5.11) Nes M + 1 parameters and is therefore uniquely

described byN+M + 1 points. GiveN+M +1  points one can therefore construct the(ddist)

rational function.

An efficient dgorithm to construct rational functions for the special cases wikr N or

M = N +1 is theBulirsch-Soer algorithm [Press 1992]. The Bulirsch-Stoer algorithm is a recursive pro-
cedure that constructsdreasing orders of rational fumans from rational functions of lower order. The

constraint, however, is that the order of the denominator polynomial has to be the same as, or one more

than the order of the numerator polynomid, N<M <N +1.

Rational-function interpolation is performed very similarly to polynomial interpolation. A rational
function of the desired order is fitted to the points immediately adjacent to the missing points in a
sequence, and the estimates of the missing points are derived from the rational function. Ratidoal-funct

interpolation can be used to estimate missing points in a spectrogram. Interpolation along frequency and

interpolation along time are both possible. In order to use an ¢MNgwl) function for estimation we
would needN +M + 1 observed points to compute the function. Of these, idddlty,M + 1)/2 of
the observed points would precede the points to be estimate(N\ahd + 1)/ 2 would follow them.

Once the rational function has been obtained from these points, the estimates for the missing points can be

obtained as the value of the rational function at the appropriate indices.

Once again, N+ M +1 points are not available for the estimation the order of the rational function

would have to be reduced to accommodate the available points. Also, as in the case of linear and polyno-
mial interpolation, missing points near the boundaries of the spectrogram would have neighbors available

on only one side and would therefore have to be estimated by extrapolation instead of interpolation.

There are several other interpolation techniques such as cubic spline interpolation etc. that can be used
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to estimate the values of missing points. However, they have not been attempted in this thesis since we
expect their performance to not be greatly different from those obtained with the interpolation methods

described in this section.

5.2.4 Experimental results with interpolation based estimation of missing points

The principal goal of reconstructiong estimation of missing elements of the spectrogram) is not so
much to effect an accurate, error-free reconswucof the missing points as to reconstruct a complete
spectrogram that can be used for recognition without much degradation in recognition accuracy. These
goals are not unrelated to each other to the extent that error-free reconstruction of reggsimggywould
result in high recognition accuracy. However, the converse is not necessarily true - it is not necessary that
reconstructed spectrograms that result in high recognition accuracies would be very similar to the original,
uncorrupted, spectrogram. Thus, while #teuracy of the reconstruction methods is evaluated by the
error in the reconstruction, tlefectiveness of the reconstruction methods in achieving the primary goal of
the reconstruction is measured by the recognition performance obtained with the reconstructed spectro-

grams.

Experiments were conducted to evaluate the effectiveness of the interpolation-based reconstruction
methods described above. The spectrogram reconstruction methods were evaluated on speutithgram
elements randomly deleted following the paradigm explained in Section 4.4. The experimental setup used
was also identical to the one used to evaluate marginalization and class-conditional imputation in Section
4.4. A 20 mel-filter based mel-spectral representation was used to parametrize speechodrigore
system was trained directly with the log-mel-spectral parameters. The fully-continuous HMM-based
SPHINX-III system was used for all experiments with the DARPA resource management database. Ran-
dom elements of the mel spectrogram were deleted and reconstructed using linear interpolation, polyno-
mial interpolation with polynomials of order 3, and rational-function interpolation with rational functions
of order (1,2). Both interpolation across frequency and interpolation across time were evdlhated.
orders for the polynomial and rational-function interpolation were chosen such that an even number of ele-
ments would be needed to determine the functions. This permits the number of observed elements used
from either side of the missing elements to be the same, thereby giving us a symmetric estimator. Where

the requisite number of points to determine the functions were not available lower order polynomials and
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rational functions were used. All missing points at boundaries were estimated by linear extrapolation.

The mean squared error (MSE) between the estimated portions of the reconstructed spectrogram and
the corresponding regions of the original spectrogram is a measure of th@cpamuthe reenstructed

spectrogram. Representing the elements of the true uncorrupted spectrogram from which the incomplete

spectrogram was derived &(t, k) , the elements ofebenstructed spectrogram &t, k) , and the

number of missing elements in the spectrograrlgs;g , we define the M&toostruction as
NCOK 2
TS St R =Syt k)
MSE(S) = =1k=1 (5.12)
Nmiss

Clearly, the greater the MSE, the greater the divergence between the reconstructed and uncorrupted

spectrograms, and the lower the accuracy of the reconstruction.

The accuracy of the reconstructed spectrograms was measured in terms of the mean squared erro
(MSE) between the reconstructed spectrogram and the original uncorrupted spectrogram. The recognition
accuracy obtained with the reconstructed spectrograms was measured to evakffettheness of the

reconstruction procedures.

Figures 5.5 and 5.6 show the uncorrupted mel spectrogram of an utterance and the mel spectrogram
when 50% of the elements in the picture are missing, respectively. Figure 5.7 shows the mel spectrogram
when all the missing elements have been reconstructed usiag iimerpoldbn along frequency. Figure
5.8 shows a similar figure vee all the midag elements have been reconstructed using linear interpola-
tion along time. Figures 5.9 and 5.10 show theonstructions obtained using polynomial interpolation
along frequency using cubic polynomials.(polynomials of order 3) and cubic polynomial interpolation
along time respectively. Similarly Figures 5.11 and 5.12 show the reconstruction obtained using rational

functions of order (1,2) for interpolation along frequency and time respectively.

We observe from Figures 5.5 through 5.12 that, in general, reconstructed spectrograms obtained by
interpolation along time match the original spectrogram more closely that reconstructions obtained by

interpolation along frequency. Furthermore, reconstruction by linear interpolation is seen to be lretter tha
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Figure 5.5 Mel spectrogram of an utterance. Figure 5.6 The same spectrogram when a randomly
selected 50% of its elements have been deleted.
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Figure 5.7 Spectrogram obtained by estimating theFigure 5.8 Spectrogram obtained by estimating the
missing regions by linear interpolation across frequencymissing regions by linear interpolation across time.

polynomial or rational function interpolation in general and reconstruction obtainectayilerpolation

along time matches the original spectrogram most closely, overall. Figure 5.13 below plots the mean
square error between the reconstructed elements of the spectrograms and their actual vlnetas a

of the fraction of elements that were missing from the spectrograms. We refer to this faadtedrop

fraction in the spectrogram. The MSE obtained using each of the reconstruction methods represented in
Figures 5.7 through 5.12 is shown. This figure confirms the visual observation from the earlier set of fig-
ures that the lowest mean squared error overadbtained with reconstruction by linear interpolation
across time. We do note, however, that when the fraction of missing points is small, reconstruction using

cubic polynomial interpolation along time results in the best mean squared error. However, as the fraction
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Figure 5.9 Spectrogram obtained by reconstructing Figure 5.10 Spectrogram obtained by reconstruction
missing regions by polynomial interpolation along fre- missing regions by polynomial interpolation along time.
guency. Polynomials of order 3 were used when at leaflolynomials of order 3 were used where at least two
two observed elements were present on either side of ttehserved elements were present on either side of the
missing elements. When the number of availablanissing elements. Otherwise lower order polynomials
observed neighbors was lesser, lower order polynomialswere used.

were used.
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Figure 5.11 Spectrogram obtained by estimating miss-Figure 5.12 Spectrogram obtained by estimating miss-

ing regions by rational function interpolation along fre-ing regions by rational function interpolation along
guency. Rational functions of order (1,2) were usedime. Rational functions of order (1,2) were used where
where at least two observed elements were present @ossible. Otherwise, lower order rational functions were

either side of the missing elements. Otherwise rationalised.

functions of a lower order were used.

of missing points increases and the mean distance from any missing point to the closest observed point

increases, the reconstruction error with cubic polynomial interpolatioeases faster than that of linear

interpolation

Figure 5.14 plots the recognitioaccuraciesobtained using the reconstructed mel spectrograms

obtained using all the methods represented in Figure 5.13 agairistdfen of elements missing in the
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Figure 5.13 Mean Squared Error (MSE) of reconstruction for linear and non-linear interpolation, along frequency
and time vs. fraction of elements missing in the incomplete spectrogram

Left Panel: MSE obtained with interpolation Right Panel: MSE obtained with interpolation

along frequency. Linear interpolation, polynomiahlong time. Linear interpolation, polynomial inter-
interpolation with polynomials of order 3, andpolation with polynomials of order 3, and rational
rational-function interpolation with rational func-function interpolation with rational functions of
tions of order (1,2) are represented order (1,2) are represented
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Figure 5.14 Recognition accuracy vs. drop fraction for spectrograms reconstructed by linear and non-linear interpo-
lation along frequency and time.
Left Panel: Recognition accuracy obtained withRight Panel: Recognition accuracy obtained with
reconstructed spectrograms where missing ebeconstructed spectrograms where missing ele-
ments were estimated by interpolation along frenents were estimated by interpolation along time.
quency. Linear interpolation, polynomialLinear interpolation, polynomial interpolation with
interpolation with polynomials of order 3, andpolynomials of order 3, and rational-function inter-
rational-function interpolation with rational func-polation with rational functions of order (1,2) are
tions of order (1,2) are represented represented

picture. We observe that the trends are similar to those observed in Figure 5.13. Non-lineartioterpola
techniques result in poorer recognition aecies than lineainterpolation in general. Also, interpolation
along frequency generally results in lower aecies than interpolain along time. The best performance

overall is achieved with linear interpolation along time.
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5.2.5 Geometrical reconstruction methods: summary and conclusion

The recognition accuracies in Figure 5.14 show that even simple geometrical reconstruction methods
such as linear interpolation based estimation of missing points can be quite effective in reconstructing
spectrograms when random elements of the spectrogram are missing. Spectrogramagecbbgtiinear
interpolation along time show minimal loss in recognition accuracy when fully half the picture is missing.
The best reconstruction, both in terms of MSE and recognition accuracy, is obtained by simple linear inter-
polation, and increasing the complexity or order of the functions used to estimate the missing regions
results in no improvement in the reconstruction. One likely conclusion drawn from this is that the values of
the elements in the spectrogram do not follow any specific pattern that can be captured by any single func-
tional form. As a result the estimates obtained with more detailed models such as polynomials and rational

functions are morbkely to be erroneous than estimates obtained with simple first order functions.

Another noteworthy fact is that interpolation along time is generally mffeetive than interpolation
along frequency. One of the reasons for this is that spectral vectors in the mel spectrogdaimshese
experiments have only 20 components. Consequently, observed elements frequently cannot be found on
one side of missing elements, especially at high drop fractions, and these elements havetsteated
by extrapolation, rather than by interpolation. Extrapolation is known to result in poorer estimates than
interpolation. Interpolation along time, on the other hand, does not face this problem since time slices of
spectrograms have as many elements as the number of spectral vectors in the spectrogram. Another possi-
ble reason for the greater effectiveness of interpolation along time could be that spewreghibit

greater continuity along time, than along frequency.

All the methods mentioned in this section, &real reconstruction methods in that they reconstruct
missing elements solely on the basis of the elements remaining in the picture. All the information used to
reconstruct the missing points is obtained from the spectrogram itself, witlieneniee to any external
sources of information. Such reconstruction methods have several drawbacks. First, when the fraction of
missing elements is very high there might not be sufficient information remaining in the picture to recon-
struct the missing elements properly. Second, if the observed elements in the spectrogrembevelis-
torted due to any reason such as due to noise, all missing elements reconstructed on the basis of these

points alone would also be distorted similarly.
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These shortcomings could be avoided if the reconstruction process were directed by other external
information about the structure of speech spectrograms. This has the advantages of permitting better recon-
struction when there is insufficient information in the damaged spectrogram as well as ensuring that the
reconstructed spectrogram conforms to the notionobéam spectrogram as represented by these external
sources of knowledge. Some easily accessible sources of information are the large corpora of tgpeech da
that are readily available to train a speech recognition system. The distribution of the elementsosf spectr
grams and the statistical relations between them caeabedd from these corpora and used in the recon-

struction.

In the following section we discuss reconstruction methods that uticter statistics, i.e. the distribu-

tion of the spectral vectors of clean speech.

5.3 Cluster-based reconstruction: statistical reconstruction using distributions

of uncorrupted spectral vectors

In the methods described in this section we usevébi®r statistics of the spectral vectors for recon-
struction of the complete spectrogram. These methods treat each spectral vector independemily of eve
other vector in the spectrograire. they model the sequence of spectral vectors in the spectrogram as the
output of an independent identically distributed (1ID) random process. The statistical relations between
components of different vectors aret modeled. The distribution of spectral vectors obtained under the

IID assumption is used to condition the estimates of missing components.

The distribution of the spectral vectors of clean, uncorrupted speech is not known beforehand and has to
be learned from a training corpus of uncorrupted speech. Sinceeitisepform of the distribution of the
spectral vectors is not known, a parametric form for the distribution must be assumed. The simplest and
possibly the most commonly used representation for the distribution of speech vectors is the cluster-based
representation. In a cluster-based representation spectral vectossiared to be segregated into a set of
clusters. All vectors belonging to any cluséee further assumed to have a parametricildigton, which
we refer to as theluster distribution. Cluster-based representations therefore have two types of parame-
ters:

1) Theapriori probability that a random vector belongs to any of the clusters

2) The parameters of the cluster distributions
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Let S represent an arbitrary spectral vector. tgt represerd pheori probability that a vector
belongs to thé&k ™ cluster, and leg, (S;@,) represent the parametric distribution of vectors belonging to

the k™" cluster. In a clusrr-based represeni@ the distribution ofS is therefore modeled as
K
P(S) = > C.9k(S;®) (5.13)
k=0

whereK is the total number of clusters apd  represents the set of paramgigiS; ¢f)

If we assume that within any cluster vectors are distributed according to a Gaussian distribution, then

the overall distribution of the data set can be represented as a mixture of multivariate Gaussians

K .
-4 L(s-pa'ot(s-m)
P(S) = z (2 @) “e (5.14)
k=1
whered is the dimensionality of the vectofs, &g are the mean vector and covariance matrix,

respectively, of the Gaussian distribution of the vectors belonging fo'reuster. The arameters of the
distribution represented by Equation (5.14), namely the valueg dfi, , ®and for all the clusters must

learned from the training corpus. In order to learn these parameters the vectorsaihithg corpus can

be clustered into the desired number of clusters using technigques such as k-means clustering [McQueen
1967], the LBG algorithm [Linde 1980] etc., and the distributions of the individual clusters can be obtained
once the clusters are obtained. More consistardrpeter stimates are obtained using maximum likeli-

hood (ML) methods [Mclachlan 1988].

While the distribution represented by Equation (5.13) is more generic and therefore better able to model
a wider class of distributions, the Gaussian mixture distribution given by Equation (5.14) has several
advantages:

» Most distributions of infinite extent.é. distributions which are non-zero everywhere except at infin-
ity) can be modeled by mixtures of Gaussians with arbitrary precision [Mclachlan 1988].
» Gaussian densities are completely defined by their first and second order moments. As a result, we

only need to know the first and second order moments of the individual Gaussians comprising the
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mixture to completely describe the density. The estimation errors inherent in the estimation of higher
order moments needed by other density functions are thereby avoided.

» The parameters of a mixture Gaussian distribution can be easily estimated using the EM algorithm
[Dempster 1977]. It is also very easy to derive EM type solutions for most other ML estimation prob-
lems where the random variables involved have mixture Gaussian distributions.

» Most methods of estimating missing elements in a spectrograar¢hdisassed in this thesis involve
maximum a posteriori (MAP) estimation of the missing elements. MAP estimation is very simple
when the underlying distribution of the data is Gaussian.

In light of these advantages, we model the distribution of spectral vectors as a mixture Gaussian for the

missing feature methods described in this section.

The cluster-based represeigatleads to a very simple solution for the estimation of missing elements

of the spectrogram. Given any spectral vecgt) with missing compofeiity we only have to

identify the cluster that the vect@(t)  belongs to and use the distribution of the vectors belonging to that

cluster to obtain an estimate f&,(t) . We refer to the cluster that any vector belongs t@last¢he

membership of that vector. This cluster membership localizes the region that the \@&(dfpr can lie in,
and thereby the range of values that the missing components of the vector can taafteFhthedistri-
bution of the cluster can be used to obtain a statistical best guess for the missing components of vector

within the localized region.

As discussed in Chapter 2, several statistical methods exist to estimate the missing components of a
data set given the distribution of the complete data. While all of these methods can be used to estimate the
missing components of a vector, MAP estimation is arguably the best motivated procedure among them.
MAP estimation also provides a tractable framework for incorporating additional constraints where avail-

able, in the estimation.

We therefore use MAP estimation to estimate the missing components of vectors. Once the cluster
membership of a vector is identified the missing components of the vector are obtained as Mafe®stim

based on the distribution of the identified cluster, conditioned on the observed components of the vector.

Figure 5.15 shows a schematic representation ofechistsed estimation of ssing elements of a spec-
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Figure 5.15 Schematic representation of cluster-based reconstruction. The big elljpssergs the outline of the
distribution of a set of two dimensional vectors. The data has been segregated into a humbérchfssensl The
smaller ellipses represent the cross section of the Gaussian distributibesenfrtdividual clusters. The solid line
represents a complete vector. In the observed data, the Y component of this waigsing, and only the X compo-
nent, represented by the dotted line along the X axis, is observed. The cluster-based reconséthctibitl@emtifies
the thick ellipse as the cluster that the complete vector belongs to, and uses the distflibtit cluster to obtain an
MAP estimate for the missing Y component, and thereby the complete vector. ifeteesbmplete vector is repre-
sented by the dashed line.

tral vector.

In order to obtain a complete cluster-based reconstruction method for incomplete spectrograms the fol-
lowing issues also have to be resolved:

» The number of clusters to use in the cluster-based representation in order to obtain optimal reconstruc-
tion is not known.

» The manner in which the cluster membership of any vector is determined is not known. The fact that
some components of the vector may be missing makes cluster membership identification a difficult

problem.

Depending on the particular solution for each of the above problems the reconstructed spectrogram and
the recognitioraccuracy obtainedsing the reconstructed spectrogram can vary. In the following sections
we address these issues and describe three cluster-based reconstruction methods:

« single-cluster-based reconstruction,

» multiple-cluster-based reconstruction with marginalization-based cluster identification,

» multiple-cluster-based reconstruction with time-interpolation-based cluster identification, and

These methods vary only in the number of clusters used to represent the distribution and the manner in

which clusters are identified.
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5.3.1 Single cluster based reconstruction: modeling the distribution with a single

cluster

The simplest cluster-based representation of the distribution of a data set is where all data are assumed
to belong to a single cluster. The distribution of the cluster is simply the global distribution of the data. In
single cluster-based estimatioretbfore, all spectral vectors argsamed to belong to a single cluster. We
assume the distribution of the cluster to be a Gaussian. The mean vector and covariance matrix of the

Gaussian can be directly obtained from a training corpus of clean speech spectrograms.

Since there is only one cluster that any vector can belong to no further cluster membership identifica-
tion is necessary during the estimation. The MAP estimate of the missing components of any vector is

based on the cluster distribution of this single clusterthe global distribution of the data, and condi-
tioned on the observed elements in that vector. We denote the missing componentéhosfahetral vec-

tor S(t), by the vectorS,(t) and its observed components by the vesgft) such that
S(t) = A[S(t), Sy(t)] . whereA, is the permutation matrix that rearranges the componeSg§ 9f

and S;,(t) to obtairSy(t) . Note tha; is specific to tHBvector since the precise set of components

that are missing from any spectral vector can vary from vector to vector. The estradagedf the vector

of missing componentsSm(t)  and the corresponding estimate of the complete S€gtor are now

obtained in the manner described in Section 2.5.4 as

Sn(t) = i+ ©Orno@aa(So(D) — Ho)
(5.15)

S(t) = ALSo(t), Sm(t)]

wherep, andd,, are the mean and covariance of the observed compasethis (nean vector and the
covariance matrix of the marginal distribution 8f(t) H, is the mean of the missing compareents (

the mean vector of the margingistribution of S,(t) ), and®,,, is the cross covariance between the

observed components and the missing componeat®),,, = E[(S;,(t) — k) (Sy(t) —uo)T] , Where

E[ ] refers to the expectation operator [Bals 1991].l4,, My Oy, an®,,, are all easily obtained
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Figure 5.16 Block diagram explaining the procedure for estimating the missing components of a vector. The com-
plete spectrogram is obtained by reconstructing the missing elements of each vector ictthgrapeusing this pro-
cedure.

from the parameters of théuster distribution as explained in Section 2.5.4. Figure 5.16 represents the pro-

cedure of reconstructing the damaged components of a vector as a block diagram.

A

The complete spectrogra® is reconstructed by reconstructing each incomplete spectral vector in the

spectrogram using Equation (5.15) as
S = 5(1), S(2), S(3), ..., S(N) (5.16)
Recognition is now performed using the estimated complete spectrogram.

For brevity we refer toisgle-cluster-based reconstructionsagle cluster reconstruction in future ref-

erences to the method.

5.3.1.1 Experimental resultswith a single cluster based reconstruction

Single cluster reconstruction was evaluated with the random-drop paradigm. Experiments were run
using the RM database and the same setup used to evaluate geometrical reconstruction methods in Section

52.4.

Figure 5.17 shows the same incomplete spectrogram shown in Figure 5.6. Figure 5.18 shows the recon-
structed spectrogram obtained when the missing regions of this spectrogram have been reconstructed using

single-cluster-based estimation.

Figure 5.19 shows the mean squared error of spectrograms reconstructed with single cluster reconstruc-
tion, as a function of the fraction of elements missing in the spectrogmarnhé drop fraction). As seen
from this figure, the MSE of the reconstructed spectrogram increases as the drop fraction inaehses,

accuracy of the reconstruction decreases as the drop fraction increases.

Figure 5.20 shows the recognition accuracy obtained using spectrograms that have been reconstructed
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Figure 5.17 Spectrogram of an utterance of speechFigure 5.18 The same spectrogram where the missing
where 50% of the elements have been randomly deleteglements have been reconstructed by single cluster

reconstruction.
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Figure 5.19 Mean squared error between the estimated regions of the reconstructed spectrogram obtgisied usin
gle cluster reconstruction and the corresponding regions of the original uncorrupted spectrogfanctamaf the
drop fraction. The MSE obtained with linear interpolation along frequency is also shown for comparison.
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Figure 5.20 Word recognition accuracy obtained with reconstructed spectrogram as a function ofotficction.
The recognition accuracy obtained with linear interpolation along frequency is also shown for acamparis
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using single cluster reconstruction, as a function of the drop fraction.

The recognition accuracy is seen to decrease as the drop fraction increasesrdlaisxwell with the

fact that the mean squared error of thenstructed spectrograms increases with increasing drop fraction.

5.3.1.2 Discussion and analysis of experimental results

We note from the earlier Section that the MSE of reconstruction, and consequently the recagnition a

racy, degrade as the drop fractiooriases. This happens due to severaoms

It can be shown the expected MSE of reconstructiorSfg(t) , the missing componentsBfte

tor S(t) is given by [Appendix A]

-1

MSE(ém(t)) = trace(0,,) —trace(0,,,0,0,9om) (5.17)

where®,,,, is the covariance matrix 8f,(t) ©,, the covariance m&t) @nd is the cross
covariance betweeB,,(t) arfg,(t) . It can also be shown that the MSE of reconstruction increases as
the number of missing elements 8{t) i.e the number of elements i§,(t) , increases [Appendix A].

As the drop fraction increases, the average number of elemeBig(ir) does increase. As a result, the

MSE of reconstruction increases with increasing drop rate.

Another factor thagaffects the estinteon of the missing regions is the actual covariance between the
missing components and the observed components of the vector. As the drop fraction increases, the average
distance between a frequency component and the neabsstved frequency component increases
[Appendix A]. Figure 5.21 plots the mean distance between any missing frequency component and the
closest observed frequency component as a function of thdrdotipn. Figure 5.22 shows how the aver-
age relative covariance between two frequency components varies as the distance between thetsompone
increases. We observe from these figures that as the drop fraction increasesstoeariance between

the missing component and the observed componeatsates. It is easy to seeHquation (5.17) that as

o . , , -1
the individual elements in the cross-covariance maBijx, decrésaee(0,,,,0,,0,m) ecreades

[Appendix A] and the MSE of reconstruction increases. Thus, another reason for the imch&gewith

increasing drop fraction is the correspondirgréase in the covariances between theingissomponents
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Figure 5.21 Mean distance between a missing compo-Figure 5.22 Relative covariance between two frequency
nent and its closest observed neighbor as a function @omponents as a function of the distance between them.
drop rate.

and the observed components of the spectral vector.

The recognition accuracy obtained with the reconstructed spectrogram is clearly related to thg accurac
of the reconstruction. The error in reconstruction can be viewed as noise added toetttectspectral
values. The greater the error, the greater the noise. At higher droprfsattte higher MSE of reconstruc-

tion corresponds to noisier spectrograms resulting in poorer recognition accuracy.

In general we note that even this very simple clustering method using only a single cluster results in
reasonably good reconstructions of the spectrogram whefraittion of mssing elements is less than
50%. The difference in recognitioreformance between the mistructed spectrograms and the original
spectrograms is not appreciable at these drop fractiamdractions of missing data). Comparison of
reconstructed spectrograms obtained by linear interpolation across frequency (Figure 5.7), and by single
cluster reconstruction (Figure 5.18), show both reconstructed spectrograms to be similar ifThistise.
because both reconstruction by interpolation across frequency and singe cluster reconstruction are based
on the assumption that the energy in adjacent frequency bands varies continuously and smoothly. However,
cluster reconstruction uses additional statistical information about the statistical correlations between fr
guency bands. Comparison of the MSE of reconstruction and the recognition accuracy obtained using
reconstructed spectrograms for the two reconstruction methods (Figures 5.13, 5.14, 5.19, and 5.20) shows
us that the additional statistical information used in the cluster-based reconstruction methods ddes inde

result in better reconstruction.
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5.3.2 Multiple cluster based reconstruction

So far we have discussed a spectrogram reconstruction method in which we modeled the distribution of
spectral vectors with a single cluster. A more detailed representation would use multiple clusters to model
the distribution of spectral vectors. The means and variances of the distributions of the individual clusters,
and the proportion of vectors belonging to each of the clusterhea priori probability of the individual
clusters, can be learned from a training corpus of clean spectrograms using the EM algorithm [Dempste

1977].

When the distribution is represented by multiple clusters the procedure for estimating the missing por-
tions of an incomplete vector has two steps. In the first stegdubter membership of the vectori.e. the
cluster that the vector belongs to, is identified. Once the cluster membership of the vector is established the
distribution of that cluster is used to obtain MAP estimates for the missing components of that vector. Fig-
ure 5.23 represents the entire procedure for estimating the missing regions of an incomplete vector as a
block diagram.

A vector is said to belong to the cluster that is most likely to have generated it. Since all cluster distribu-

tions are assumed to be Gaussian, the cluster membk@ghip of theS(dgtor is defined as
ksiry = argmax{ P(k|S(t))} = argmax{ P(S(t)[k)P(k)}
1 (5.18)
K _ O 2 Tl O
St) — argmaxkgbk‘ek‘ exp(—0.5(S(t) — ) O, (S(t) — p-k))%
wherept, andd, are the mean vector and the covariance matrix respectiveljkdt chester, ancc,  is

the a priori probability that any vector belongs to thd' cluster. This treats the identification of cluster

Damaged Identify Separate  observed g]!rgo Ié/lébr\lzlﬁgggndat Reconstructed
— —=and missing element™ Dy
vector Cluster . Sy based on clustentor
into S, andS, distribution params

Figure 5.23 Block diagram showing estimation of missing elements in a spectral vector using a multiple-cluste
based representation of the distribution of spectral vectors.
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membership as a classification problem, where the cluaterthe classeg€quation (5.19) defines the
optimal bayesian classifier which determines which cluster a vector belongs to. The definition of cluster
membership also has a geometrical interpretation. It can be restated in terms of distancédinewksde

tance as the negative of the log-likelihood of the vector:
ksqpy = argmin{ 0.5(S(t) — ) O (S(t) — ) — log(cy) + 0.509(| O} (5.19)

Using this definition of distance, the cluster membership is defined as the cluster that the vector is clos-
est to. Equations (5.18) and (5.19) implicitly define the boundaries between the various clusters. Thus, any

vector that falls within the boundaries of a particular cluster is said to belong to that cluster.

Once the cluster membership of the vector is identified, the distribution of that cluster is used to obtain

MAP estimates for the missing components of that vector. As before, separating the missing and observed

components of5(t) int&,(t) an8,(t) such tiBft) = A[S(t), S,(t)] , the estimated value of

Sm(t) and the corresponding complete vecEgt) are now obtained as

Sm(t) = “k, m + ek, moegloo(so(t) - “k, o)

) ) (5.20)
S(1) = ALS,(1), Sm(t)]
where Kk is the cluster membership $(t) and , &y, are the mean and covariance of the
observed componentgl, ,, is the mean of the missing components gives(that belonds'to the
cluster.©y o Is the cross covariance betw&gi(t) Sg) , giverS{hat belongkB thes-
ter.i.e,
Ok mo = EL(Sn(t) = ki m)(So(t) — Ry o) | cluster = K] (5.21)
The means and covariancgg, m Mo Ok oo & 0 are all obtained from the parameters of

the cluster distribution of th&™ cluster. The estimated complete spectrog@m s obtained by recon-

structing the missing components of each spectral vector in the spectrogram using Equation (5.20) as

S = S(1), S(2), S(3), ..., S(N) (5.22)
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Recognition is now performed using the estimated complete spectrogram.

An important parameter in a niplle-cluster-based representation of the distribution of a data set is the
number of clusters used in the representationtéfés tothis number as theodebook size of the represen-
tation. As the codebook sizecirases the represemdat becomes more detailed and the size of the indi-
vidual clusters decreases. Thus, as the codebook size increases the cluster membership of a vector
increasingly localizes its position. Therefore the error in the estimates of the missing components can be
expected to decrease with increasing codebook size if the cluster membership of everis \satays

correctly known.

When complete spectral vectors are available, cluster membership of vectors can be directly obtained
by evaluating Equation (5.19). However, when dealing with incomplete spectrograms, several components
of the spectral vector could be missing. Direct computation of Equation (5.19) is not possible with incom-
plete vectors. From a geometrical perspective, it is not possible to determine whettier $iegewithin
the boundaries of the cluster when some of the components of the vector are not known. In this situation
cluster membership has to be estimated using one of the following solutions:

« Identify cluster membership based only on the observed components

 Pre-estimate the missing components in some manner, and then use the complete vector to identify

cluster membership

Since the cluster membership found by these methods is only an estimate of the true cluster member-
ship it is likely to be erroneous. Error in cluster-membership identification results in the distribution of the
wrong cluster being used for estimating the missing components of the spectral vector resulting in
increased MSE in the reconstruction. Furthermore, the error in estimating cluster membership with incom
plete vectors can be expected to increase as the codebook size increases and the clustensobecome
localized. This resulting increase in MSE due to the increased error in cluster memberstiigaitiem is
likely to compensate for some or all of the improvement in the reconstruction accuragyotha be

expected with increasing codebook size had cluster membership been perfectly known.

In the following section we investigate the ideal situation where threataclister membership of all
vectors in the spectrogram is knowampriori for the estimation of missing elements, and we also evaluate
the effect of codebook size in this ideal situation. In subsequent sections we address the problem of esti-

mating cluster membership of incomplete vectors. We present two multiplerdhasted reconstruction
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methods whre we estimate cluster mem$igip of vectors with incomplete vectors and reconstruct vectors

based on the estimated cluster membership.

5.3.3 Oracle experiments with perfect knowledge of cluster membership

In an ideal situation the cluster membership of every vector in the incomplete spectrogram would be
known a-priori. The reconstruction obtained under this ideal condition can be eoeditb be an upper
bound to the performance of cluster-based reconstruction methods. We attempt to estimate this upper
bound experimentally with an “oracle” experiment where threect duster membership of the vectors is

given beforehand.

For the oracle experiment random elements of the spectrogram were dropped using the random-drop
paradigm and reconstructed as described in Section 5.3.2. The cluster membership of each of the vectors
was determined using the corresponding vector from the original, complete, spectrogram. MAP estimates

of the missing components of vectorere stimated using the distribution of thercect duster.

We refer tathis procedure where incomplete spectral vectors are reconstructed using oracle knowledge

of cluster membership a&buster oracle reconstruction.

Figure 5.24 shows the mean squared error of spectrograms reconstructed by i@dateeconstruc-
tion with cluser-based representatis of diferent codéook sizes, as a function of the drop fraction
obtained. Each line in the figure plots the MSEemonstruction obtained using a cluster-based representa-
tion of a particular size. The MSE of reconstruction when the codebook size is one is identical to that
obtained with single cluster reconstruction (Figure 5.19) since with only a single cluster there is no identi-
fication of cluster membership necessary. As the codebook size increases the MSE of reconstruction at any
drop fraction is observed to decrease monotonically as predicted in Section 5.3.2. Also, for any codebook

size the MSE increases with increasing drop fraction as was observed in single cluster reconstruction.

Figures 5.25 shows an example spectrogram with 70% of its elements missing and the reconstructed
spectrogram obtained with oracle knowledge of cluster membership with cluster-based representations of
increasing codebook sizes. We see from the pictures that the reconstruction follows the sanmeshtern

MSE - the reconstructed spectrogram resembles the origarabisngly with increasing codsook size.
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Figure 5.24 Mean squared error of the reconstructed spectrogram as a function of drop rate for various codebook
sizes. Each line in the figure plots the MSE of reconstruction for a particular codebook size

As explained in Section 5.3.1.2, spectrograms with larger MSE of reconstruction can be expected to
result in lower recognition accuracy than spectrograms with lower MS#efbine, the reagnition accu-
racy obtained with the reconstructed spectrograms can be expected to reflect the trends of the MSE of
reconstruction. It can be expected that the recognition accuracy obtained with clusterecawéucted
spectrograms will increase with increasing codebook size at any drop fraction, and that it will decrease
with increasing drop fraction for any codebook size. Figure 5.26 shows the recognition accuracy obtained
with cluster oracle reconstructed spectrograms as a function of drop fraction, fer-bastd representa-
tions of various codebook sizes. The trends seen in this figure are exactly as expected. The recognition
accuracy obtained with a codebook size of one is identical to that obtained with single cluster reconstruc-
tion (Figure 5.20). As the codebook size increases the recognition accuracy at any drop fraction improves
monotonically. For codebook size 512 the reconstructed spectrogram obtained when 90% of the original
spectrogram is missing results in almost the same recognition accuracy as the uncorrupted spectrogram
(0% drop fraction). Also, for all codebook sizes recognition accuracy degrades with increasing drop frac-

tion.

Figures 5.24 through 5.26 above indicate that good reconstruction and very high recognition accuracies
are possible, in principle, using cluster-based reconstruction. However, the actual perforseances
these figures are only upper bounds and, indeed, may be unachieveabéal Isitagion the cluster mem-
bership of any vector would not be knowrpriori and would have to estimated. As the codebook size

increases, the error in cluster membership identification can also be expected to iddreasexould
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Figure 5.25 Examples of reconstructed spectrogram with oracle knowledge of cluster membership

Panel 1: Original spectrogram

Panel 2: Spectrogram with 70% of its elements
randomly deleted

Panel 3: Spectrogram reconstructed with clustePanel 4: Spectrogram reconstructed with code-

based representation of codebook size 1

book size 8

Panel 5: Spectrogram reconstructed with codePanel 6: Spectrogram reconstructed with code-

book size 64

book size 512
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Figure 5.26 Recognition accuracy obtained with spectrograms reconstructed with oracle knowledge of cluster mem-

bership, as a function of drop fraction. Recognition accuracies are plotted for the reconspecteagsams
obtained for several codebook sizes

increase the MSE in reconstruction and reduce the recognition accuracy.

5.3.4 Cluster Marginal Reconstruction: Identifying cluster membership based on
observed components alone

Consider an incomplete spectral vecffit) with missing compor&pts) and observed compo-
nentsSy(t) . Equation (5.18) can now be restatedS{d) as
ksry = argmax{ P(k|S,(t), Sp(1))} = argmax{ P(S(t), Sp,(t)|K)P(k)} (5.23)

Since the value 05,,(t) is unknown this cannot be evaluated and the correct cluster membership of

S(t) cannot be obtained directly. One solution to this problem is to attempt to identify the cluster member-

ship of the vector based on the observed components of the vector alone.
ksy = argmax{ P(K|So())} = argmax{ P(Sq(t) |k)P(K)} (5.24)

The cluster distributions are defined on the entire spectral v&{tjr refohes to obtain thdistri-

bution of the observed parameters we would have to integrate the missing components out of the distribu-

tions,i.e. by marginalization.

00 00

P(So()]k) = [ P(So(1), Sm(D)[K)dSm(t) = [ P(S(t) k) dSr(t) (5.25)
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Cluster membership therefore would be estimated as

U - U

A 0 U

Ksity = argmaxkEP(k)IP(S(t)|k)dSm(t)E (5.26)
U —® U

This method of estimating cluster membership with incomplete data is very similar in principle to mar-
ginalization based classification with incomplete data (Section 4.3). As in the case of cluster-membership
identification with complete vectors, Equation (5.24) can be expressed in terms of distance, which is

defined as the negative of the log likelihood of the observed components of the vector

0 . T~-1

kS(t) = argmlnk{ O-S(So(t) - p-k, o) ek, oo(So(t) - p-k, o) - Iog(ck) + O.5Iog(‘@k, oo‘ )} (5-27)
wherel, , andd, ,, are the mean and covariance of the observed components, given that the vector

belongs to th& " cluster.

The cluster membership estimated by Equation (5.27) is likely to be erroneous since the contribution of
the missing components to the likelihoods of clusters is not being considered. As the fraction of elements
missing from the vector increases Equation (5.27) is computed on fewer and fewer components and the
estimated cluster membership becomes increasingly erroneous. In the limit where the entire vector is miss-
ing it is not possible to identify the cluster at all. In this situation we arbitrarily select, for thg tatalipt

vector, the estimated cluster identity of the closest vector that is not completely corrupted.

Once the cluster membership of a vector is estimated, the distribution of the estimated cluster is used to

estimate the missing components in the vector, and thereby the complete vector, using Equation (5.20).

We refer to this procedure of cluster membership estimation by marginalization and reconstruction of
vectors with clusters so identified elsister marginal reconstruction. The nomenclature is indicative of the
fact that cluster-based reconstruction is being used, and that cluster membership has bBed enti

marginalization.

5.3.4.1 Experimental evaluation

Cluster marginal reconstruction was evaluated using the random-drop paradigm and tleepaine

mental setup used in Section 5.3.3. In multiple-elubased reconstrtion an additional factoaffecting
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reconstruction are the errors in cluster membership identification. Figure 5.27 plots the peiecitaye

ters that are wrongly identified as a function of the fraction of the elements missing in the incomplete spec-
trogram, for various codebook sizes. The percentage of wrongly identified clusters varies approximately
linearly with the fraction of missing elements. We also observe that the fraction of wrongly identified clus-
ters also increases as the codebook sizeases, as expected. Wated in Section 5.3.3 that when cluster
membership of vectors is perfectly known the MSE of estimation decreases monotonically with increasing
codebook size. However, when cluster member is not known the increased error in cluster-membership
identification with increasing codebook size introduea®rs in the sgtimation that are likely to compen-

sate for some, or all of the improvement obtained due to increased codebook size. Figure 5.28 shows the
MSE in reconstruction as a function of thaction of missing elements for various codebooks sizes. Note

that the MSE obtained with codebook size 1 is the same as that obtained with cluster oracle reconstruction
since there is no identification of cluster membership needed. Increasing the codebook size not improve
the MSE significantly with increasing codebook size confirming our hypothesis that the increased error in

cluster identification compensates for the improved reconstruction with increasing codebook size.

Figure 5.29 shows the reconstructed spectrogram obtained Wfithedt codéook sizes when the
incomplete spectrogram has 70% of its elements missing. We observe that there is no appreciable visual

difference between the regstructed spectrograms that could be attributed to codebook size.

It is logical to conclude that since increasing codebook size does not improve the MSE of reconstruc-
tion it will not improve the recognition accuracy either. This hypothesis in confirmed by Figure 5.30,

which shows the recognition performance obtained withréhenstructed spectrograms for various code-
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Figure 5.27 Percentage of clusters wrongly identified as a function of drop fraction for cluster-basstneations
of various codebook sizes.
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Figure 5.28 MSE of reconstruction as function of drop rate, for cluster-based representations of varidukode
sizes.

books sizes. Increasing codebook size does not improve recognition accuracy significantly. Ingact, the

formance with codebook size 512 is worse than that obtained with codebook size 1

The lack of improvement in reconstruction accuracy and recognition performance with increasing
codebook size is attributable entirely to errors in cluster membership identification. It standeitothaa

substantially better reconstruction could be achieved at higher drop rates if the cluster identification ac

racy could be improved.

5.3.5 Cluster membership estimation with preliminary estimates

We can avoid the problem of having to ignore the missing components entirely in cluster identification

by using goreliminary estimate for the missing components in the vector, for cluster membership identifi-
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cation. If we represent the preliminary estimate for the vector of missing ele@eftls ~ Sm(13s , then
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Figure 5.30 Recognition accuracy vs. drop fraction using spectrograms reconstructed by cluster marginal reconstruc-
tion, for various codebook sizes.
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Figure 5.29 Reconstructed spectrogram obtained by marginalization based estimation, for sevé@bikcades

Panel 1: Original spectrogram Panel 2: Spectrogram with 70% of its elements
randomly deleted

Panel 3: Spectrogram reconstructed with clustePanel 4: Spectrogram reconstructed with code-
based representation of codebook size 1 book size 8

Panel 5: Spectrogram reconstructed with codePanel 6: Spectrogram reconstructed with code-
book size 64 book size 512
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Figure 5.32 The left frame shows recognition accuracy obtained spectrograms reconstructed by frequency interpola-
tion based estimation of cluster membership, for codebook sizes 1, 8 64 and 512. The right partblestame for
cluster marginal reconstruction.

we would obtain the preliminary estimate for the complete vector as
S(t) = AdS,(1), Sm(t)] (5.28)
The cluster membership of the vector can then be estimated using the preliminary estimate as

km = argmin,{ 0.5(5(t) — ) O (S(t) ) —log(c,) + 0.5l0g(|Oy)} (5.29)

It is important to distinguish between the preliminary estimate of the complete é(d:)or and the

final estimate of the complete vects(t) that is used to reconstruct the complete spectrogram in Equation

(5.20). The density of the cluster identified in Equation (5.29) is used to obtain the final estimate of the

missing elements of the vect8{t) . The complete veS{d) is obtained as in Equation (5.20).

The preliminary estimate for the missing componeéﬁlﬁ(,t) can be obtained by any of the geometrical
reconstruction method described in Section 5.2. Of these, it was seen that simple linear interpolation was

superior to non-linear interpolation methods. Therefore, linear interpolation based estimation methods a

good candidate methods for obtaining the preliminary estimate of missing elements.
5.3.5.1 Preliminary estimate by frequency inter polation

The preliminary estimatém(t) of the missing components in the vector can be obtained by linear

interpolation across frequency, as described in Section 5.2.1. This preliminary estimatendaa uked

for estimating cluster membership.
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Figure 5.31 The left frame shows MSE of reconstruction for frequency interpolation based estimation of cluster
membership, for codebook sizes 1, 8, 64 and 512. The right panel shows the same for clgisizrmexanstruction.
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Figure 5.31 shows the MSE odconstruction fofrequency interpolation based estimation of cluster
membership, as a function of the drop fraction, for several codebook sizes, and compares it with the MSE
for cluster marginal reconstruction (Section 5.3.4). The random-drop paradigm and the DARPA RM data
base were used, as in the other experiments reported in this chapter. Figure 5.32 compaoggitierec
accuracy obtained with reconstructed spectrogram for the two cases. As can be seenthapprecia-
ble improvement to be obtained by interpolating across frequency. In fact, there seems to be a slight degra-
dation of performance at higher codebook sizes. This is only to be expected since interpolation across
frequency depends on the continuity across frequency bands to obtain estimates of missing components.
Cluster-based representations already model the correlations between frequency bands explicitly. Since
information other than this is used in the preliminary estimate, improvement in reconstruction due to using

the preliminary estimate can only be expected tmarginal, if any.

Since no improvement is to be gained by this procedure we make no fefdrence to it inthis thesis.

5.3.5.2 Preliminary estimate by time inter polation

The preliminary estimate of the missing componei_?)ﬁﬁ(t) used in the estimation of cluster member-

ship can be obtained by linear interpolation across time, as described in Section 5.2.1. Linear interpolation
along time takes advantage of the temporal continuity of frequency components to estimate missing com-
ponents of the spectrogram. A cluster-based repregemtabdels the distribution of each vector indepen-

dently of any other vector and does not model temporal continuity in any manner. Therefore, the temporal
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Figure 5.34 MSE for spectrogram reconstructed by cluster time-interpolated reconstructiarfuastion of drop
fraction, for various codebook sizes

constraints imposed by kar intepolationacross time represent an additional source of information and

are expected to improve cluster membership identification and reconstruction accuracy.

We refer tothis reconstruction procedure where cluster membership is identified based on preliminary

estimates given by linear interpolation along timelaster time-interpolated reconstruction.

Figure 5.33 shows the percentage of vectors whose cluster membership was wrongly identified when
time-interpolation based preliminary estimates are used, as a function of the drop fraction,ofts vari
codebook sizes. Comparison with Figure 5.27 shows that theerchasmbership-idgification error is
significantly less than that seen when clusters membershégp&atified based on observed elements
alone. The temporal continuity imposed by the preliminary estimates improves the cluster membership
identification greatly. Figure 5.34 shows the MSE in reconstruction as a function of the fraction of ele-

ments missing, for various codebook sizes. We observe, in this case, that unlike the case of cluster mar-
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Figure 5.33 Percentage of vectors whose cluster membership was wrongly identified, as a functionfrdaiap
for various codebook sizes.
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ginal reconstruction (Figure 5.28), the MSE actually improves with increasing codebook size. This is due

to the improved estimation of cluster membership.

Figure 5.35 shows an example of the estimated complete spectrogram obtained by cluster time-interpo-
lated reconstruction, with different codebook sizes, when 70% of the elements in the incomplete spectro-

gram are missing. Predictably, the reconstructed spectrogram visually resembles the original apectrogr

as codebook size increases.

Figure 5.36 shows recognition accuracy obtained using reconstructed spectrograms for various code-
book sizes. Recognition accuracy is seen to improve with every increase in codebook size, following the
trend in the MSE. Recognition accuracies for codebook size 512 are significantly greater than those
obtained by cluster marginal reconstruction. Comparison with Figure 5.14 also establishes thagjttie rec
tion accuracy obtained here is higher than that using purely geometrical reconstruction using linear inte

polation across time (Section 5.2.4).

5.3.6 Cluster-based reconstruction methods summary

Cluster-based reconstruction methods can be very effective in reconstructing missing regions of spec-
trograms. The introduction of the vector statistics of spectral vectors improves the reconstruction signifi-

cantly over methods that use purely local information, such as linear and non-linear interpolation.

When clusters memberships are identified based only on the observed components of spectral vectors,
the performance obtained with multiple-cleisbased represenians is similar to that obtained when the

distribution of spectral vectors is modeled as a single Gaussian. This seems to indicate that the single
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Figure 5.36 Recognition accuracy with reconstructed spectrograms as a function of drop fraction,dfos cade-
book sizes.
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Figure 5.35 Reconstructed spectrograms when cluster membership was identified based on a prelitimreteyts
linear interpolation along time
Panel 1: Original spectrogram Panel 2: Spectrogram with 70% of its elements
randomly deleted

Panel 3: Spectrogram reconstructed with clustePanel 4: Spectrogram reconstructed with code-
based representation of codebook size 2 book size 8

Panel 5: Spectrogram reconstructed with codePanel 6: Spectrogram reconstructed with code-
book size 64 book size 512
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Gaussian model for the distribution of vectors is as good as, or better than the Gaussian mixture model
implied by multiple-clustr-based represenitans, for the purpose of reconstruction. In the absence of any

additional criterion of localizing the position of the complete vector, the two moedtam similarly.

Preliminary estimates of missing elements given by linear interpolation along time provide the localiza-
tion of the vector needed to obtain better performance with multiple-cluster-based representations. The
inclusion of temporal information in the reconstruction procedure in the form of the temporal continuity
enforced by the preliminary estimate improves the quality of the reconstruction significantly. However, the
information used in the preliminary estimate is purely local. It stands to reason that if prior information
regarding thestatistical relationships between the components of different vectors could be used the qual-

ity of the reconstruction can be further improved.

There are several ways of statistically modeling the temporal continuity between elements in the spec-
trogram. One method would be to model the sequence of spectral vectors as the output of a hidden Markov
model (HMM) [Therrien1992], or a highr-order HMM [Therrierl992], rather than as a sequence of 11D
vectors. However HMMs and higher order HMMs are complicated models requiring rasmggiers. A
much simpler model would be to simply model the statistical correlations between the various elements in

the spectrogram explicitly. The following section deals with such a method.

5.4 Covariance-based reconstruction

A very simple statistical model for the spectrogram is to consider the sequence of spectrathatctors
constitute a spectrogram to be the output of a Gaussian wide-sense stationary (WSS) random process
[Papoulis 1991]. All possible spectrograms are assumed to be individual observations from a single pro-
cess. The statistical parameters of this process are then used to obtain estimates for theomigsing c

nents of incomplete spectrograms.

We refer to spectrogram ratstruction methods based on this modet@riance-based reconstruc-

tion methods.

The assumption of wide-sense stationarity leads to the assumption that the means of the spectral vec-

tors, and the covariances between elements in the spectrogram are independent of their position in the

spectrogram. If we define the mean of k18 element of tha " spectral vectorS(t, k) p(t, k) , and the
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covariance between tHg " element of the, " spectral vectoS(t, k;) and tHe, " element of the, "
spectral vectoS(t,, k,) ¢(ty, t,, Ky, K,) , as
H(t k) = E[S(t, k)]
C(ty, ta Ky ko) = EL(S(t ky)—H(t, k1)) (S(t2, ko) — u(ta, ko))l

(5.30)

whereE[ ] stands for the expectation operator, the assumption of wide-sense stationarity gives us the fol-

lowing properties for these parameters [Papoulis 1991]
H(t k) = p(ty, k) = p(k) (5.31)

C(t t+T, Ky Ky) = C(ty, ty + T, Ky, Ky) = (T, Ky, ky) (5.32)

In other words, the expected valu€k) of #18 component of a spectral vector is not dependent on

where the vector occurs in the spectrogram. Similarly, the covariance between the components of two
spectral vectors depends only on the distance between the vectors (along the time axis) and not on where
they occur in the spectrogram. The means of the components of the spectraléc}ors and the various
covariance parametei(T, K4, K,) can now be learned from a training corpus of uncorrupted spectro-

grams. The implication of the assumption of a Gaussian process is that the joint distribution the compo-
nents of all the spectral vectors in a sequence of vectors is Gaussian. Additionally, the distribution of any
subset of the components in a sequence of vectors is also Gaussian [Papoulis 1991]. Therefore these means
and covariances describe the process completely and are all that are needed to estimate missing compo-

nents of spectrograms.

The pu(k) values define the expected value of every component in a spectrogram ef® Kygk,)
values define the covariance between any component in the spectrogram and any other component in it.
E[S(t, K] = p(k)
EL(S(ty, ky)—H(ty, kq)) (S(ta ko) — H(ta, ko))l = c(ty —to, Ky, ky)

(5.33)

To reconstruct an incomplete spectrogr@m  the observed componentspedtiegram are arranged

into a vectorS, . The missing components are arranged into a \ggtor . Since we know the mean values
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Figure 5.37 Example showing how the missing and observed components of a spectrogram can bel sefmeate
vector of missing components and a vector of observed components, and the corresponding smwaariance val-
ues. The figure represents a spectrogram with 4 spectral vezolswith 4 elements. Each column of elements rep-
resents a single spectral vector. The grey elements are missing.

of all the components in the spectrogram and the covariance between any two components in it, the means
of the individual components &, ai#}, and the covariances between their various components are all
known. These can be used to constt}mﬁt pf\d , the mean vecfys of S;and  resp€gfively, ,

the autocovariance matrix &, , aft},, ,the cross covariance befygen Sjand
Explaining the construction of Sm and SO with an example

We illustrate the construction &,, a®}  with a simple example. Figure 5.37 shows an example of a

small spectrogram consisting of only four spectral vectors, each of which has only four components. Each
of the elements in the spectrogram has been identified by a tag for convenience. All grey boxes in the fig-

ure represent missing elements.
The vector of observed elemerfly , and the vector of missing elefgnts are construbied for
example as

So = [S(1,2), (1, 4), $(2, 1), §(2, 3), (3, 2), (3, 3),5(3, 4),5(4, 1) ,(4, 4] T
Sm = [S(1, 1), (1, 3), (2, 2), S(2, 4), S(3, 1), (4, 2),5(4, 3)] "

The expected value of all elements in any row is assumed to be the same (since the vectors are assumed

to be the output of a WSS process). The mean vectofS,for Sgnd are therefore constructed as
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1S = [K(2), 1(4), k(1) K(3), 1(2), 1K(3), K(4) ,1(L) ,u(H)]
He = [H(D), 1(3), 1(2), K(4), (L), 1(2), 1 (3)] T

The autocovariance matrix &, is a 9x9 matrix constructed as

c(0,22 ¢(0,24 c(1,21) ..c324
c(0,4,2) ¢c(0,4 4 c(1,41) ..c(344
Coo = |C(=1,1,2) (=1, 1, 4 c(0, 1, 1) ... c(2 1, 4)

c(-3,4,2)c(-3,44 c(-241 .. c04 4
Similarly, the cross covariance betweSg &d  is a 7x9 matrix given by

c(0,1,2 ¢(0,14 o111 ..c31 4
c(0,3 2 c(0,34) c(1,3 1) ..c(33 4
Cro = |c(=1, 2, 2) (=1, 2, 4) c(-1,2, 1) ... c(2 2 4)

(3,3 2) ¢(=3, 3,4 c(2,3, 1) ... c(0, 3, 4)

The means and covariances of the vector of observed ele@@gnts and the vector missing elements

Si» and the cross covariance between them can now be used to obtain an MAP estiSate for
c S -1
Sm = U3+ CproCon(So — D) (5.34)

Equation (5.34) would perform global reconstruction of all the missing elements in the damaged spec-
trogram in a single reconstruction step. However, the direct computation of Equation (5.34) would require
inversion and multiplication of extremely large matrices. For example a typical 4 second uttesa#@e ha

frames. If the spectral vectors have 20 frequency components each, there are 8000 components in all in the

spectrogram. If 50% of the componeats mising, bothC,, andC are 4000 x 4000 matrices. Direct

mo
computation of Equation (5.34) would therefore necessitate the inversion of a 4000x4000 matrix, followed
by the multiplication of two 4000x4000 matrices. If the utterance were longer the matrices would become

still bigger. Clearly, the matrix operations required are impractical. A much more plraotiggon would
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be to reconstruct the missing elements of the picture incrementally.

5.4.1 Reconstructing missing elements individually

The simplest reconstruction would be to reconstruct each missing element in the spectrogram indepen-
dently of every other missing element. 1St k) be the missing element being estimatecerddtah

S(t, k) is an element of the vector of missing compone$ts, . The covariances b&{teleh and the
various components db,  can be used to construct the cross-covariance matrix between the two. We rep-
resent this matrix by,,(t, k) . Note that the componentsRf(t, k) form one rd@, gf , the cross

covariance betweeB,, arfg}

The MAP estimate of(t, k) can now be obtained as
S(t, k) = H(K) + Cro(t, K)Cop(Sp —Hg) (5.35)

wheret(K) is the expected value $ft, K)  as given in Equation (5.33). Initially there does not appear to
be any advantage to using Equation (5.35) since the dimensional@iyof , the matrix being inverted in
Equation (5.35), is no different from that in Equation (5.34) and the estim&,df) obtained from the
two equations is identical. However, the estimation can be considerably simplified by taking advantage of

the fact that all components &, do not contribute equally to the estim&(g, d<)

The relative covariance between two compones(t k) Sftdr 1, ky) of the spectrogram is
defined as
c(t,t+1,ky, K c(t, ky, k

JE LK, KOt + T, U+ T, Ky Kp) L Je(0, Ky, Kp)T(0, Ky, Ko)

If S(t, k) were to be estimated based on only one componeBfof Sday T, K;) , then it can be

shown that the estimate &t, k)  is given by

St K) = p(k) + (T, K, ky) Ty (St k) (k) (5.37)
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Figure 5.38 The left panel shows the relative covariance between the energy in the 8th frequency component (k=8)
of any spectral vector and other elements of the spectrogram. The right panel shlatitleecovariance between
the energy in the 12th frequency component (k=12) of any spectral vector and other elemersizeicttbgram

Clearly, as the relative covariantét, k, k;)  betw&h k) Sftd+ 1, k;) credses, theontri-
bution of S(t + T, k;) to the estimate d&(t, k) d®ases linearly. For very small valuesrét, k, k;)

therefore, its contribution to the estimateSft, k) becomes negligible. In general, the ¢mmtrifany

elementS(ty, k;) ofS, to the estimate &t, k) s low if it has low relative covariance 8(ithk) :
provided $(t;, k;) also has low relative covariance with other elemenf,of  that have high relative
covariance withS(t, k) . In this situatioS(t;, k;)  can be removed from the conditioning V@gtor  with-
out significant increase in the MSE of estimation.

It is observed that the relative covariant€t, Kq, k) between two elemBftik;) , and
S(t + 1, k,) of a spectrogram falls off very quickly as eitller kqr—K, increases. Figure 5.38 shows
the variation ofr (T, k, k') as a function af afd  for two different valuek of . In both cases we
observe that (T, k, k') falls very rapidly from its peak value of 1.0 as ioth  |kand| increase, fall-
ing below 0.5 forlt| >5 ok—k'>10 .

As a result, most elements &, have very low relative covarianceS{t{tk) . Additionally, these

elements also have low relative covariance with those elemef§s of  that have a high relative eovarianc
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with §(t, K) . The vector of observed elements that is used to estBiitk) can therefore be constructed

from only those observed components of the spectrogram that have a high relative covariandeewith it,
components that have a relative covariance above some thréshold . If we denote the vectotecbnstruc

of observed components that are used to estiffdik) S yKk) , we would get the following rule for

the construction 085,(t, k)

S(ty, ky) OSy(t, k), if (r(t—t, k;, kK)>R) (5.38)
Note that the vector of observed componeBiét, k) is speciff(ttok) S,(t, k) typically has
much fewer components thé, . We refer to the set of elemei8g(tnk) asighisorhood of

S(t, k) . We refer toS,(t, k) as theeighborhood vector of S(t, k) . OnceS,(t, k) has been constructed,
its mean vectofl,(t, K) can be constructed using the expected values of its components, and its autocova-
riance matrixC,,(t, k) , and the cross-covariance matrix betwsgnk) S k) co(t K) can

be constructed using the covariance between their components. The estins§teKkpr , the missing com-

ponent, is now obtained as
S(t,K) = 1K) + ot K)Con(t K)(Sylt, K) — (1, K)) (5.39)

All the missing elements in the spectrogram can be estimated in this manner to reconstrugplete com

spectrogram.

A simple example of constructing S(t, k) for the estimation of a missing element

We illustrate the construction @, (t, k) , and the corresponding mean and covariance parameters with
an example. Figure 5.39 shows a small spectrogram of 16 elements. All elements shaded gpgg-in the
ture are missing.

In order to estimat&(2, 2) (shown in a lighter shade of grey), all elenséhtk) in the spectrogram,
such thatr (t—2, 2,k) 2 0.5 are identified. These are represented by the dotted elements in the spectro-

gram. The vector of observed elemeS8igt, k) is now constructed as
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SﬂJ)SQJ)S@J)SMJﬂ

S(1,2) S(2,2) S(3,2) S(4,2)

S(1,3)| S(2.3)| S(3,3)| S(4,3)

S(1,4) S(2,4)| S(3,4)| S(4.4

Figure 5.39 An example spectrogram with 4 spectral vectors, each with 4 elementgréyhelements are missing.
The neighborhood vector and the various statistical parameters for the estimation ofl8Z@ment shaded light
grey, are to be constructed.

So(2,2) = [S(1, 2), $(2, 1), (2, 3), (3, 2), (3, )] T
The mean vectors fd6,(2, 2) arff(2, 2) are constructed as
E[So(2 2] = Ho(2 2) = [1(2), u(1), u(3), u(2), u(3)]"

E[S(2,2)] = u(2)

The autocovariance matrix &,(2, 2)  is a 5x5 matrix constructed as

c(0,2,2 c(1,2 1) c(1,23 c(2,2 2 c(2 23
c(-1,1,2 c(0,1,1) ¢c(0,1,3 c(1,1,2 c(1,1,3
Coo(2,2) = |c(-1,3,2 ¢(0,3,1) (0,33 c(1,3, 2 c(1, 3,93
c(-2,2 2 c(-1,2 1) c(-1, 2 3) c(0, 2 2 c(0, 2, 3
c(-2,3 2 c(-1,3,1) c(-1,3,3 c(0,3 2 c(0, 3 3

The cross covariance betweg(2, 2) By(2, 2) is a 1x5 matrix given by
Cmo(2, 2) = [c(-1, 2, 2),¢c(0, 2, 1),¢c(0, 2, 3),c(1, 2, 2),c(1, 2, 3)]T

The estimate 05(2, 2) would be given by

S(2.2) = W(2) + Cio(2: 2)Co(2, 2)(So(2 2 —Ho(2, 2))
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The optimal relative-covariance threshé®d  has to be empirically determined. Figure 5.40 shows rec-

ognition accuracy obtained using reconstructed spectrograms for incomplete spectrograms with 90% of
their elements (randomly) missing, as a function of the relative-covariance threshold. As ean frera

the figure a relative-covariance threshold of around 0.5 seems to be optimal. In $asgsHound to be

the optimal relative-covariance threshold at all drop fractions. Including elements with relative cavarianc

below 0.5 in the reconstruction is actually seen to result irepoeconstrucon.

Therefore, using 0.5 as the threshoBj(t, k) would, in principle, contain all the elements that are

observed in the spectrogram and have a relative covariance greater than &&vkjh . In practice it has
been observed that when a 20 dimensional mel-spectral representation is used for the spectrograms, it is

sufficient to include the 16 observed elements of the spectrogram with the greatest relative caveihiance
S(t, k) in Sy(t, k) and the inclusion of any more elements does not improve the reconstruction further.
The complete procedure for reconstructing a complete spectrogram from an incompleteefoeetben-

sists of constructindS,(t, K)  with upto 16 elements and the corresponding statistical parameter vectors

and matrices for every missing elem&gt, k) in the spectrogram and computing the estirSéttekfpr

using Equation (5.39).

We refer to his procedure of estimating individual missing elements of the spectrogremwaasance
individual reconstruction. The nomenclature indicates the fact that covariance-based reconstruction is

being performed, and that missing elements are being individually estimated.

R 8 8 8

Recognition Accuracy (%)
N

S

045 050 055 060 065 070 0.75
Relative covariance threshold

IN
N
S

Figure 5.40 Recognition accuracy with spectrograms reconstructed by covariance-based estimation of individual
missing elements, as a function of the relative-covariance threshold used to selentefenthe neighborhood vec-
tor for missing elements. The incomplete spectrograms had 90% of their elements missing.
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5.4.2 Jointly reconstructing all missing elements in a vector

Instead of estimating all the individual missing elements in the incomplete spectrogram separately we
could reconstruct all the missing elements in a spectral vector simultaneously. We refepructddsire as

covariance joint reconstruction. This procedure is a compromise between reconstruction of individual ele-

ments and global reconstruction of the entire picture.3(é) béthepectral vector in the spectro-

gram. The missing components §(t) can be separated into a vector of missing elemenitsirihe

element vector S (t). A vector Sy(t) can now be constructed of all observed elements in the spectro-
gram that have a relative covariance of at least 0.5 with at least one of the elen&ts) in . The thresh-

old of 0.5 is applied for the same reason that it was used in the earlier sediemiting elements were

being individually estimated - this eliminates all components whose contribution to the reconstruction is

unreliable, while reducing the dimensions $f(t) greatly. Mfer to the elemmes of Sy(t) as the

neighborhood of S, (t), andS,(t) as theeighborhood vector of S, (t) . Once again, whil&Sy(t) in
principle contains all observed elements in the spectrogram with a relative covariance greatenthian 0.5

any of the elements d,(t) , imaxtice limiting Sy(t) to include no more than 16 elements that have a

high relative covariance with any one of the elementSt) does not result in any degradation in per-

formance for the case of 20 mel filter based spectrograms.

The mean vector and covariance matrix of the elements,(t) ug(t) Captt) can be con-

structed as before. Similarly, the mean vectoBg(t) ui(t) , and the cross-covariance ntatinbe

Sm(t) andS,(t) ,Co(t) can be constructed. The missing elements ih"theector of the spectrogram

can now be estimated using the MAP Equation:
S S = S
Sin(t) = Hin(1) + Cno (1) Con (1) (So(t) — Mo (1)) (5.40)

An example of constructing S (t) for joint estimation of all missing elementsin a vector

We illustrate the construction &,(t) , and the corresponding mean and covariance parameters with an
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example. 5.41 shows a simple spectrogram with 4 spectral vectors, each with 4 elements. All elements
shaded grey are missing. It is desired to estimate all missing elements in the second spectr@ihgeector.

elements to be estimatade shadetight grey.

S(1,1) S(2,1) S@.1) 5(4,1)\

S(1,2) S(2,2) S(3,2) S(4,2)

S(1,3)| S(2.3)| S(3,3)| S(4,3)

S(1,4) S(2,4)| S(3,4)| S(4,4

Figure 5.41 The figure represents a small spectrogram with 4 spectral vectorsweghch elements.The grey ele-
ments are missing. We wish to estimate all the missing elements gedbad spectral vector jointly. These are
shown in a lighter shade of grey in the figure.

The missing element vector for the second spectral vector is constructed as

T
Sm(2) = [9(2, 2), S(2, 4)]
The neighborhood vector f@,,(2) is constructed of all the elenfs(i;K) in the spectrogram, such

that eitherr(t—2, 2,k) 20.5 , or(t—2, 4,k) = 0.5 . These are represented by the dotted elements in

the spectrogram. This gives us
So(2) = [S(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), S(3, 9]
The mean vectors forS,(2)  arf§,(2)  are constructed as
E[So(2)] = 15(2) = [K(2), 1(4), u(1), 1(3), 1(2), K(3), p(4)] "
E[Sn(2)] = Hn(2) = [1(2), n(4)]

The autocovariance matrix &;(2) is a 7x7 matrix constructed as



Chapter 5. Spectrogram reconstruction methods for missing data 100

[¢(0,2,2 ¢(0,2,4 c(1,21) c(1,2 3 c(2 2 2 c(2, 2 3) c(2, 2, 4)
c(0,4,2 c(0,4,4 c(1,4 1 c(1,43) c(2,4,2 c(2,4,3) c(2 4,49

c(-1,1,2 c(-1,1,4 c(0,1,) c(0,1,3) c(1,1,2 c(1,1,3) c(2 4,49
Coo(2) = |c(-1,3,2 c(-1,3,4) ¢(0,3,1) ¢(0,33) c(1,3 2 c(1,3,3) c(L, 1,49
(2,2 2 c(-2,2 4) c(-1,2,1) c(-1,2 3 c(0, 2 2 c(0, 2 3) c(1, 3,4
c(-2,3 2 c(-2,3 4 c(-1,3,1) c(-1, 3, 3) c(0, 3,2 c(0, 3 3) c(0, 2 4
1c(—2,4,2) c(—2,4,4) c(-1,4,1) c(-1, 4,3 c(0, 4, 2 c(0, 4, 3) c(0, 4, 4
The cross covariance betwe8p,(2)  &{2) is a 2x7 matrix constructed as
C..(2) = [c(—l, 2,2) ¢c(=1,2 4) c(0,2, 1) ¢0,23) c(1, 2 2 c(1, 2 3) c(1, 2, 4)}T
mo c(-1,4, 2 c(-1,4,4) c(0,4,1) c(0,4,3 c(1,4,2 c(1,43) c(1,4 4

The MAP estimate for the two missing elements in the second vector would now be obtained as

Sm(2) = H3(2) + Cino(2)Co0(2) (S5(2) — 13(2))

To reconstruct the complete spectrogram, the vector of missing comp&(t)s , the corresponding

vector of observed elements with high relative covariafSgét) and the associated mean vectors and
covariance matrices would be constructed for each spectral vector in the spectrogram. This missing com

ponents in the spectral vect&;,(t) would then be estimated using Equation (5.40).

5.4.3 Experimental results with covariance based reconstruction

Covariance-based regstruction was evaluated using the DARPA RM database, using the random-

drop paradigm and the experimental setup used in all other experiments described in this chapter. The sta-
tistical parameters used for the reconstructi@the means of frequency component§k) and the var-
ious covariance values(T, kq, k;)  were all learned from the training corpus that was used to train the

HMMs.

Figure 5.42 shows the mean squared error of reconstruction as a function of thieackop in the

incomplete spectrograms for both covariance individual reconstruction and covariance joint reconstruc-



Chapter 5. Spectrogram reconstruction methods for missing data 101

A
[
]

----- Best cluster based method .

-—--  Covariance based estimate of individual ejements
— — Covariance based joint estimate

——  Cluster based estimation with oracle

w
)
T

MSE of reconstruction
=~ N
(=) (=]

L=
L=

e — —

20 40 60 80 100
Fraction Dropped (%)

N
)
S}

Figure 5.42 MSE of reconstruction for covariance individual reconstruction, covariance joint reconstruction, the best
cluster-based reconstruction method (time interpolation based estimation), atellhduster-based method (with
oracle knowledge of cluster membership of spectral vectors).

tion. The figure also shows the MSE obtained using the best cluster-based method (cluster time-interpo-
lated reconstruction) as well as the oracle MSE for ettstsed reconstrioh with a codebook size of

512. We observe that covariance-based reconstruction results in better MSE than the best cluster-based
method, and is in fact comparable with the MSE of cluster oracle reconstruction, except at very high drop
rates. Also, the MSE obtained using joint estimation of the missing elements in a vector is marginally bet-

ter than that obtained when the missing elements are individually estimated.

Figure 5.43 shows an incomplete spectrogram with a filemion of 90%, the reconstructed spectro-
gram obtained with covariance individual reconstruction and covariance joint reconstruction. We observe
that even at this high drop rate the reconstruction is quite good. At similar drop rates the bediadester-

reconstruction technique wasffedive (Section 5.3.5).

Figure 5.44 shows the recognition accuracy obtained using reconstructed spectrograms as a function of
the fraction of elements that were missing in the spectrogram. Both covariance individual rettonstruc
and covariance joint reconstruction are evaluated. Recognitiomaagesi obtained irgg the best cluster-
based reconstruction methacde. cluster time-interpolated reconstruction, are also shown. Covariance-
based reconstruction methods clearly result in the best recognition accuracies. For these test conditions the
recognition accuracy obtained with reconstructed spectrograms, when 80% of the elements in the incom-
plete spectrogram are missing, is not much worse than the recognition accuracy obtained with uhcorrupte
spectrogram. The superior performance of covariance-based reconstruction methods is attributable to the

fact that many more neighboring points are available to reconstruct any point in covariance-based recon-
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|

Figure 5.43 Spectrograms reconstructed by covariance-based estimation of missing elements

Panel 1: Original spectrogram Panel 2: Spectrogram with 90% of its elements
randomly deleted

Panel 3: Reconstructed spectrogram obtained bijanel 4: Reconstructed spectrogram obtained by
estimating missing elements individually estimating all missing elements in a vector jointly

d

structing, than in cluster-based reconstruction.

Joint estimation of missing elements in a vector is seen to result in better reconstruction than recon-
struction of individual elements at high drop rates. We hypothesize that joint global reconstruction of all

the missing elements in the picture would result in still better recognition accuracies.

5.5 Comparison with classifier-compensation techniques

Figure 5.45 compares the recognition accuracy obtained using the best-lshsstd and covariance-
based methods with that obtained using class-conditional imputation and marginalization. We observe that

spectrogram reconstruction methods result in much better recogadtomacies than those obtained by
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Figure 5.44 Recognition accuracy for covariance-based estimation of individual missing eleommtsance-based

joint estimation of missing elements in a vector, and the best cluster-based redonstratitod (cluster time-inter-
polated reconstruction).
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Figure 5.45 Comparison of recognition accuracies obtained with various incomplete-spectrogram methends, as
function of fraction of elements missing in the spectrogram. The methods comparedtsest thmectrogram recon-
struction methodsj.e. covariance joint reconstruction and cluster time-interpolated reconstruction, with those
obtained with classifier-modification method®, marginalization, and class-conditional imputation.

class-conditional imputation. Marginalization still results in the best recogmiticuracies.

Nevertheless, spectrogram reconstruction methods hold the advantage that it is now possible to use the
reconstructed spectrograms to derive other parameters/features such as cepstra which can be used to per-
form recognition. Recognition accuracies obtained using cepstra are typically maatbr ghanthose
obtained with log spectra. Marginalization, on the other hand, requires the recognition system to be trained
on spectrographic features. As a result cepstra derived from the spectrograms reconstructed by spectro-
gram reconstruction techniques can be used to obtain greater recognition accuracies than those obtainable
with marginalization (using log-spectra-based recognition). Figure 5.46 shows recognition accuracy

obtained with cepstra derived from spectrograms reconstructed by covariance joint reconstruction and
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compares it with the recognition accuracy obtained with and marginalization and log-spectra-based recog-

nition.

5.6 Theshort list of useful methods

We have proposed and evaluated several methods of estimating missing elements in incomplete spec-
trograms in this chapter. While evaluation on the basis of the random-drop paradigm is not comprehensive

in any sense, it permits us to short-list the techniques that show promise of being useful.

Among geometrical reconstruction techniques it was found that linear interpolation methods outper-
form non-linear interpolation methods. Further, interpolation along time was superior to interpolation
along frequency. Among geometrical reconstruction technigues therefeae iimepolation along time is

the most useful.

Among cluser-based reconstrtion techniques single cluster reconstruction, cluster marginal recon-

struction and cluster time-interpolated reconstruction were all seen to be useful.

Among covariance-based reconstruction techniques covariance joint reconstruction was superior to

covariance individual estimation.

We therefore short-list linear interpolation along time, single cluster reconstruction, cluster margina
reconstruction, cluster time-interpolated reconstruction, and covariancergoomnstruction as possibly
useful methods worthy of further investigation. All of these methods differ from each other in a fundamen-

tal manner. Other methods have not been considered any further in this thesis, and wherel peesente

1001
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Figure 5.46 Recognition accuracy using cepstra computed from reconstructed spectrograms as a function of drop
fraction. The recognition accuracy obtained using marginalization on log-spectra based mtagaisio shown.
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only been presented for reasons of comparison.

5.7 Summary and conclusions

Spectrogram reconstruction methods are seen to lefexgive as classifier-odification methods
(class-conditional imputation and marginalization) for handling spectrograms with missing elements. Even
simple, purely geometrical, reconstruction methods such earlandhon-linearinterpolation are seen to
result in fairly effective reconstruction of missing elements when the missing elements are missing com-
pletely at random. The best geometrical reconstruction is achieved vé#r limterpoldbn. Reconstruc-
tion methods that utilize temporal relations between elementdjnear interpolation across time, are in
general more useful than methods that utilize relationships across frequency bands. This leads us to believe

that there is greater continuity between elements across time than theness frequency.

The use of prior statistical information about the correlations between elements in the spectrogram is
very beneficial to the reconstruction. Clsbased reconstrtion techniques utilize the distribution of
spectral vectors in the spectrogram. Cluster marginal reconstruction, a cluster-based ré&oontsche
nique that works only with frequency components within a vector, results in significantly superior recon-
struction to linear interpolation across frequency, a method that uses purely local information about
frequency components. Cluster time-interpolated reconstruction, which combines linear interpolat
across time with cluster-based reconstruction, is superior to that obtained ed@hriterpolation across
time alone. In other words, the combination of geometrical reconstruction based on temporaitgontinu
and statistical reconstruction based on statistical relationships across frequency bands results in superior

performance to that obtained with local@astruction based on temporal continuity alone.

The introduction of prior statistical information regarding the relationship between elements both
across frequency and across time improves the reconstruction still further. Covariance-based reconstruc
tion methods use statistical correlations between elements, both across time and across frequency explic
itly. They are seen to result in the best reconstruction. Covariance-basmtstruction is gerally
observed to be better when multiple elements are jointly estimated than whanelesgimated indidu-
ally. We speculate that the best reconstruction would be obtained when all the missing elements in the

spectrogram are jointly estimated. However, this is computationally infeasible.
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In all of the methods described in this chapter the statistical information about the relationship between
elements in the spectrogram is represented by very simple modeler®astd remstruction uses a
very simple cluster-based representation of the statistics. Within each cluster the distributions are furthe
represented by a very simple Gaussian distribution. Covariance-based reconstruction uses an even simpler
statistical representation - the entire spectrogram is represented as the output of a singleu¥gBa Ga

random process. The reconstruction is performed using only the statistical parameters of this process.

Better statistical representations are likely to result in better reconstructions. The simplebelsester-
representation used by cluster-based methods treats the sequence of vectors that constitute the spectrogram
as independent. Consequently the model permits any vector to follow any other vector and retains no infor-
mation regarding the sequentiality of the vectors. A superior model would be to model the individual clus-
ters as the states of a Markov chai&, modeling the sequence of vectors as the output of a hidden Markov
model (HMM) where the individual clusters are the states of the HMM. In an HMM the state (clater)
generates the current vector is dependent on the state that generated the previous vector. As a result the
HMM model captures some of the temporal relationship between vectors, modeling the manner in which

vectors can follow one another.

A more constrained model for the sequentiality of vectors would be to model the vectors as the output

of a higher-order HMM. While standard HMMs condition the probability of a vector on the state that gen-

erated the previous vector, AHD order HMM conditions it on the states that generate the prelNous  vec-

tors.

The statistical model used with covariance-based reconstruction can also be improved. Covariance-
based reconstruction models the sequence of spectral vectors as the output of a single wide-sense station-
ary random process. A more detailed representation would model the sequence of vectors as theoutput of
process that switches between a set of random processes. A simpler model would be to treat blocks of vec-
tors as the basic unit in a cluster-based representation. Either model would capture the steléttcal r
ships between elements inffdrent vectorsj.e. relationships across time, with greater detail than the
single Gaussian representation used by the covariance-based reconstruction methods described in this
chapter. However, both representations would have the additional problem of identifying the cluster or ran-

dom process associated with each of the vectors.
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The speech recognition system itself encodes the acoustic, phonetic and linguistic information in
speech corpora using various statistical models and can therefore be used to estimate the giossig re
the spectrogram. The statistical representation used by speech recognition systems is exti@iadly det
including statistical models for the acoustic parameters derived from the speech, lexical &jwasesft
the data [Rabiner 1993], and N-gram statistical models to model the language [Katz 1987]. Thenldxical a
language models provide additional sources of information not available to any of the other statistical mod-
els described earlier in this section. Consequently, using the seegnition system itself to reconstruct
damaged regions of spectrograms is likely to give the best reconstructions. One could use marginalization
to obtain the best state sequence to represent the vectors. The distribution of the state associated with each
vector can then be used to reconstruct the missing components of that vector. This would however necessi-
tate performing recognition on the damaged utterance in order to obtain the best state setiEniea

computational overhead that we wouldfprdo avoid.

All the spectrogram reconstruction methods described in this chapter, as well as therctasdifica-
tion techniques described in Chapter 4 haveasbeen evaluated g the random-drop paradigm. How-
ever, the primary goal of developing these techniques was to compensate for the effect of additive noise on
speech recognition systems. In the next chapter we evaluaterfbenpance of all these mettis as noise

compensation techniques.
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Chapter 6
Missing feature methods and noisy speech

6.1 Introduction

In the previous chapters we have evaluated several methods to recover data for spectrograms with ran-
dom regions missing. In this paradigm the probability that any given element in the vicinity of a missing
element is observed depends only on the drop fraction, and is independenfact that that element is
missing. Therefore the probability that any of the observed elements in the spectrogram will have a relative

covariance greater than a given threshold with the missing element also depends exclusively on the drop

fraction. If there arel  elements in the spectrogram that havetiaealavariance greater than 0.5 with a

missing element the probability that at least one of them will be obsenled i ,here s the drop
fraction. For example, if there aralg five elements in the spectrogram with a relative covariance greater

than 0.5 with the missing elemeng. if T = 5, the probability that at least one of them is observed when

the drop fraction is 90%0( = 0.9 ) is 0.41. Thus, when elements of the spectrogram are deleted at ran-
dom there is a relatively high probability that a missing element is well correlated to at least one of the
observed elements in the spectrogram even at very high drop fractions. Obviously, for an inconplete spe
trogram method to be usefulhas to work well on the random-drop paradigm. Methods that do not work
well even in this situation can, in general, be expected to perform worse in situations where the errors are
more systematic and some of the missing components have a very low probability of being well correlated
with any of the observed elements. The random-drop paradigm is therefore a very useful paradigm for pre-

liminary evaluation of missing feature methods.

However, except for some special situations such as spectrograms that have been stored on a medium in
which random regions have been corrupted, or transmitted spectrograms where elements have been lost in
transmission, the random-drop model is unrealistic. When deletions in the spectrogram are due to the effect

of corrupting noise the patterns of the missing components are usually much more systematic.

As explained in Sections 3.3 and 3.4, dfiect of corruging noise on speech can be modeled as miss-
ing features by deleting all regions of the spectrogram where the local SNR is below a threshold, leaving

only the cleaner portions of the spectrogram behind. Figure 6.1 shows two such exangpkesr@f
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Figure 6.1 Two spectrographic masks. The left panel shows the mask for speech corrupted by white noise to 10 dB
where all regions with a local SNR less than 0 dB have been deleted. The white regions in théhpieitbeen
deleted. The black regions are the “clean” regions and have been retained. The rigttiase similar mask for
speech that has been corrupted by music to 10 dB. The white regions are the unreliable regiors BiRIdess

than 0 dB and have been deleted.

graphic masks, or deletion patterns in spectrograms, where all elements with local SNR less than 0 dB

have been erased. All white regions represent regions that have been deleted and the blackpregions re
sent regions that have been retained. In one of the examples the speech has been corrupted by white noise
to a global SNR of 10 dB. In the other example the speech has been corrupted by a segment of music, also

to a global SNR of 10 dB.

We observe in these spectrograms that the pattern of missing components is not completely random.
Missing regions in such spectrograms occur in blocks. If any element in the spectrogram is missing it is
highly probable that its neighbors are missing too. Another characteristic of the missing regions is that they
are correlated to the underlying speech spectrum. Valleys in the spectrum are more likebyrtoptedto
lower SNRs than peaks in the spectrum, and are therefore more likely to be deleted. Thus, thef patter
deleted elements is not only likely to be systematic, it can also favor the deletion of some patterns of spec-

tral features over others.

One consequence of systematic block deletions such as these is that is that the elements of the spectro-
gram that have a high relative covariance with any of the missing elearelikzly to be missing as well.

The performance of any incomplete spectrogram method being applied, either for ekissifc for
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reconstruction, is likely to be adversely affected by the block nature of the deletions. Thus, it is not definite
that any missing feature method that performs well on spectrograms with random elements missing will

also perform well with the kinds of deletion patterns seen in noisy speech as well.

An additional factoraffeding the direct application of incomplete spectrogram techniques for noise
compensation is that, even after the highly noisy portions of the spectrogram have been deleted, the
remaining regions are not completely noise free. They continue to have low levels of noiseséistae
performance of any classifigah or reconstruction methods theat coulitioned on these regions is likely

to be worse than their performance on spectrograms of clean speech with identical migsimg r

In this chapter we evaluate and compare #régpmance of classifier-atification methods (class-con-
ditional imputation and marginalization) and the spectrogram reconstruction methods described in Chapter
5 on speech that has been corrupted by white noise. The goal of the spectrogram reconstruction methods
here is not taecreate the corrpsndingnoisy spectrograms from the incomplete spectrograms, but to esti-
mate what the value of these regions would have been had the spectrogram been clean. In thighsituation,
MSE between the reconstructed spectrogram and the complete (noisy) spectrogram israpriaggpp
metric to measure the performance of the misiagure methods. We ¢hefore evaluate the performance
of the spectrogram reconstruction methods solely on the basis of the recognition accuracy obtained with
the reconstructed spectrograms. Another important factor for consideration in noise compensation algo-
rithms is the computational complexity of the algorithms. Procedures that take less time to perform are
preferable to those that take more time. We evaluate the caiopatacomplexity of incomplete spectro-
gram reconstruction methods in terms of the total time taken to recognize an average wteeantey
are used, and compare the computational complexity of spectrogram reconstruction methods with that of

classifier-modification methods.

In many of the recognition experiments reported in the rest of this chapter the recognition accuracy
obtained is shown to Hess than 0%. This is not a paradox. In all experiments recognition accuracy has
been measured in terms of the standard NIST metric. According to this metric errors in recognition are cat-
egorized into three types: substitutions, deletions, and insertions. A substitutioerisrawhere the rec-
ognizer has recognized a word wrongly in an utterance. A deletionégr@nwhere the regnizer has
failed to hypothesize a word that has occurred in the utterance. An insertion is an error where the recog-

nizer has hypothesized a word where there was no word at all in the utterance. The total error is the sum of
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all three types of errors. Since theagnizer can make many insertion errors, the total number of errors
can be much greater than the number of words that were actually uttered. Whesegkpses percentage,
this would be much greater than 100%. Aemy is measured as 100 - (Error percentage). When errors are

greater than 100%, this would become negative.

6.2 Perfor mance of missing feature methods on speech corrupted by noise

The effectiveness of incomplete-spectrogram methods for noise compensation was evaluated by per-
forming recognition experiments on speech corrupted by white noise. Continuous HMMs with 2000 tied
states, each modeled by a single Gaussian density, were trained on the mel spectrograms ef&8&& utt
of clean speech. The test set consisted of 1600 utterances from the RM test set. The utterances in the test
set were corrupted by additive white Gaussian noise (AWGN) and mel spectrograms were obtained from
the noisy speech. All elements of the spectrogram with a local SNR below a threshold were deleted. The

optimal SNR threshold was empirically determined.

An important point to note is that in all the experiments reported in this section the local SNR of each
element in the spectrogram was assumed to be known. This was possible because noisy speech signals
were obtained by corrupting clean speech signals with additive noise. Thus, both the clean speech signal
and the noise-corrupted speech signal were available, and therefore the spectrogram of cleamdpeech
the spectrogram of the corresponding noisy speech could be compared to evaluate local SNR values. In a
real-life situation the local SNR of noisy speech signals would not be kagwaori and would have to be
estimated. In general, this is very difficult problem in itself, and has not been satisfactorily soijaie, t
We address the problem of estimating the local SNR in an unsupervised manner without the use of clean

speech spectrograms in Chapter 8, and propose some solutions to the problem.

6.2.1 Obtaining the optimal threshold

The first step in applying incomplete spectrogram methods to noisy speech is that of deleting all ele-
ments of the spectrogram that have a local SNR below a particular thresholdeiNe tes threshold as
the deletion threshold. The value of this threshoklaffects the patterns of theissing regions and thereby
the performance of the incomplete spectrogram methods. Figure 6.2 and Figure 6.3 showtibie ofria

the recognition accuracy obtained using class-conditional imputatiomarginalization respéieely as a
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function of the deletion threshold, on speech corrupted to a global SNR of 15 dB and 25 dB by white noise.
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Figure 6.2 Recognition accuracy vs. deletion thresholdFigure 6.3 Recognition accuracy vs. deletion threshold
using class-conditional imputation on speech corruptedising marginalization on speech corrupted to 15 dB and
to 15 dB and 25 dB by white noise. 25 dB by white noise.

Class-conditional imputation and marginalization are both seen to be extremely sensitive to the thresh-
old. Unlike in the case of random deletions the performance of class-conditional imputation is seen to be
very poor, resulting in negative recognition accuracies. Furthermore, as the deletion threshold increases in
terms of SNR, the performance degrades rapidly. No optimal deletion threshold can be identifigd. Mar
alization, on the other hand, results in positive recognition accuracies. The optimal threshold for marginal-
ization is observed to vary with the global SNR of the speech. When the global SNR is 15 dB the optimal
deletion threshold is found at 15 dB. When the global SNR is 25 dB, the optimal deletion threshold is 20
dB. However, since theffierence in performance betweasing a 15 dB deletion threshold and a 20 dB
deletion threshold is relatively small in both cases the generic deletion threshold for all noise conditions
has been chosen to be 15 dB. This is the deletion threshold used in all experiments with marginalization
reported later in this section. Since no optimal deletion threshold is identifiable for class-conditional impu-
tation, and also because a minor “bump” is visible in the plots in Figure 6.3 at 15 dB, we use 15 dB as the
SNR threshold for class-conditional imputation as well. We note that this is a high value for the deletion
threshold since now we delete all elements from the spectrogram where the energy of the corrupting noise
is even a thirtieth of that of the underlying speech. Cooke et. al. [Cooke 1999] also report dipsititae
deletion threshold for marginalization found in their experiments was very high. Their estimate of the opti-

mal value of the deletion threshold also translates to about 15 dB.

Figure 6.4 and Figure 6.5 show the recognition accuracy obtained with spectrograms reconstructed by
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cluster marginal reconstruction and covariance joint reconstruction respectively as a functeodeléth

tion threshold, on speech corrupted to a global SNR of 15 dB and 20 dB by white noise. The performance
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Figure 6.4 Recognition accuracy vs. deletion thresholdFigure 6.5 Recognition accuracy vs. deletion threshold
using cluster marginal reconstruction, for speech corusing covariance joint reconstruction of missing ele-
rupted to 15 dB and 25 dB by white noise. A codebookments in a vector, for speech corrupted to 15 dB and 25
size of 512 was used for the reconstruction dB by white noise.

obtained with geometrical reconstruction methods was extremely poor at all thresholds and is not shown.
The performance of cluster time-interpolated reconstruction, although very high when the missing regions
were randomly dropped, is extremely poor on speech corrupted by noise. Presumably this is because the
preliminary estimate of missing regions is obtained by linear interpolation across time, a geometrical

reconstruction method that also performs very poorly on noisy speech.

The optimal deletion threshold for cluster marginal reconstruction and covariance joint reconstruction
is seen to be -5 dB, irrespective of the global SNR of the speealefdiee in the rest ahis thesis this is

the deletion threshold used for all spectrogram reconstruction methods evaluated.

6.2.2 Performance on noisy speech spectrograms

The effectiveness of incomplete-spectrogramhmés$ as noise compensation techniques was measured
on speech corrupted by white noise. Utterances from the RM test corpus were corrupted by white noise to
a variety of SNRs. The noisy portions of the spectrograms of these utterances were deleted and incomplete
spectrogram methods applied to these incomplete spectrograms. The SNR threshold used to delete noisy
regions was 15 dB for all clasgfinodification techniques, and -5 dB for all spectrogram reconstruction

methods.

Figure 6.6 shows the recognition accuracy obtained with marginalization and class-conditional imputa-
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Figure 6.6 Recognition accuracy obtained with margin- Figure 6.7 Recognition accuracy with noisy spectro-
alization and class-conditional imputation on spectro-grams reconstructed by several spectrogram reconstruc-
grams of noisy speech as a function of the global SNRon methods as a function of the global SNR of the
of the noisy speech. The baseline recognition accuracyoisy speech. The baseline recognition accuracy
on noisy spectrograms is also shown. obtained with noisy spectrograms is also shown

tion on spectrograms of speech corrupted by white noise to different levels. The deletion threshold used in
all cases was 15 dB. The figure also shows the recognition performance obtained when the complete noisy
spectrograms are used for recognition directly (without deleting any elements). This is the performance
that would normally have been obtained had no noise compensation been attempted. We refer to this situa-
tion as thebaseline. Marginalization is seen to be a veffective compensation ntedd resulting in large
improvements over baseline recognition accuracy at all SNRs. However, class-conditional imputation is
seen to be completely ineffective. This result is in variance with the results reported by Cooke et. al.
[Cooke 1994], where they reported improvements even with class-conditional imputation, albeit on a dif-

ferent task.

Figure 6.7 shows the recognition accuracy obtained with several spectrogram reconstruction methods.
Linear interpolation along time, single cluster reconstruction, cluster marginal reconstruction and covari-
ance joint reconstruction are all represented. The recognition accuracies obtained with clustgertime-i
polated reconstruction is not shown since its performance was far inferior to those of the methods

represented here, at all SNRs.

Covariance-based regstruction is seen to result in improvements in recognitionracguat most
SNRs. Single cluster reconstruction results in improvements at some SNRs. Multiple-clustertxased re

struction methods are, however, seen to béféctive in general. Renstruction methods that involve any
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geometrical reconstructiomng. linear interpolation along time, and cluster time-interpolated reconstruc-
tion, are observed toepform even more poorly. In general, the improvement obtained usingapact
reconstruction methods over baseline is not large. Comparison of Figures 6.6 and 6.7 also shows that the
performance obtained with spectrogramomstruction methods is significantly poorer on noise-corrupted

speech than that obtained with marginalization.

However, it has been observed that the CMU Sphinxvhich has been used in these experiments,
generates a large number of insertion errors when recognition of noisy speech is performed in the log spec
tral domain. Simply put, the recognizer tends to hypothesize many more words than actually occur in the
utterance. These insertions are usually enumerated as errors. It has also been observed thatrttod proble
the large numbers of insertions is not usually present when recognition is performed with cepstra instead of
log spectra. Figure 6.8 shows the recognition accuracies obtained with cepstra derived from spectrograms
reconstructed with several spectrogram reconstruction methods. It also shows the baseline performance
obtained when recognition is performed with cepstra obtained directly from the spectrograms of noisy

speech (without any compensation). We observe that significant improvement in recognition accuracy is
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Figure 6.8 Recognition accuracy obtained using cepstraFigure 6.9 Comparison of recognition accuracies in the
derived from spectrograms reconstructed by four speaepstral domain, obtained with the best cluster-based
trogram reconstruction methods, at several SNRs. Basend covariance-based reconstruction methods, with the
line recognition accuracy with cepstra derived directlyrecognition accuracy obtained using marginalization in
from the noisy spectrograms is also shown. the log-spectral domain.

10 15
SNR (dB)

obtained over baseline with all the spectrogram reconstruction methods. Even simple linear interpolation
along time results in improvements in recognition accuracy at all SNRs. Interestingly, the performance of
cluster-based reconstruction is superior to that of covariance-based reconstruction at low SNRs, but the sit-

uation gets reversed at higher SNRs.
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Figure 6.9 compares the recognition accuracy obtained in the cepstral domain with the best cluster-
based and covariance-based reconstruction methods - cluster marginal reconstruction, and covariance joint
reconstruction - with thegsformanceobtained in the log-spectral domain with the best classifier-modifi-
cation method, marginalization (since marginalization cannot be performed in the cepstral ddfaain).
observe that the performance of spectrogram reconstruction methods in the cepstral domain is significantly

superior to that of marginalization in the log-spectral domain.

6.2.3 Computational complexity of incomplete spectrogram methods

The computational complexity of an algorithm is a measure of the number of mathematical operations
required by the computer to perform it. The greater the complexity of the method, the greater the number
of operations required, and therefore the greater the amount of time needed to perform it. Ideally we would

require any noise compensation algorithm to be minimally complex and take very little computation time.

To be able to compare the computational complexity of the various incomplete-spectrogram methods
accurately we would need to know the precise number of additions, multiplications, and other mathemati-
cal operations required teegorm themHowever, this number is not a constant for any of these methods
for several reasons:

1) The size of the covariance matrices being inverted in the MAP estimation procedure used by the
spectrogram reconstruction methods is not constant and varies from vector to vector. Consequently,
the number of multiplications needed to invert these matrices is not a constant number.

2) In cluster marginal remstruction, the number of mathematical operations required to marginalize
out missing components is dependent on the number of elements missing in any vector. This is not a
constant.

3) The total number of missing elements in any noisy spectrogram is dependent arahtedktics of
the noise corrupting the signal, and can vary from utterance to utterance.

4) The speech recognition system does not evaluate all possible hypotheses during recognition, but
restricts itself to a small subset of hypotheses through a procedure called pruning [Ney 1992]. The
precise number of hypotheses evaluated varies from utterance to utterance. Thus,thmbmabf

mathematical operations performed by the recognition system is not a constant either.

As a result, the only realistic manner in which the computational complexity of any set of noise com-

pensation algorithms can be compared is on the basis of the total time taken to recognize an utterance,
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Figure 6.10 Average time taken to recognize an utterance of speech corrupted by white noise to 10 dB when various
incomplete spectrogram methods are applied. Recognition was performed using log specieand heterances
were used to obtain these numbers in each case. The utterances were 5 seconds lorggon avera

when these methods are applied.

Figure 6.10 shows the average time taken to recognize an utterance of speech corrupted to 10 dB by
white noise, when marginalization, class-conditional imputation, cluster marginal reconstruction, and
covariance joint reconstruction are used to compensate for noise. The time taken to recognize noisy
speech, without any compensation, is also shown. Recognition was performed using log spectra in all

cases.

When considering the numbers in Figure 6.10 it is important to note that the behavior of the recognition
system is not invariant across all cases. The recognizer usually takes more time to recognize a noisy utter-
ance than it does to recognize a clean one, because many more hypotheses arec¢ovist the speech
is noisy. As a result, the average time taken to recognizeemante ging the log spectra of noisy speech
is actually longer than the time taken to recognize an utterance when spectrogram reconstruction methods
are used to compensate for the noise, although the latter includes the time taken to actually estimate the
missing elements in the spectrogram. fEfigre, it would be incorrect to infer, based on the numbers in
Figure 6.10 that the relative differences between the time taken by claiermi imputation, covari-
ance joint reconstruction, and cluster marginal reconstruction would remain the same at all SNRs. How-
ever, the variation in the time taken by the recognizer to recognize an utterance is not usuahpolage
to account for the ffierence between the time taken by giaalization and that taken by the other meth-

ods. It is therefore resanable to infer that while cluster marginal reconstruction and covariance joint
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reconstruction are approximately equivalent in terms of computational complexity, both of them are far

less complex than marginalization.

In all cases the true SNR of the elements of the spectrograms was&padem, and was used to com-
pute the spectrographic masks. In a real situation SNRs would not be &mpoieni, and spectrographic
masks would have to be estimated. The time taken to estimate these masks would also have to be consid-
ered in measuring the computational complexity of any of the incomplete spectrogram methods. However,
since mask estimation would have to be performed irrespective of the method being usediviheaatat

plexities of the various methods would not change.

6.3 Summary and conclusion

In this chapter we have evaluated the performance of various incomplete-spectrogram methods on
speech corrupted by noise. We have found that the optimal SNR threshold for deleting noisy elements of
spectrograms is greater for classifier-modification methods than it is for spectrogram reconstretttion m
ods. For classifier-modification methods the optimal threshold is found to be around 15 dB, whereas for
spectrogram reconstruction methods it is -5 dB. When recognition is performed in the log-spectral domain
we find that while marginalization is very effective in compensating for noise, among spectrogram rec
struction methods only covariance-based reconstructieffastive. It is faind, however, that the recog-
nizer makes a large number of “insertion” errors when recognition of noisy speech is performed in the log-
spectral domain, which account for the bad performance of the spectrogram reconstruction methods. Whe
recognition is performed in the cepstral domain using cepstra obtained from the spectrograms recon-
structed by the these methods, significant improvements are obtained over baseline. The recognition per-
formance obtained using cepstra derived from the reconstructed spectrograms is also superior to the best
performanceobtained with classifier-modification methods. Thisaffirms our hypothesis that the
improvement obtained by transforming the spectrograms to cepstra far outweighs the advantages of the

optimal classification performed by classifimodification méods.

It was also observed that spectrogram reconstruction methods are rather less computationally expensive
than the best classifier-modification method, marginalization. This is an additional advantage to using

spectrogram reconstruction methods over classifodification methods.



Chapter 6. Missing feature methods and noisy speech 119

In all of the methods described thus far in this thesis, the noisy regions of the spectrogram have been
completely erased and treated as totally unknown. However, in most situations where speech has been cor-
rupted by noise, even the noisy regions of the spectrogram retain some information about the true value of
the spectrogram at that point. In the case of additive noise they give us an upper bound on the true value.

This information can be exploited to improve the performance of missing-feature methods éwan furt

The next chapter deals with the subject of missing-feature methods that exploit the information in noisy

regions of the spectrogram to improve recognitierfggmance.
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Chapter 7
Recognition using spectrograms with unreliable data

7.1 Introduction

In Chapter 3 we described how thifect of corupting noise on speech can be modeled by the deletion
of elements in the spectrogram of the corrupted speech signal. In this chapter we extend this approach to
tag noise corrupted regions of the spectrogram as “unreliable” instead of deleting them from tbe spectr
gram entirely. The implication of tagging an element as being “unreliable” is that the observed value of the
element is not necessarily the same as its true value although it may be related to the true value in some
manner. The spectrograms resulting from such tagaiestill incomplete in the sense that they have sev-
eral elements whose true value is unknown. However, the relation between the observed value of these ele
ments and their true values provides some information regarding the true value. In the event that the
relationship between the values of the unreliable elements and their actual uncorrupted values is com-
pletely unknown, or that the values of the unreliable elements are completely independent of the uncor-
rupted value of the elements, the observed values of the elements convey no information and the elements
can be treated as missing. The advantage with denoting components as “unreliable”, instead of deleting
them altogether, is that the relation between the observed value of these components and their true value

can be used in recognition, or in the estimation of these components.

In order to distinguish these spectrograms from spectrograms where nothing is known about the miss-
ing regions weefer so them agnreliabl e spectrograms (rather than incomplete spectrograms). We refer to
all methods dealing with the problem of recognition based on such spectrogranre! @bl e-spectro-

gram methods.

We would like to establish some definitions relating to data sets with unreliable elements before we
proceed. We distinguish between tizserved value of a data element, and thee value of the data ele-
ment. The observed value of a data element is its measured value. On the other hand the tfi@& value
data element is the value it would have had, had it not been corrupted in any manner. We further distin-
guish between reliable and unreliable data elements. A data elenrehglite if its observed value is
known with certainty to be identical to true value of the element and unreliable otherwise. We call the

mechanism that renders the observed value of the dfdeedi from its true value thanreliability mecha-
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nism. The unreliability mechanism may be any non-invertible transformation that does not permit us to

infer the precise true value of the data from its observed value.

In this chapter we are specifically interested in unreliability mechanisms that ensure that thedobse
value of an unreliable data point is guaranteed to be greater than, or equal to its true value. We call such a
mechanism as lbounding unreliability mechanism. Let us represent the observed value of a data sét by
and thetrue value of these data bY . In reliable regions of the datXset is known to be the sAme as

with certainty, and we refer to the cap®nding set of data elements in these region§,as Yand . Inthe

unreliable regions< may not be the samé&'as  and we denote these regigns asY,, and

The effect of a bounding unreliability mechanism can now be written as

Xr = Yr
(7.1)

We refer to the mblem of estimating the value &, based on the value§of Yand  adehe
ence of unreliable data. The MAP procedure for estimation of missing elements (Section 2n5ed)sita
be modified to estimate the true value of unreliable elem¥pts when the unreliability mechanism is of
the kind described in Equation (7.0 assification with unreliable data, on the other hand, is the problem

of identifying which of a set of classes the dfta  belong to, based oMy on

In speech recognition systems the effect of additive noise can be modeled as the rendering of some
regions of the spectrogram unreliable. Classifnodificaion methods such as marginalization and class-
conditional imputation can be modified for recognition with spectrograms with unreliable regions. The
spectrogram reconstruction methods described in Chapter 5 can also be modified to re-estimate the unre

able regions of corrupted spectrograms.

The next section describes the bounded MAP estimation procedure to estimate the true value of unreli-
able elements in a data set corrupted by a bounding unreliability mechanism. In the following section we
describe how theffect of alditive noise on speech can be modeled as the rendering of some regions of its
spectrogram unreliable. In subsequent sections we describe how conventionaleclasslification

methods and the spectrogram reconstruction methods presented in this thesis can all be modified to work
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with spectrograms with unreliable regions, and how the bounded MAP estimation procedure can be

applied to these cases.

7.2 Bounded M AP estimation

Consider a data sef , consisting of two sub3gfs  Xgnd sucK thai(X,, Xp,) . Assume that
the distribution ofX is known and is given BY(X) X, is known agg is unknown. It is, however,
known thatX, <Y, , wheref,, is the observed value of the data elements Xjjere is unknown. The
expressionX, < Yy means that each elemenXgf is less than or equal to the corresponding element in
Yy. Yy is therefore theipper bound onXy . Tha posteriori distribution of X, is now given by

P(Xp|Xa Xp < Yp) . The MAP estimate oKy,  is therefore given by

A

Xp = argmaxy { P(Xb‘xa, Xp < Yp)t (7.2)

We refer to the estimation described by Bopra(7.2) asbounded MAP estimation. We can expand

P(Xp|Xa Xy < Up) using Bayes’ theorem to obtain

0_P(Xy|Xa) if Xp<Y
P(Xb, XbSYbIXa) — HD(XbSYb‘Xay b="Thb
P(XbSYb‘Xa) 0
0o, else

This is a constrained variant of the standard (unbounded) MAP estimate, which is given by
Xb = argmaxy { P(Xb‘xa)} (7.4)
Comparing Equations (7.2) and (7.3) with Equation (7.4), it is easy to see that when the peak value of
P(Xb‘Xa) occurs for someX <Yy , the bounded and the unbounded MAP estimates are identical. They

only differ when theunbounded MAP estimate lies outside the region bounded by . Figure 7.1 shows

two examples of bounded MAP estimation.

When the distribution ofX is Gaussian aXg has only one component, it is easy to see that the
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a5 Y<=25 /—\ a5l

Figure 7.1 Two examples of bounded MAP estimation. In both figures the ellipse represents the cross seaion of th
Gaussian distribution of the data. The X component of a vector has been observed anskistesplog the solid line

along the X axis. The Y component has not been observed and has to be estimated. HenrBgeaepresenting

the regular (unbounded) MAP estimates for various values of X is given shown by the diagonal line.

Left pandl: The upper bound on Y is 2.5. The bounded MAP estimate of Y (and the complete vector) theretore has
lie within the shaded region and is given by the point where the distribution of all vectors with X=2 is highest, with
the shaded region. In this case the regular MAP estimate of Y (given by the pointhehergression line intersects

the dotted vertical line at the observed value of X) lies within the shaded region. Therefore, the bounded-MAP est
mate for the complete vector is identical to the regular MAP estimate. This is shownthigktdashed line.

Right panel: The upper bound on Y is 1.0. The regular MAP estimate of the complete vector (shown by the thin dot-
ted line) lies outside the permitted region. The point where the distribution of vectors with X<2lipsaon the

actual bound in this situation. The MAP estimate for the complete vectoovgn by the thick dashed line.

bounded MAP estimate of,, is given by

) EMAP(X,)  if MAP(X,) <Y,
Xb = BMAP(X| X5 Xp=Yy) = O (7.5)
o' else
whereMAP(X,,) stands for the unbounded MAP estimatjpf  BMAAP (X, | X5, Xp < Yp) stands
for the bounded MAP estimate o, , conditioned Xg and subject to the BGuEAY)) . In other
words, the bounded MAP estimateXf lies either on the unbounded MAP estimate or on th¥ bound

However, whenX,, has more than one component the situation is more complicated. In this case the

bounded MAP lies on the bounds of some of the componeriXs, of and these components would condi-
tion the unbounded MAP estimate of the rest of the components. Figure 7.2 explains this with an example

where X, has two components.
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3 X<=2

L

Figure 7.2 Examples of bounded MAP estimation when more than one element is to be estimated. bsdlieas
ellipse represents a cross section of the Gaussian distribution of the random vectoadesaliath component§ o
the vector are unknown and are to be estimated. The regions shaded lightly represent the regited ipe the
individual bounds on X and Y. The darkly shaded region is the intersection of both bounds. All valid MAdRessti
must lie in this region.

Panel 1: The bounded MAP estimate lies withinPanel 2: The diagonal line represents the regres-

the bounded region, but on neither bound sion line relating the regular MAP estimate of X to

the corresponding Y. The bounded MAP estimate
lies where this line intersects the Y bound

Panel 3: The diagonal line represents the regre®anel 4: Here the bounded MAP estimate lies on
sion line relating the regular MAP estimate of Y tmeither regression line. Instead it lies at the point
the corresponding X. The bounded MAP estimatghere the X and Y bounds intersect.

lies where this line intersects the X bound.

However, WherP(Xb‘Xa) is Gaussian, it can be shown [APPENDIX B] that the bounded MAP esti-

mate of all the components &,  can be found iteratively. Let us represekit'telement ofX, as
Xp, k- the corresponding element¥f, ¥g, , andctiveent estimate ofX}, aé_(b, k . Then, initial-

izing )_(b, k = Yp 1w 1<k< Ky, whereKy is the total number of elementXin  , the bounded MAP esti-
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mate of all the components &,  can be found by iterating the following equation until it converges.

Xp,k = argmaxd P(X|Xp, (< Y 1o Xq Xbj 00, j 2K}, 1Sk< Ky (7.6)

Equation (7.6) states that if bounded MAP estimates are obtained for each of the eler{gnts of itera-
tively, conditioned on bottX, and the current estimate of the rest of the elemefys of , the estimated

value of X, will converge to its unbounded MAP estimate. The bounded MAP estimates for individual

components can be found using Equation (7.5).

The bounded MAP estimation of unreliable components of data is used to estimate unreliable regions of

spectrograms in several of the methods described in this chapter.

7.3 The effect of additive noise on spectrograms

In spectrograms of noisy speech the values of noisy regions of the spectrogram, while being too noisy
to be used directly for classification @cognition, are nevertheless related to the “true” value of the spec-
trogram in those regions.€ the value the spectrogram would have had, had the speech not been noisy).
The precise relation of these values is dependent on the particular noise corruption mechanism. In this
chapter we assume that the noise corrupting the speech is additive (irrespective of whether it is stationary

or non-stationary) and that it is uncorrelated with the speech signal.

y[Il = s[I] +nfl] (7.7)
wheres[|] represents the clean speech sigifd], represents the corrupting noise sigihd), and rep-
resents the observed noisy speech signal. Let us denote the spectrogfdn ofY as , the spectrogram of
s[l] asS, and the spectrogrammnffl] Ns . TN¢h k) , the valle of  at any point in tHestime
quency plane, is related (t, k) , the valuésof , Ai{d, k) to the valbke of  at the same point in the
time-frequency plane as [Papoulis 1991]

Y(t, k) = S(t, k) + N(t, k) (7.8)

Since the spectrogram of a signal is guaranteed to be positive at all points on the time-frequency plane,

it follows that



Chapter 7. Recognition using spectrograms with unreliable data 126

Y(t, k) = S(t, k) (7.9)

In other words, the value of the spectrogram of the noisy speech signal gives us an upper bound on the
spectrogram of the underlying clean speech signal. Using the reasoning described in Section 3.3 we can
assume that all elements in the noisy spectrogram that have a relatively high local SNR are good approxi-
mations to the corresponding values in the clean spectrogram. The elements with low SNR, on the other

hand, merely give us an upper bound on the value of the clean spectrogram. Considering all elements

whose local SNR is greater than a threshbld  as having a high SNR, our assumption gives us
S(t, k) OY(t, k), SNRy(t, Ky>T

(7.10)
S(t, k) £Y(t, k), otherwise

WhereSNRy(t, K) is the local SNR of(t, k) . The noisy spectrogddm  can therefore be separated into
two componentsY, and, ,whe¥g  consists of all the regions of the noisy spectdogram  whose SNR
lies above the threshold, anj,  consists of all the regiols of ~ whose SNR lies at, or below the threshold.
The components of,  are assumed to bedfiable regions of the spectrogram, since they are assumed

to be good approximations of the corresponding regions in the true spectrBgram , which we denote as

S, . The components of, are thereliable regions of Y, since their values cannot be used to approxi-
mate the corresponding regions®f , which we denot8py ef¥etoS, andS, as theliablecom-

ponents of S and theunreliable components of S respectively. Together they repres&nt  completely. The

relation betweerY, an¥, , and the corresponding regio® & , Sand ,is given by

u
S, ay,
(7.11)
Sus<VY,
Note that the only difference between this situation and that described in Section 3.3 is that instead of
erasing the regions whose local SNR lies below a thresholdrevearking them as “unreliable”. We use

the same terminology as that used for the case of missing components and refer to the patterns of regions

marked unreliable in the spectrograndaletion patterns, or spectrographic masks.

As given by Equation (4.3), restated below for clarity, optimal speech recognition of an utterance is per-
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formed by evaluating

W = argmax,{ P(S|\W)P(W)} = argmax{ P(S;, SU‘W)P(VV)} (7.12)
where W is the estimated sequence of words in the utteranc&Vand is any asbitayce of words.
Ideally, we would want to perform recognition with the true spectrogram of the sBeé&ehwith the true

values of S, andS, . However, we have access onlyto , the spectrogram of the noisy observations
(speech). In Equation (7.11) the valueS)f can be assumed to be known and equal to . The value of

S, however is uncertain, and only its upper bodfid is known.

The similarity between Equation (7.11) and Equation (7.1) is apparent. leveetavattempt to recog-
nize speech based directly on the relation in Equation (7.11), the problem would be that of classification
with unreliable data. This would be analogous to classification with incomplete data, excey tiawv

have the additional constraint imposed by the upper bound on the unreliable components. Alternatively, we

could attempt to estimate the value§)f , based on the value of the reliable comf§nents , constrained

to the upper bound’|, , and use this estimated value for recognition. This would be analogous to the spec-

trogram reconstruction methods described in Chapter 5, except that we would be inferringullee of
unreliable elements, rather than inferring the value pissing elements. Weefer to these nikods also as

unreliable spectrogram reconstruction methods, or simply as spectrogram reconstruction methods.

7.4 Classifier modification methods: Recognizing speech directly with unreli-

able spectrograms

Recognition with unreliable spectrograms is similar to recognition with incomplete spectrograms. The

only difference is that thepper bound on the value of the unknown elements is known.

Conventional classifier-modification methods of classification with incomplete spectrograrosss-
conditional imputation, and marginalization, can be modified to perform classification with unreliable
spectrograms. Cooke et. al. [Cooke 1999], and Josifovski et. al. [Josifovski 1999] report in detail on class-
conditional imputation and marginalization with unreliable spectrograms. We describe some of these

details in the following sections. More can be found in [Cooke 1999] and [Josifovski 1999].
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7.4.1 Class-conditional imputation of unreliable regions in spectrograms

Class-conditional imputation of unreliable regions of spectrograms estimates the v&ye of condi-

tioned on the upper bound,  and uses this estimate for recognition. The bounded MAP estimation proce-
dure is used for the estimation. As in the case of class-conditional imputation of missing regions (Section
4.2), a separate estimate 8f is specific to the word hypothesis being considered. Recognition is per-

formed as

A

W = argmax,{ P(S,, éu,W‘W)P(VV)} (7.13)

whereSy,w is the bounded MAP estimate of the unreliable compofsgnts

A

Su,w = argmaxg{ P(S|S;, S, =Y, W)} (7.14)
whereY , are the values of the unreliable regions of the noisy spectradgram

For HMM-based speech recognition systems where the best state sequence associated with the word

sequence is estimated along with the word sequence, Equation (7.13) gets modified to

A

W = argmaxy, {P(S;, Suw,s

s, W)P(s|W)P(W)} (7.15)
wheres = [s;, S5, S3,...,Sy] represents any valid state sequence that can be generated by the HMM for
W. éu,W,s, the estimate fo5, , is given by

Suw,s = argmaxs{ P(S|S,, Sy < Yy 1, S 31 or s S} (7.16)

We refer to theridividual spectral vectors of the true spectrogi@m S@3 , and separate the reliable

and unreliable components 8{t)  inf§(t)  aBg(t) , respectively. Similarly, we refer to the individ-

ual spectral vectors of the noisy spectrogrém Y &g and separate the reliable and unreliable compo-

nents ofY(t) intoY,(t) andr (t) respectively. The estimat&gf  can now be expressed in terms of

the estimates of the individual terrfsg(t)  as
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Suw,s = [Suw,s(1), Suw.s(2), Suw,s(3), ..., Suw,s(N)] (7.17)

where Sy, w, s(t) refers to thesémates ofS(t) when the word hypothesis being consider®d is  and

the state sequence being consideresl is . Since the HMM assumes that the individual vectors of the spec-

trogram are independent, Equation (7.16) leads to
Su,w,s(t) = argmax{ P(S[S.(t), Sy(t) < Y,(t), )} (7.18)

The right hand side of Equation (7.18) is dependent onlgon , and is independent of both the word

sequencaV and the complete state sequence . The implication of this is that bounded MAP estimates of
the unreliable components of a spectral veeter stimated separately for each state considered during
recognition, using the distribution of that state. To compute the likelihood of any state for any vector, the

estimates for the unreliable components of that vector obtained using the distribution of tlaaé staésl.

We refer to the procedure of classaddional marginalization of unreliable elementdasnded class-

conditional imputation.

7.4.2 Marginalization of unreliable regions in spectrograms

In marginalization, recognition with unreliable spectrograms is performed directly by redefining the
recognizer to use both the reliable components of the spectrogram, and the bounds on the unreliable ele-

ments. Recognition with unreliable spectrograms is performed as

A

W = argmax,{ P(S;, S, < YU‘VV)P(VV)} (7.19)
P(S;, S, <Y, |W) is derived fromP(S|W) as
r u u

Yy Y,
P(S,, Sy Y |W) = IP(Sr, S,|Wyds, = IP(S|W)dSu (7.20)

The optimal recognition would now be defined over the marginal distributions so obtained as
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0 v 0

~ 0 u 0
W = argmax,[P(W) [ P(S|W)dS 7.21
g ME( )_LH ) ﬁ (7.21)

For HMM based systems where the best state sequence is also estimated Equation (7.21) becomes

A~ |:| Y,

u 0
W = argmax\,\,argma@%P(\N)I P(S|s,VV)P(s|VV)dSLH

00

(7.22)
- 0 Y, 0
W = argmamargma&EP(sW\/)P(W)I P(S|s)dSLH

00

The HMM assumption that individual vectors of the spectrogram are independent leads to

P(S|s) = P(S,, Su‘s) = P(5,(1), Sy(1),5,(2),S,(2), ..., S,(N),Sy(N)[s1, Sy, .., SN)

N 7.23
P(S, Su\s) = |‘| P(S;(n), Su(n)\sn) (7.23)
n=1
Combining Equation (7.22) and Equation (7.23) we get

0 0

n 0 N Y, (n) [l
W = argmax,\,argmaxSEP(sM/\/)P(\N) |‘|I P(S;(n), Su(n)\sn)dsu(n)g (7.24)

0 = 0

Since the terms being multiplied in the right hand side of Equation (7.24) are dependent only on the

particular states, , the implication of this equation is that in computing the likelihood of any state for any

Yi(n)
spectral vector during recognitiof,  P(S.(n), S,(n)|s,)dS,(n)  would be computed instead of
r u n u

P(S;(n), Su(n)‘sn). Recognition would be performed using these modified likelihoods.

We refer to this procedure &sunded marginalization since the missing elemengse maginalized

only with the bound.

7.5 Compensating the data: spectrogram reconstruction methods

In this thesis we approach the problem of recognition with unreliable spectrograms as a data compensa-
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tion problem. We estimate the true value of the unreliable regions of spectrograms, conditioned both on the
reliable regions and the bounds on the unreliable regions. Recognition is performed with the reconstructed

spectrogram, or with features derived from it.

The spectrogram reconstruction methods described in Chapter 5 can all be modified to reconstruct
unreliable regions of spectrograms. In the following sub sections we describe geometrical and statistical

methods of estimating the true value of the unreliable regions of spectrograms using bounding information.

We refer to spectrogram reconstruction methods applied to unreliable spectrogtamwsdad spec-

trogram reconstruction methods, or simply as spectrogram reconstruction methods for brevity.

7.5.1 Geometric estimation of unreliable spectrographic components

Geometric reconstruction methods estimate missing components of incomplete spectrograms by linear
or non-linear interpolation between, or extrapolation of the values of, the observed components of the

spectrogram (Section 5.2). When applied to the estimation of unreliable regions these methods would have

to be modified to take the upper bound on the unreliable element into accousftLex k" civn po-

tth

nent of thet™ spectral vector be an unreliable component that has to be estimated(tLk} be the

upper bound on the value thg{t, k)  can have. The simplest manner in which geometric reconstruction
methods can be used to estim&{¢, k) would be as

Cgeom(S(t, k)), geom(S(t, k)) < Y(t, k)

U= i, else

(7.25)

where geom(S(t, k)) is the geometric estimate we would have hadS{oyk) , had it been missing.

S(t, k) is the estimated value &(t, k) . Hegeom(S(t,k))  could be any of the geometrical recon-
struction methods described in Section 5.2 such as linear interpolation across frequency or linear interpola-

tion across time.

However, when the deletion patteire(the pattern of unreliable regions in the spectrogram) has been
induced by noise it tends to be related to the energy in the signal. For example, when speech is corrupted

by white noise all low energy regions would be marked as unreliable, while all high energy regions sur-
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rounding these low energy regions would be marked “reliable”. In this situation, when the values of the
low energy regions are estimated by interpolation between the high energy regions, the interpolation-based
estimate almost always lies above the bound (or the observed value of the unreliable regions) and gets
replaced by the unreliable value itself. As a result, estimates of the unreliable regions frequently become
the observed values of the unreliable regions themselves. Figure 7.3 explains this with an example. As a
result, we do not, in general, expect geometrical reconstruction methods to be effective bncepeec

rupted by noise.

Pl
S
~

Spectral value

5 10 15 20 25 30
Spectral vector index

Figure 7.3 Plot showing an example of bounded linear interpolation along time. The dotted region rephesents
unreliable region that has to be estimated. The dashed line represents the sténtdgedadstained by linear interpo-
lation along time. All the observed unreliable values lie below the linear ahégign based estimate. As a result, the
bounded estimates are simply the original values themselves when the estimate onEgLg) is used.

7.5.2 Cluster-based reconstruction of unreliable regions

Cluster-based reconstruction of missing regions of spectrograms was explained in detail in Section 5.3.
We recapitulate the important points in brief here. In cluster-based reconstruction of missing regions of
spectrograms (Section 5.3) we use the distributions of the spectral vectors to estimate missing regions of
spectrograms. Each spectral vector is assumed to be independent of every other vector. Vectors are
assumed to be segregated into a number of clusters. The distribution of the vectors belonging to each of the
clusters (the distribution of the cluster) is further assumed to be Gaussian. The overall distribution of vec-

tors is given by
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K -9 —5(S-m)Te (5 hy)
P(S) = z (2 Q) “e
k=1

(7.26)

where S represents any spectral vectbr, is the dimensionality of the Wector, is the total number of

clusters in the distribution (codebook size), isdlpeiori probability thatS belongs to tHe!" cluster,
and , and®, are the mean vector and the covariance matrix respectively of the distribution of vectors

belonging to thek™ cluster. In order to estimate the missing regions of incomplete spectral vectors, the

cluster that the vector belongs to is identified, and the distribution of that cluster is used to obtain MAP

estimates of missing regions.

Cluster-based reconstruction techniques can be easily modified to estimate unreliable regions of spec-
trograms (rather than missing regions). The modifications needed are somewhat different when the distri-
bution of spectral vectors is represented by a single cluster, from when it is represented by multiple

clusters.

Single cluster based estimation of unreliable regions: In single cluster based reconstruction all spectral
vectors are assumed to belong to one cluster which is represented by a single distribution. The parameters
of this distribution are simply the global mean and covariance of all spectral vectors. Thus the distribution

of spectral vectors is given by

-§ 3-wets-p
P(S) = (2m Q) e (7.27)
wherepl and® are the global mean and covariance of spectral vegjots. , the unreliable components

of thet ™" spectral vectoS(t) , can now be estimated simply as the bounded MAP estimate

Su(t) = BMAP(S,(1)[S,(1), S,(1) < Y, (1) (7.28)
where Sy(t) is the estimate @ (t) S,(t) is the vector of reliable componer§§tyf Y il is
the upper bound on the value 8f(t) . The bounded MAP estimate for the unreliable regions can be

obtained using the iterative procedure described in Section 7.2.
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We refer to this procedure bBeunded single cluster reconstruction.

Multiple cluster based reconstruction of unreliable regions: In multiple-cluster-based reconstruction,

the distribution of spectral vectors is modeled by multiple clustergshe codebook size in Equation
(7.26)) is greater than 1. Here, oestruction proceeds in two steps. In the first step the cluster that the vec-
tor belongs toj.e. the cluster membership of the vector, is identified. In the second step the unreliable
regions of the vectaare estimated using the distribution of the cluster. Each of these steps has to take the
upper bound on the value of the unreliable region into consideration. There are two ways of incorporating
this bound into the estimation:

1) Bounded marginalization based estimation

2) Preliminary estimate based estimation

The following subsections describe each of these methods in greater detail.

7.5.2.1 Bounded mar ginalization based estimation

In bounded marginalization based estimation we estimate the cluster membership of vectors with unre-

liable components as

ks = argmax P(S, (1), S,(t) < Y, (1) [K)P(K)} (7.29)

where Rg(t) is theestimated cluster membership dB(t) S$;(t) and,(t) is the upper bound on the
value of S (t) .P(S;(t), S,(t) =Y, (1) ‘ K) has to be obtained by integrating the distribution of cluster as

Y, (1) Yu(t)
P(Si(t), Su(t) = Yu(t) k) = | P(Si(1), Sy(t)|K)dSy(t) = | P(S(t)[K)dSy(t)  (7.30)

Equation (7.30) is similar to obtaining the marginal distributiorSgfft) , except that instead of inte-
grating S, (t) from minus infinity to infinity, we only integrate it up to the bodfif(t) . Hence we refer
to this procedure asounded cluster marginal reconstruction.

When the cluster distributions are Gaussian, Equation (7.30) cannot generally be solved easily, espe-

cially whenY,(t) has more than one componést (when more than one component$(t) is unreli-
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able). However, when the covariance matrix of the Gaussian distribution of the cluster is assumed to be
diagonal {.ewhen the various elements of the spectral veatattsn any cluster are assumed to be inde-

pendent of each other) the problem becomes simpler. In this case, if we represent the individual compo-

nents ofS,(t) asS,(t,|) , and the componentsfgft)  Ya&, I) :

Su() = [Su(6 1), Sy(t, 2), ..., §y(t, V)]

[Yu(t, 1), Yu(t,2), ..., Y, (t, U)]

(7.31)

Yu(®)

whereU is the number of componentsSg(t) i.e.the total number of unreliable componentSit) ).

We now have
P(S(t)|k) = P(Sr(t)‘k)P(SJ(t, 1)‘k)P(SU(t, 2)‘k)...P(SJ(t, U)‘k) (7.32)

where the distribution of each of the components is also a Gaussian given by

(St D)~

P(S,(t, I)|K) = ——=—exp [—I—O 5 (7.33)
| y 2T (|) ok (1) D
wherep, (1) anobi(l) are mean and varianc&(f |) , given that it belongs kd'tbleister. Equation
(7.30) now simply becomes
v o (s— (1)
P(S; (1), Su(t) =Y, (t)[K) = P(S,(t)|K) —=——1exp E—I—O S—des (7.34)
| | nJ I T oz(l) o () O

Each of the integral terms in the right hand side of Equation (7.34) is a formesfahéundion (erfc)

and can be looked up from standard tables.

In order to take advantage of the simplicity of Equation (7.34), in multiple-cluster-based representations

it is convenient to model the distributions of the individual clusters as having a diagonal covariance matrix.

Equation (7.34) and Equation (7.29) can now be used to estimate the cluster membership of the spectral

vectors. Once the cluster membership of the vector has been estimated, the distribution of thaamrluster c

be used to obtain a bounded MAP estimat&g(ft) , the unreliable components of the vector.

7.5.2.2 Preliminary estimate based estimation
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In preliminary estimate based estimation, a preliminary estié@(tle) for the unreliable components

of the spectral vectoB(t) is obtained by bounded linear interpolation along time as described in Section
7.5.1. The preliminary estimates of the unreliable regions are used along with the reliable components to

identify the cluster membership &(t)
ks = argmaxd{ P(S,(t), Su(t) |k)P(k)} (7.35)

Once the cluster membership of a vector is identified, the distribution of the cluster is used to obtain

bounded MAP estimates &,(t) , the unreliable components of the vector.

7.5.3 Covariance-based reconstruction of unreliable regions

Covariance-based reostruction methods assume that the sequence of spectral vectors that constitute a
spectrogram are the output of a Gaussian wide-sense stationary (WSS) random process. We recapitulate

the salient points for this model for convenience.

In a WSS process the expected value (the mean) df'thelement of & ™ spectral vectop(t, k) is
independent of where the vector occurs in the spectrogram. The covariance betvdeléﬁ dghement of
the t;" spectral vectorS(ty, k;) and th&k," element of thet,™ spectral vectorS(t,, ky)

c(ty, t,, ky, k) is only dependent on the distance between the two vectors, and not on their actual posi-

tions in the spectrogram.
u(t, k) = p(t+1,k) = p(k)

C(ty, B Ky, ko) = o(ty + T, 1+ T, ky, ky) = ¢(T, ky, ko)

(7.36)

Since the random process is assumed to be Gaussian, the joint distribution of any subset of components
in a sequence of spectral vectors is Gaussian. This permits us to estimate the values of the unreliable com-
ponents of a spectrogram using the bounded MAP estimation procedure for Gaussian distributions
described in Section 7.2. The unreliable elements in the spectrogram can either be individually estimated,
or jointly estimated. In the following subsections we describe the individual and joint estimation of unreli-

able elements in a spectral vector.



Chapter 7. Recognition using spectrograms with unreliable data 137

7.5.3.1 Estimation of individual unreliable elementsin a spectrogram

Let S(t, K) be an unreliable component of the spectrogram with upper bo{tni) S (tek) be
a vector constructed with all those reliably observed components of the spectrogram that have a relative

covariance greater than or equal to a preseshiold T with §(t, k) .i.e. S;(t, k) is constructed of ele-
mentsS(t;, k;) as
St K) = [S(ty, k) S(ty, kp) Stz k) -] (7.37)

such that
rt,—tk,kK)=T (7.38)
for all S(t;, k;) included inS,(t, k) , where(t; —t, ki, K) is defined as

c(t, —t, ki, k)
Jelt k. k)e(t k. K

r(ti —t, ki’ k) = (739)

S(t, k) and S,(t, k) have a jointly Gaussian distribution. Th&f, K) can be estimated as the

bounded MAP estimate
é(t, k) = BMAP(S(t, k) |S,(t, K), S(t, k) < Y(t, k)) (7.40)

We refer to this procedure bBsunded covariance individual reconstruction.

7.5.3.2 Joint estimation of all unreliable elementsin a spectral vector
In joint estimation of unreliable elements of vectors, we find a bounded MAP estimate for all te entir
vector S;(t) with the upper bound,(t)  jointly. We construct a ve&t) of all elements in the spec-

trogram that have a relative covariance greater than a preset thréshold  with at leash@meéeafdnts

in Sy(t).i.e, S/(t) is constructed of elemen&t;, k) as
Si(t) = [S(ty, k) S(ty, ko) S(ts, K3)...] (7.41)

such that

ri—ok,k)=T (7.42)
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for somet , and&k , such that

S(t, k) O Sy(t) (7.43)

S,(t) andS;(t) have a jointly Gaussian distribution. Therefore a bounded MAP estim&@g(tyr

can be obtained as
Su(t) = BMAP(S,(1)[S, (t), Sy(t) < Y (1)) (7.44)

The unreliable elements in each of the spectral vectors in the spectrogram would be jointly estimated in
this manner to reconstruct the entire spectrogram.efée tothis procedure asounded covariance joint

reconstruction.

7.6 Experimental results

It is to be expected that recognition performance obtained withirtheti able-spectrogram methods
described in this chapter should be superior to those obtained usimgdimpl ete-spectrogram methods
described in Chapters 4 and 5 since the bounding information present in the noisy observations is used in

the former. In this section we report some experiments that demonstrate the validity of this assumption.

The recognition performance of all the methods described in this chapter were evaluated on speech cor-
rupted by white noise. Continuous HMMs with 2000 tied states, each modeled by a Gaussian density, were
trained on the mel spectrograms of 2880 utterances of clean speech. The test set consisted of 1600 utter-
ances from the RM test set. The utterances in the test set were corrupted by additive white Gaussian noise
(AWGN) and mel spectrograms using 20 mel filters were obtained from the neisghspll elements of
the spectrogram with a local SNR below a threshold were marked as unreliable. The observed noisy value

of these regions therefore provided the upper bound on the value of the elements in these regions.

The SNR threshold used for tagging elements are “reliable” or “unreliable” were the optimal thresholds
determined in Section 6.2.1. A threshold of 15 dB was used with marginalization and class-conditional

imputation. For all spectrogram reconstruction methods a threshold of -5 dB was used.

In all experiments it was assumed that the local SNR of every element in the spectrogram was known a
priori. This was possible because the noisy speech was obtained by corrupting clean speech with white

noise. Thus, the spectrograms of the clean speech and the noisy speech were both aailltdiiagf
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computation of the local SNR in each element of the spectrogram. In a real situationgqmféhe noisy
utterance is available) the local SNR would not be known. However, here we are only interested in evalu-
ating the performance of the metts described in this chapter in the ideal situation where the local SNRs

are known.

7.6.1 Recognition using log spectra

In this section, we compare the recognition performances of the various methods described in this chap-
ter using a speech recognition system trained with spectrographic features. The recognition system was
trained using the log spectra of clean speech. Only spectral features were ustdrer@eiodouble dif-
ference features were used. Recognition was performed either directly with the spectrograimg of no
speech with some regions tagged as unreliable using classifier-modification methods (marginalization and
class-conditional imputation), or with the reestimated spectrograms (for the spectrogram reconstruction

methods).

Figure 7.4 and Figure 7.5 show the recognition accuracy obtained with classifier-modification methods,
bounded class-conditional imputation and bounded marginalization, as a function of the global SNR of the
noisy speech being recognized and compares them with the performance obtained with regular
(unbounded) class-conditional imputation and marginalizatiomiefing regions in spectrograms.€
when the noisy regions are deleted, rather than being marked unreliable). In all experiments, the local SNR
threshold for marking spectrographic elements as unreliable (or missing) was 15 dB. As can be seen, the
tagging of regions as “unreliable” and using the bounding information present in the noisy observations of
these regions results in large improvements over simply deleting these regions from the spectrogram. In all
cases, recognition accuracies obtained using unreliable spectrogram methods are much greater than those
obtained when recognition is performed with the noisy spectrograms directly (baseline). Similar results
have been reported for these techniques by Cooke et. al. [Cooke 1999]. In fact our experiments show that
bounded class-conditional imputation is a very effective algorithm whereas unbounded class-conditional
imputation is noteffective at all. Bunded marginalization, by virtue of being an optimal classification

method, is still more effective than bounded class-conditional imputation.

Figure 7.6 shows the recognition accuracy obtained with spectrograms reconstructed by several

bounded spectrogram reconstruction methods as a function of the global SNR of the noisy speech. Figure
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Figure 7.4 Comparison of the performance of bounded
class-conditional imputation and (unbounded) class-

conditional imputation on speech corrupted by whitegjg,re 7.5 Comparison of the performance of bounded
noise. marginalization and (unbounded) marginalization on

7.7 shows the recognition accuracies obtained with the corresponding unbounded spectrogram reconstruc-
tion methods. In all experiments the local SNR for tagging elements of the spectrograms as unreliable, or

missing was -5 dB. For the multiple-clesbased nmtods a codebook size with 512 clusters was used.

Geometrical reconstruction methods are rifetctive. Cluser-based reanstruction methods with pre-
liminary estimate based cluster membership estimation perform poorly and are not shown. Heowever
observe that the recognition performance obtained with statistical bounded spectrogram reconstruction
methods is much better than that obtained with unbounded spectrogram reconstruction methods. It is inter-
esting to note that the best recognition is obtained with bounded cluster marginal reconstruction, whereas
unbounded cluster marginal reconstruction is not effective as a noise compensation technique. On the other

hand, the difference betweeaunded an unbounded reconstruction is not so large either for single cluster
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Figure 7.6 Recognition performance with spectrogramsFigure 7.7 Recognition performance with spectrograms

reconstructed using several

unreliable spectrogrameconstructed using several incomplete spectrogram

methods (bounded estimation) on speech corrupted hyethods (using unbounded estimation) on speech cor-

white noise.

rupted by white noise.
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reconstruction or for covariance-based reconstruction.

Figure 7.8 compares the best classifier-modification method, bounded marginalization, with the best
reconstruction methods, bounded covariance joint reconstruction and bounded cluster marginal reconstruc-
tion. It is interesting to note that the performance achieved by bounded cluster marginal reconstruction,
which is a spectrogram reconstruction method, is superior to the performance obtained with bounded mar-
ginalization, which is an optimal classification procedure. However, it may not be possible to make any
inferences regarding the coarptive grformance of the two procedures in genarate the two proce-
dures vary in many aspects including the SNR thresholds, the fact that marginalization of unreliable ele-
ments is performed directly by the recognizer making #réopmancesubject to the idiosyncrasies of the

particular search algorithm used by the recognizer, etc.
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Figure 7.8 Comparison of the recognition performance of the best classifier-modification methods with performance

obtained with the best spectrogram reconstruction methods on speech corrupted by white noise.rBesgtiition
accuracy obtained with noisy speech spectrograms is also shown.

7.6.2 Recognition using cepstra

Recognition experiments with log spectra only give us the relative performance of elassdifica-
tion methods and spectrogram reconstruction methods in a perfectly fair setting. However, the true test of
the spectrogram reconstruction methods is the performance of recognition using cepstra denited fr

reconstructed spectrograms, where much better recognition accuracies can be expected.

The experiments reported in this section were performed on a speech recognition system trained with
cepstra. 13 dimensional cepstra obtained from the 20 dimensional mel-spectral vectors of clean speech

were used to train the recognizer. The reconstructed spectrograms used for recognition in therggperim
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reported in Section 7.6.1 were transformed to 13 dimensional cepstra for recognition. The setup used was
identical to that used for the log-spectrum based experiments. Continuous HMMs with 2000 tied states,

each modeled by a Gaussian density, were trained. No delta or double-delta features were used.

Figure 7.9 shows the recognition ammy obtained with gestra computed from the spectrograms
reconstructed by spectrogram reconstruction methods. For comparison, the recognition accuracy obtained
using boundednarginalizaion with a log-speca-based reagnizer is also shown (singearginalization

cannot be performed on a cepstra-based recognizer).

100 —— Cluster marginal estimation
— — Correlation joint estimation
----- Single cluster estimation
aor Bounded Marginalization
-— Baseline

Recognition Accuracy (%)

20 25

10 15
SNR (dB)

Figure 7.9 Recognition accuracy obtained with cepstra derived from spectrograms of speech corrupted by white
noise reconstructed by several bounded spectrogram reconstruction methods. The performance vatitaine
bounded marginalization, and baseline recognition accuracy obtained with cepstra derived directly frampecois
trograms are also shown.

We note that in the case of unreliable spectrogram methods the trends in the recognition accuracy in
log-spectra-based recognition are repeated in cepstra-based recognition. Methods that result in improve-
ment in the log-spectral domain result in improvement in the cepstral domain as well. We furthertnote tha
even the simplest statistical reconstruction technigeesingle cluster reconstruction, results in better rec-
oghnition accuracy overall with cepstra-based recognition than the best etassifiificaton method with
log-spectra based recognition. In general, the supeeidonmance due to performing mgnition in the
cepstral domain outweighs the advantages of the optimal classification being performed by marginaliza-

tion since the latter has to be performed in the log-spectral domain.

Among the spectrogram reconstruction methods, geometrical reconstruction is completely ineffective
and is not shown. All statistical reconstruction techniqueefieetive.However, the relative diffrences
between some of them are seen to be reduced. The difference between lsingldeduster reconstruc-

tion and bounded covariance joint reconstruction is much lesser when recognitdioimpd in the cep-
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stral domain than when it is performed in the log-spectral domain. Our experiments show that bounded

cluster marginal reconstruction remainsfaithe best méod in the cepstral domain as well.

7.6.3 Computational complexity of bounded methods

The application of the bounds increases the computational complexity of all incomplete-spectrogram
methods. Bounded marginalization and bounded cluster marginal reconstruction require the computation
of error functions in order to obtain bounded marginal distributions of observed elements in spectral vec-
tors. This is not required when bounds are not considered. Bounded class-conditional imputation, bounded
covariance joint reconstruction, and bounded cluster marginal reconstruction require the computation of
bounded MAP estimates, which can be an iterative process in the worst case and can involvebgevera
parisons against bounds in the best case. As a result, the time taken to perform all of these methods

increases.

Figure 7.10 shows the average time taken to recognize an utterance of speech corrupted to 10 dB by
white noise when marginalization, class-conditional imputation, cluster marginal reconstruction, and cova-
riance joint reconstruction are used along with bounds. Recognition was performed using log spectra in

every case.

Comparison with Figure 6.10 affirms that the usage of bounds does indeed increase the computational

complexity of all the methods shown in the figure. As in the case of unbounded methods, we observe that

Bounded
45 Margimatization
40
935
@
£ 30
225 Bound: Bound:
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a 10 700 :
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Figure 7.10 Average time taken to recognize and utterance of speech corrupted by white noise to 10 dB when various
unreliable-spectrogram methods are applied. Recognition was performed using log spectra.
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bounded spectrogram reconstruction methods are significantly less expensive than bounded marginaliza-
tion (the best classifier-modification method). Among spectrogram reconstruction methods we note that
bounded cluster margina¢éconstruction is significantly more expensive than bounded covariance joint
reconstruction. It was observed that bounded cluster marginal reconstruction took four times longer than
covariance joint reconstruction to reconstruct spectrograms. The time taken to perform imtegtiit

the reconstructed spectrograms was approximately the same in both cases.

7.7 Improving the reiability of thereliable regions of spectrograms

So far we have tagged regions of the spectrogram as being reliable if the local SNR exceeds a threshold
T, and unreliable if it does not. Representing individual elements of the observed noisy specifogram  as
Y(t, k) , and the individual elements of the clean spectroggam S(tak) , we have

S(t, k) OY(t, k), SNR/(t,k)>T (reliable)

(7.45)
S(t, k) £Y(t, k), otherwise (unreliable)
where SNR, (t, k) is the local SNR 0f(t, k) . Therefore
S ay,
s,<Y, (7.46)

All the methods described so far in this chapter have attempted to deal with the uncertainty in the value

of §,, assuming the value @  was known. The valu&of appsoximated by Y, . However, the ele-
ments ofY, are not free of noise. In fact, the SNR of its elements can be as low MR ttreesholdT

which is -5 dB for the spectrogram reconstruction methods. If the val& of could be better approxi-
mated, the speech recognition performance of unreliable-spectrogram methods can be expected to

improve. This would imply estimating,  from the valueX§f , instead of simply approxim&ing by

Y

r-

Several methods have been proposed in the literature that attempt to estimate the spectrum of the under

lying clean speech from the spectrum of noisy speech [Boll 1979] [Moreno 1996]. While any one of these
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can be used to estimaf  frofi  , we use spectral subtraction [Boll 1979] to do so.

Spectral subtraction is a method of canceling additive uncorrelated noise from a noisy speech signal. A
running estimate of the spectrum of the corrupting noise signal is maintained, and subtracted from the
power spectrum of the noisy speech. Spectral subtraction takes advantage of the fact that tbe transit
from the non-speech regions to speech regions in any utterance is usually abrupt, indicated by a sudden
increase in the energy in the signal. Thus, any quick increase in the energy in the speech signal is assumed
to indicate the onset of speech. All regions deemed to be non-speech can be used to estimate the noise

spectrum.

The initial portion of any utterance is assumed to contain only noise, and the spectrum of this region,
i.e. the average of the first few spectral vectors in a spectrogram, is used to initialize the edtiimate
noise spectrum. Thereafter, the estimate oikﬂ‘?e‘requency band of the noise spectrum inttWeanaIysis

window is given by

) HL-MN(t=1, K) + AY(t k), if(Y(t K) < BN(t, K))
N(t k) = O (7.47)

(t—1,k), otherwise
where Y(t, k) is thek™ frequency band of the!" spectral vector of the noisy speech. is rise

update factor. (3 is thethreshold factor used to identify the onset of speech. Once the estimate of the noise

spectrum is known the estimate of the clean speech spectrum is obtained from the noisy spectrum as
S(t, k) = Y(t, K) —aN(t, k) (7.48)

a is anoversubtraction factor, and is incorporated in Equation (7.48) to account for the possibility that

the noise spectrum may be underestimated. We use the simpler notation

S(t, k) = Specsub(Y(t, k))
) (7.49)
S = Specsub(Y)

to indicate thatS(t, k) has been estimated fri¥, k) using spectral subtraction, as given in Equation

(7.48), and that the spectrogrdsn  has been obtained by performing spectral subtraction on every compo-



Chapter 7. Recognition using spectrograms with unreliable data 146

nent of Y . The relation between the true spectrogram and the noisy spectrogram can now be stated as

ér = Specsub(Y,)

7.50
S, <V, (7:50)

The estimate o6, and the bound $p given in Equation (7.50) can be used in the unreliable spectro-
gram methods, instead of the relations in Equation (7.46). The only modification would be that the value
associated with the “reliable” regions of the spectrogram woul&geesub(Y,) , instedd of . We
refer to unreliable spectrogram methods that use spectral subtraction to estimate the rgi@ideofe
spectrograms asreliable-spectrogram methods with spectral subtraction. In particular, we refer to spec-

trogram reconstruction based methods that use spectral subtraction to estimate reliable regiotne-of spec

grams aspectrogram reconstruction methods with spectral subtraction.

Figure 7.11 shows the recognition aeies obtained with the best s$ifier-modification method,
bounded marginalization, and with the best spectrogram reconstruction methods, bounded covariance joint
reconstruction and bounded cluster marginal reconstruction, when spectral subtraction was used to

improve the estimate ob, . The recognition accuracy obtained when recognition is perforentlgt di

with spectrally-subacted speech (and no unreliable spectrograthads are applied) is also shown. Fig-

ure 7.12 shows the absolute improvement in recogn@muracy in each of these thetls due to using
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Figure 7.11 Recognition accuracy obtained with severalFigure 7.12 Absolute improvement in recognition accu-
unreliable spectrogram methods on speech corrupted ligcy due to estimating reliable portions of spectrograms
white noise, when the reliable portions of the spectrousing spectral subtraction. This is the difference
gram are estimated using spectral subtraction. The rebetween the recognition accuracy shown in Figure 7.11
ognition accuracy obtained using spectrally-subtracte@nd the recognition accuracy shown in Figure 7.8
logspectra, and the baseline are also shown.
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Figure 7.13 Recognition accuracy obtained with cepstra derived from spectrograms reconstructed with tha-combin
tion of bounded spectrogram reconstruction methods and spectral subtraction. Recognition perfeithamepstra
derived directly from spectrally-subtracted speech and baseline recognition accuracypstith @derived from noisy
speech are also shown.

the spectrally-subtracted estimateS)f  instead of approximating it¥yith

Improving the estimate db, by spectral subtraction is seen to result in significant improvement in the

recognition accuracy obtained with all the methods. In all cases, recogmitioracy obtained with unre-
liable spectrogram methods was faeater than the baseline reodtgpn accuracy (obtained by performing

recognition directly on noisy spectrograms), as well as that obtained with spectrally-subtracted speech.

Figure 7.13 shows the recognition accuracy obtained when spectrograms reconstructed by spectrogram
reconstruction methods with spectral subtraction, i.e bounded cluster marginal reconstruction and bounded
covariance joint reconstruction, were transformed into cepstra and recognition was perfongedcep-
stra-based recognizer. The baseline recognition accuracy obtained when recognition is perfeotied di
with cepstra of noisy speech and the recognition accuracy obtained with cepstra of spectral subtracted
speech are also shown for comparison. Comparison with Figure 7.9 shows that large improvements in per-
formance are obtained by preliminary spectral subtraction of reliable regions of spectrograms, even when

recognition is prformed in the cepstral domain.

Overall, we see from Figure 7.13 that very large improvements in recognition accuracy arebéehieva
when bounded spectrogram reconstruction methods with spectral subtraction are used to compensate for

corrupting noise, when the local SNR of elements of the spectrogram are &moieni.
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7.8 Recognition of speech corrupted with non-stationary noises

We had mentioned at the outset in Chapter 1 that one of the important goals of attempting to compen-
sate for noise with missing-feature methods was to be able to compensate for non-stationary noises. How-
ever, in all the experiments reported with incomplete-spectrogram and unreliable-spectrogram methods so
far in this thesis we have used stationary white noise as the corrupting signal. It is therefore important to
determine the extent to which unreliable spectrogram method=factéive on speech capted by non-

stationary noise.

Figure 7.14 shows the recognition amy obtained when bounded spectrogram reconstruction meth-
ods (with spectral subtraction) were applied to speech corrupted with music. The local SNR of each ele-
ment of the spectrogram was assumed to be kn&&nognition was performed in the cepstral domain
with a recognizer trained on cepstra. The baseline recognition accuracy obtained when recognition was
performed diretty with the music-corrupted speech, as well as the recognition accuracy obtained with

spectrally-subtracted speeateshown.

We note that unreliable spectrogram methods are haffdgtive on speech corrupted by music as well,
when the local SNR of the elements in the spectrogram are known. For example, the recognition accuracy
obtained with spectrograms reconstructed by cluster-based reconstruction when the global SNR of the
noisy speech is 5 dB is very close to that obtained with clean, uncorrupted speech. Note that spectral sub-
traction is not effective here, due to the non-stationary nature of music. Spectral subtraction aswhether

ventional techniques are ordffective when the coupting signal is stationary or slowly varying.
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Figure 7.14 Recognition accuracy obtained when bounded spectrogram reconstruction methods are applied to speech
corrupted by music to several SNRS. Baseline recognition accuracy, and recognition accuraay whtagpectral
subtraction alone are also shown. Recognition was performed in the cepstral domain in.all cases
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7.9 Summary and conclusions

We have seen in this chapter that by tagging noisy regions of spectrograms as “unreliable” instead of
deleting them altogether, and by appropriately modifying incomplete-spectrogram methods to consider the
upper bound on the value of the spectrogram provided by the noisy observations large improvements can
be made in recognition accuracy. Thexfprmance of both classifieradification methods, and the spec-
trogram reconstruction methods proposed in this thesis is observed to improve significantly with this

approach.

The best recognition performance obtained with the spectrogram reconstruction methods proposed in
this thesis are seen to be comparable with, or better than, the performance obtained with the best current
classifier-modification method, bounded marginalizatieren when recognition is performed using log
spectra. When recognition is performed using cepstra derived from reconstructed spectrograarfsythe p
mance obtained with the simplest spectrogram reconstruction method, bounded single cluster reconstruc-
tion, is superior to that obtained with boundedrginalization on log spectra. Large improvatseare
obtained with spectrogram reconstruction methods on speech corrupted by music as well, when the local
SNR of the elements of the spectrogram are known. The performance of these methods appears to be inde-

pendent of the kind of corrupting noise, once the local SNRs are known.

It is interesting to observe that the improvement in the performance of marginalization and cluster ma
ginal reconstruction due to the usage of the upper bound on unreliable elements is far greater than the
improvement in either single cluster reconstruction or covariance-based reconstruction methods. In fact,
bounded marginalization based reconstruction is the effesttive of all spectrogram regstruction meth-
ods, whereas alluster-based methods were ineffective when bounds were not used. We observe that both,
marginalization and cluster marginal reconstruction involve classification of some kind. In maaginaliz
tion, the optimal state sequence representing the utterance is identified. In cluster marginal reconstruction
the cluster that the clean spectral vector belongs to is identified. It may therefoferbelithat the incor-
poration of the upper bound on the value of the unreliable elements improves classification performance
far more than it improves the estimation of their values. Thus, all methods which involved classificat

were seen to improve much more than methods that did not involve classification of any kind.

As in the case of incomplete spectrograms, bounded geometrical reconstruction methods were com-
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pletely ineffective in compensating for noise. It is clear that noisy regions of spectrograms cannot simply
be estimated by simple interpolation or extrapolation of the reliable portions of the spectrogram. The prior
statistical information used by the statistical reconstruction methods is essential for effective reconstruc-
tion. Among statistical reconstruction methods, bounded cluster marginal reconstruction was seen to be
significantly superior to bounded covariance-based reconstruction methods. However, the latter are com-

putationally less expensive than the former.

Recognition accuracy can be further improvedediymating the true value of reliable regions, instead
of simply approximating them with the less noisy portions of the noisy spectrogram. Overall, large
improvements in recognition performarae achievable onoise corrupted speech by using the unreliable
spectrogram methods (in combination with spectral subtraction). For example, the recogaitiacyaof
speech corrupted by music to 0 dB goes up from less than 10% when the noisy speech is used directly for

recognition to over 60% when clestbased reanstruction of unreliable regions is performed.

However, the results reported in this chapter are all subject to the condition that the spectrographic
masks that distinguish the reliable regions of the spectrogram from the unreliable ones are known per-
fectly. These masks were obtained using perfect knowledge of the local SNR of each of the elements in the
spectrogram. As such, they only establish an upper bound on what is achieveable using missing feature
methods. It is therefore more correct to say that large improvements in recognition accupatgntadly

achievable on noise corrupted speech by using unreliable-spectrogram methods.

In a real situation, the local SNR of the spectrographic elements would not be known and the spectro-
graphic masks would have to be estimated. Needless to say, any procedure that estimates spectrographic
masks is likely to make errors, and therefore the performance of unreliable g@entmethods can be
expected to be worse when estimated masks are used, than when maskasiraed ofith perfecknowl-
edge of the local SNR of the elements of the spectrogram. Needless also to say, unreliabgrapectr
methods that do not function with perfect knowledge of the local SNR and perfect knowledge of deletion
patterns cannot be expected wfprm with estimated deletion patterns. Thus, geometrical reconstruction
methods cannot, in general, be expected to perform well on noise corrupted speech. We do not consider

them any further in this thesis.

Estimation of deletion patterns can be a very complicated task. At the greatest detail, this would entail



Chapter 7. Recognition using spectrograms with unreliable data 151

estimating the local SNR of each element of every spectral vector in the spectrogram. At tis levaise
we only need to distinguish between the components of the spectrogram that are heavily corrupted and

those that are relatively less corruptee.we only need to be able to decide whether the local SNR in the

elements lies above the threshdld  or below it. Even this latter estimation can be very difficult.

In the next chapter we discuss the estimation of deletion patterns, and the performance of unreliable

spectrogram methods with estimated deletion patterns.



Chapter 8. Estimating the locations of corrupt regions in spectrograms 152

Chapter 8
Estimating the locations of corrupt regionsin spectrograms

8.1 Introduction

In the preceding chapters we have described several techniques that improve the recagfotion p
mance on noisy utterances of speech by reconstructing the noisy regions of their spectrograms. We have
demonstrated that considerable improvements in recognition accuracy can be obtained with these methods,
even when the corrupting noise is non-stationary. However, in all the experiments reported thus far, we
have assumed that the spectrographic masks that distinguish the reliable regions of the spectrogram from
the unreliable regions were knowrpriori. In any real situation the true spectrographic masks would not
be available. For any solution based on missing-feature methods to be complete it is therefore also neces-

sary to estimate the spectrographic masks themselves.

We refer to the true spectrographic maskerasle masks, and estimated spectrographic maskestis

mated masks, for brevity.

The estimation of spectrographic masks only involves the estimation of very simple, binary information
about every element in the spectrogram - we only need to determine whether any element is noisy or not.
However, even this simple binary assessment can be a very difficult task. This is especially so when the
noise corrupting the speech is non stationary. Other researchers working on missing-feature-based
approaches to noise compensation have all attempted to estimate these masks based on running estimates
of the spectrum of the noise [Cooke 1997][Cooke 1999], and have reported varying degrees of success
with these methods, depending on the kind of noise being considered. Another popular method of identify-
ing spectrographic masks is based on the hypothesis that the energy of highly noisy elements of spectral
vectors is significantly dierent fromthose with low noise [Hirsch 1995]. The histogram of spectral ele-
ments in any frequency band over a given time window would therefore exhibit two peaks, one each repre-
senting the noisy elements and the clean elements respectively. Spectrographic masks are derived based on
estimates of the noise spectra obtained as ffexahice in the psitions of the two peaks [Cooke 1999]. No

other method has been employed to identify masks to the best of our knowledge.

In this chapter we address the problem of automatically estimating the spectrographic masks for noisy
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speech. We first analyze the effect of errors in the spectrographic masks. Theredfteuas three meth-

ods of estimating spectral masks. In the first method we use a running estimate of the spectrum-of the cor
rupting noise to identify low SNR regions on the spectrograms. This is essentially the method described in
[Cooke 1997] and [Cooke 1999]. Since the running noise estimate is obtained using the noise estimation
method in spectral subtraction, we refer to this methogbexral -subtraction-based mask estimation. In

the second method we use the noise spectrum estimate obtained by the most successful noise compensation
technigue in our repertoire, the vector Taylor series algorithm or VTS, to estimate spectral masks. We refe

to this method a¥TSbased mask estimation. In the third method we train a simple two class classifier to
identify noisy regions of the spectrograms, and thereby the spectrographic mas&ge ke this meod
asclassifier-based mask estimation. Finally we describe experimental results with spectrographic masks so

obtained.

In the rest of this chapter we restrict our discussion to only two of the spectrogram reconstruction meth-
ods described so far:

1) Bounded covariance joint reconstruction

2) Bounded cluster marginal reconstruction

All analysis and experimentation has been done with these methods only. However, the results obtained
are generalizable to other methods as well. Results with classifier-modification methods are not shown
since, in general, baseline recognition accuracy with the cepstra of noisy speech is not significaatly wo
than the recognition accuracy obtained with bounded marginalization in the log-spectral domain, even with

oracle masks.

In all the experiments reported in this chapter the RM database, and the CMU Sphinx-1ll r@cognit
system was used as in other chapters. All recognition experiments were performed using cepstra derived

from reconstructed log spectra.

8.2 The effect of errorsin mask estimation

The ability of missing feature methods to compensate for noise depends critically on the accuracy of the
spectrographic masks used. Errors in the spectrographic mask can cause the recognition peréérmanc

missing feature methods to degrade significantly.
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Errors in spectrographic masks can be one of two kinds: reliable elements of the spectrogram may be
declared unreliable, or unreliable elements may be tagged as being reliabldeMe tiee first type of
error as dalse alarm. We refer to the second type of error asiss. The effect of false alarms is that clean
elements of the spectrogram are tagged as being noisy andrafertheeonstructed. Theffect of nisses
is that noisy elements of the spectrograma treated as bey reliable, and are used directly for recognition.
The effect of bothype of errors is not the same. In the case of misses the worst case would be when all
noisy elements are tagged as being clean. The recognition performance in this case (assuefigigiehe r
regions of the spectrogram have all been tagged correctly) is simply the baseline recognition performance
that is obtained with noisy speech, since the spectrograms simply remain unprocessed. The worst case sce-
nario for false alarms, however, is much worse. Here, all reliable regions of the spectrogtdngetou
tagged as being unreliable. Therefore, assuming that all unreliable regions of the spectrogomectye
tagged, the spectrogram would be assumed to have no reliable elements at all. As a result neither recogni-

tion with, nor reconstruction of, the spectrograms would be possible.

The effect of false alarms and misses on the performance of missing feature methods isdllumstrat

Figure 8.1 and Figure 8.2. For the plot in Figure 8.1 random false alarms were introduced intottbe spec
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Figure 8.1 Recognition accuracy with cepstra derived Figure 8.2 Recognition accuracy with cepstra derived
from reconstructed spectrograms, as a function of thGom reconstructed spectrograms, as a function of the
fraction of reliable elements in the spectrogram thafraction of unreliable elements in the spectrogram that
were erroneously tagged as being unreliable were erroneously tagged as being reliable

graphic mask of speech corrupted to 15 dB by white noise. No misses were introduced. The figure shows
how the recognition grformance of the unreliable-spectrogranttmes degrades as the fraction of clean
elements wrongly identified as being unreliablergases. igure 8.2 similarly shows how theireor-

mance degrades when random missesimtroduced into spectrographic masks. We observe that recog-
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nition performance degrades very quickly with increasing fraction of false alarms. However, theitgensitiv
of all missing-feature methods to misses is not so much, and the performance degrades much more slowly

as the fraction of noisy elements identified as being reliable increases.

We can infer from Figures 8.1 and 8.2 that it is critical for any algorithm that estimates thre-spec
graphic masks of noisy speech to make minimal false alarm errors. Misses, on the other hand, are not so

critical.

8.3 Estimating spectrographic masks using spectral subtraction

As mentioned in Section 7.7, spectral subtraction is a procedure that attempts to cancel additive uncor-
related noise from a noisy speech signal. To do this, a running estimate of the spectrum of the corrupting
noise signal is maintained as follows: the initial portion of any utterance is assumed to contain only noise,
and the spectrum of this regidre. the first few spectral vectors in a spectrogram, are used to initialize the
estimate of the noise spectrum. Thereafter any sudden increase in the energy in the noisy speech signal is

assumed to indicate the onset of speech and regions in the speech whose energy falls lies below a given
threshold are assumed to consist only of noise. The estimate Iof*‘thtequency band of the noise spec-
trum in thet analysis window is given by

) HL-MN(t=1,K) +AY(t K),  if(Y(t, k) < BN(L, K))
N(t, k) = O 8.1)

(t—1,k), otherwise
The noise estimate so obtained can be used to estimate the SNR of spectrographic elevifgri}. If

is the observed value of thé" frequency band of the™ spectral vector in the noisy spectrogram, the esti-

mate of the SNR o¥(t, K) would be given by

_ Y(L K =N(t K)
N(t, k)

SNR(t, k)

(8.2)

Spectrographic maskse etimated simply by tagging all elements of the spectrogram whose estimated
SNR is lower than a thresholl . Variants of this method of estimating spectrographic masks have been

reported in [Cooke 1997][Cooke 1999].
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Figure 8.3 Percentage of reliable elements in the spectrogram correctly identified by thalspgatraction-based
mask estimate as being reliable (accuracy) vs. percentage of unreliable elements falsigdidsritieing reliable
(false alarms). The percentage of misses in the mask would be (100 - acclinacylimber beside each point indi-
cates the deletion threshold used.

The estimate SNR given by Equation (8.2), by nature of being an estimate, is not identical to the true
value of the SNR. Any spectrographic mask derived on the basis of these estimates is likelyanede

ous as well. The degree of error, as measured by the fraction of misses and false alarmsirimatiee est

spectrogram, depends on the valudof  used. It would therefore havea@hgy chosen.

Figure 8.3 plots the relation between the percentage of reliable elements correctly identified and the
false alarm percentage for various valued dffor speech corrupted with white noise to 15 dB and 25 dB.
The knee of the curve is seen to b& at 2.5 dB for both cases. At higher thresholds thetfon of false
alarms increases greatly. At lower thresholds the missesase.T was therefore chosen to be 2.5 dB:
any elementY(t, k) whose local estimated SMERIR(t, k) , was below 2.5 dB was assumed to be unre-

liable. Note that this threshold isféirent from theoptimal deletion threshold for obtaining spectrographic

masks when the true SNR of the spectrographic elements was known (Section 6.2.1).

8.3.1 Experimental results with spectral-subtraction-based mask estimation

In order to evaluate spectral-subtraction-based mask estimation experiments were run on speech cor-
rupted by white noise and music to several different SNRs. Spectral-subtraction-based eras&s-w

mated and bounded spectrogram reconstruction methods applied to these masks.

1. These were obtained by comparing the estimated spectrographic mask with the true spectrogs&phic
for the noisy speech.
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Figure 8.4 shows an example of the estimated spectrographic mask faranagttcorrupted to 10 dB
by white noise. Figure 8.5 shows thede (true) spectrographic mask for the same utteransgalhtom-
parison of the two figures shows that the estimated mask resembles the oracle mask, at least at a gross
level. Figure 8.6 shows the recognition accuracy obtained with unreliable spectrogram methods on speech
corrupted by white noise using estimated masks. Figure 8.7 shows the recognition accuracies obtained on
the same utterances when oracle masks were used with these missing feature methods. We note that the
recognition accuracy obtained with the estimated masks is much greater than the baseline recognition

accuracy obtained with the cepstra of noisy speech. This is indicative that spectral-subtractiomais&sed

1

Figure 8.4 Spectrographic mask estimated using specFigure 8.5 Oracle spectrographic mask for the same
tral-subtraction-based estimation for an utterance ofitterance.
speech corrupted to 10 dB by white noise.
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Figure 8.6 Recognition accuracy obtained by applying Figure 8.7 Recognition accuracy obtained when incom-
incomplete spectrogram methods with spectrographiplete spectrogram methods are used with oracle masks
masks estimated by spectral-subtraction-based estim#& compensate for additive white noise.

tion, for speech corrupted by white noise. Baseline rec-

ognition accuracy for the noisy speech, and the

performance obtained when only spectral subtraction is

used to compensate for the noise are also shown.
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estimation can beffective on speech canpted by white noise. In general, it can be expected that spectral-
subtraction-based estimation of spectrographic masks will be effective in situations where spectcal subtra
tion itself iseffective. Spectraubtraction is known to be effective when the noise corrupting trechps
stationary or slowly varying. It can therefore be expected that for such noises spectrographic mbsks ca
estimated and missing feature methods can effectively be used to compensate for the effecis# thre

speech recognition systems.

However, Figures 8.6 and 8.7 also show that the recognition accuracy obtained with the estimated
masks is much poorer than that obtained with oracle masks, especially at low SNRs. There is,,therefore

considerable scope for improvement in the masks even when the corrupting noise is white.

Figures 8.8 and 8.9 show the estimated mask and the oracle mask for an utterancénaghapées
been corrupted to 10 dB by music. It is clear from these figures that spectral subtraction is completely
unable to estimate the mask when the corrupting noise is music. Figure 8.10 shows the recognition accu-
racy obtained with spectrogram reconstruction methods on speech corrupted by music, when estimated
masks are used. Figure 8.11 shows the recognition performance obtained on the same utterances when ora-
cle masks are used. Spectrogram reconstruction methods are completely ineffectivpestsating for
music when the estimated spectrographic masks are used. Once again, it is clear from these figures that
spectral subtraction is completely ineffective as a mask estimatithmocherhen the corrupting signal is

music.

8.4 Estimating spectrographic maskswith VTS

Vector Taylor Series (VTS) is a noise compensation algorithm that attempts to reduce thef &ffec
ear filtering and additive noise on the log-spectral vectors of noisy speech [Moreno 199@). If repre-
sents thet ™" log spectral vector for the utterance that has been corrupted by linear filtering and additive

noise, andX(t) is the value that would have been observed had the speech not been corrupted in any man-
ner, then it can be shown that the relation between the two is given by [Acero 1991]:

Y(t) = X(t) +H +log(N —H = X(t)) (8.3)

whereH is the logarithm of the squared magnitude of the spectrum of the impulse response of the linear
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Figure 8.8 Spectrographic mask estimated using specFigure 8.9 Oracle spectrographic mask for the same
tral-subtraction-based estimation for an utterance ofitterance.
speech corrupted to 10 dB by music.
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Figure 8.10 Recognition accuracy obtained with spec-Figure 8.11 Recognition accuracy obtained when
trographic masks estimated by spectral-subtractionincomplete spectrogram methods are used with oracle
based estimation, for speech corrupted by music. Baseaasks to compensate for music.

line recognition accuracy for the corrupted speech is

also shown.

filter, and N is the log spectrum of the noise. It is assumed that the noise is stationary, anetbat ek
in the spectrum of the noise corrupting individual spectral vectors (each representing one analysis window
of speech) are attributable only to differences in realization of the same random precessirfhation

error). It is further assumed that the distribution of the log spectrum of the noise in the various analysis

windows is Gaussian, with a megi;, , which also represents the estimate of the true log spectrum of the

noise, and variancey

The distribution of the log spectra of clean speech is assumed to be a Gaussian mixture. The set of

parameters of the Gaussian mixtuée, , are learned from a training corpus of clean speech. The proble



Chapter 8. Estimating the locations of corrupt regions in spectrograms 160

25dB 5dB 10dB
1007 25dB 0dB O a .
-10 dB
Q9
N
)
g
3
S 706548
< o——o Global SNR 15 dB
»——a Global SNR 25 dB
60[
10dB
50 . . . . . . ,
0 10 20 30 40 50 60 70

Misses (%)

Figure 8.12 Percentage of reliable elements in the spectrogram correctlyfieeénty the VTS-based mask estimate
as being reliable (Accuracy) vs. percentage of unreliable elements falsely identified as béitey (false alarms).
The number beside each points indicates the deletion threshold used.

addressed in VTS, within the framework of this formulation, is the maximum likelihood estimation of the
channel parametdd , and the mean and the variance of thepngise, 2y and . Representingdige set o
spectral vectors of the noisy utterance¥as |, the estimate is given by

H, Hy, Zy = argmaxy  s{ P(Y[H, W, Z, ®)} (8.4)
OnceH ,uy , and, have been estima¥¢(t) is estimated Y using an MMSE estimator.

The mean valugly  of the noise log spectrum is also the estimate of the true log spectrum of the noise.

It can be used to estimate the local SNR of the elements of the spectrogram of the noisy slféed). If
is the value of th&™" frequency band of theth spectral vector in the noisy spectrogram, and we represent

the k' frequency component gfy, iy (K) , the estimate of the SNR(bfK) would be given by

Y(t k) —pn(k)

SNR(t k) = =150

(8.5)

Spectrographic masks are computed based on the estimated SNR values by tagging all elements in the
spectrogram for whiclBNR(t, k) lies below a threshdld  as unreliable. Figure 8.12 plots the percentage

of reliable elements correctly identified against the false-alarm percentage for various ofaluefor

speech corrupted with white noise to 15 dB and 25 dB. The knee of the curves is seen to be between 5 dB
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Figure 8.13 Spectrographic mask estimated using VTS-Figure 8.14 Oracle spectrographic mask for the same
based estimation for an utterance of speech corrupted tdterance.
10 dB by white noise.
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Figure 8.15 Recognition accuracy obtained with spec-Figure 8.16 Recognition accuracy obtained when
trographic masks estimated by VTS-based estimatiorincomplete spectrogram methods are used with oracle
for speech corrupted by white noise. Baseline recognimasks to compensate for white noise.

tion accuracy for the corrupted speech is also shown.

and 0 dB. The thresholfl  was therefore set to be at 2.5 dB

8.4.1 Experimental results with VTS-based mask estimation

Figure 8.13 shows an example of the spectrographic mask estimated by VTS-based mask estimation for
an utterance corrupted to 10 dB by white noise. We observe that the spectrographic mask obtained using
VTS-based estimation is a very good approximation to the oracle mask shown in Figure 8.14. Figure 8.15
shows the recognition accuracy obtained with unreliable-spectrogram methods using masks estimated by
VTS-based estimation. We observe that VTS-based mask estimation is also very effective in terms of the

recognition accuracy obtained when these masksusedvith unreliable spectrogram methods. Large
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Figure 8.17 Spectrographic mask estimated using VTS-Figure 8.18 Oracle spectrographic mask for the same
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Figure 8.19 Recognition accuracy obtained with spec-Figure 8.20 Recognition accuracy obtained when
trographic masks estimated by VTS-based estimatiorincomplete spectrogram methods are used with oracle
for speech corrupted by music. Baseline recognitiormasks to compensate for music.

accuracy for the corrupted speech is also shown

improvements in recognition accuracy over baseline are achieved at all SNRs. Comparison witB.&igure

also shows that the recognition accuracy obtained using VTS-based spectrographic mask estimates is sig-
nificantly greater than that obtained with spectral-subtraction-based mask estimates. The difference
between the performance obtained with oracle masks and the performance with estias&tedmuch

smaller when the masks are estimated using VTS-based estimation.

Figure 8.17 and Figure 8.18 show the mask obtained with VTS-based estimation and the oracle mask
respectively for an utterance of speech that has been corrupted to 10 dB by music. As in the case of spec-
tral-subtraction-based mask estimation, the mask obtained by VTS-based estimation is a very poor approx-

imation to the oracle mask. Figure 8.19 shows the recognition accuracy obtained on speech corrupted with
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music, when masks estimated using VTS are used in conjunction with spectrogram reconstruction meth-
ods. We observe that the performance obtained with unreliable spectrogram methods is very poor, fre-
guently resulting in recognition accuraciesver than the baseline. VTS-based estimation is ineffective

when the corrupting noise is music.

8.5 Estimating spectrographic masksusing a classifier

Spectrographic masks essentially separate the elements of the spectrogram out into two classes - the
class of unreliable elements, and the class of reliable elements. Each element of tbgrapebelongs to
one of these two classes. In clagsibased estimation of spectrographic masks we therefore treat the prob-

lem of estimating spectrographic masks as one of classification.

Each element of the spectrogram is represented by a vector of features for the purpose of this classifica

tion. We refer to this vector as thotassification vector. In our experiments the classification vector

Y(t, k) representing each elemevift, K)  of the spectrogram was constructed as

Y(t, k)
N Y(t+1,k)=Y(t—1,k)
Y(t, k) = Y(t, k+1)=Y(t, k—-1) (8.6)

Yt+1, k+1)-Y(t-1,k-1)
Y(t-1,k+1)-Y(t+1,k-1)
While there are other ways in which the classification vector representing any element of the spectro-
gram can be constructed, it is expected that such a vector would capture information aboutithe ofiria

the elements in the spectrogram that would be useful for classification.

We use a simple bayesian classifier to classify each element of the spectrogram as belbegitg eit
the reliable or the unreliable class. Separate classifiers are used for each frequencymdamgunsepec-
tral vector. Individual elements of the spectrogram are assumed to be uncorrelated to edoh tthe
purpose of classification and classification of the individual elements of the spectrogram is done indepen-

dently of other elements in the spectrogram. If we represent the parameters of the distribution of reliable

elements in th&™" frequency band of the spectral vectors in the spectrograms gs and the parameters
of the distribution of unreliable elements@®g ,  , the vall{, k) of the spectrographic mask {h the

frequency band for theth spectral vector is given by
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Hreliable  if P(r)P(Y(t, k)| @, ) 2 P(U)P(Y(t, k)| ®,, )
M(t, k) = O (8.7)
Ehnreliame if P(U)P(Y(t, k)| Dy ) > P(r)P(Y(t, K)|®, )

whereP(r) andP(u) are thepriori probabilities of the reliable and unreliable class, respectively. Ide-
ally, thea priori probabilities of the classes would be specific to the global SNR of the speech - at low
SNRs the fraction of elements that are noise corrupted (and thereby unreliable) can be expected to be

higher than at high SNRs. However, since the global SNR of the utterance being recognized is not known

beforehand in most real situations, the same valu&y{ bf Péul have to be used at all SNRs.

Figure 8.21 plots percentage of reliable elements correctly identified against the falspatzentage
for various values oP(r) for speech corrupted with white noise to 5 dB, 15 dB and 25 dB. We observe
that the best value d?(r) , given by the knee in the curve is between 0.7 and 0.8 in all cases with some
variation.P(r) was therefore chosen to be 0.8.

In general, since misses are less expensive (in terms of their effect on recognition accurdajgetha

alarms, it is better to choose a higpriori probability for the class of reliable elemerf&r)

1001

=~ Global SNR 25 dB
e—o Global SNR 15 dB ...--B09
a---a Global SNR 5 dB

Accuracy (%)

) 10 20 30 40 50 60

Misses (%)
Figure 8.21 Percentage of reliable elements in the spectrogram correctly idériifithe mask as being reliable
(Accuracy) vs. percentage of unreliable elements falsely idenhtifie being reliable (false alarms). The number
beside each points shows the value used foa firéori probability of reliable regions.
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8.5.1 Experimental results with classifier-based mask estimation

Classifier-based mask estimation was evaluated on both speech corrupted by white noise, and speech
corrupted by music. Ideally, the mask estimation procedure would be independent of the type of noise cor-
rupting the speech and the same distributions would be used to represent the reliable and unreliable classes
irrespective of the kind of noise corrupting the speech signal. In our experiments, however, it was assumed
that the type of noise corrupting the speech was krewrori. Therefore, for experiments with white
noise the classifier was trained with speech corrupted with white noise. For experiments with music the

classifier was trained with speech corrupted by music.

8.5.1.1 Experiments with white noise

To estimate spectrographic masks for speech corrupted with white noisgle reliable/unreliable
classifier was trained for each frequency band using speech corrupted by white noise to d#veral S
between 0 dB and 30 dB. The spectrographic masks for all utterances being recognized were estimated
using this classifier. We refer to such a classifier &iraclassifier since the global SNR of the speech
being recognized is not assumed to be known beforehand. Figure 8.22 shows an example of a spectro-
graphic mask estimated by classification for an utterance of speech corrupted to 10 dB by white noise. Fig-

ure 8.23 shows the corresponding oracle mask for the utterance.

Recognition experiments show that spectrograms reconstructed with masks estimated using such a clas-
sifier result in recognition accuracies that are comparable with those obtained with spectrafiautbtrac
based mask estimation. Figure 8.24 shows the recognition accuracies obtained using masks estimated by
classifier-based estimation. Comparison with Figure 8.6 (recognition performatfcepectral-subtrac-

tion-based masks) shows that the t@ve very similar.

If the classifier used to estimate spectrographic masks for a noisy utterance is trained using speech cor-
rupted to the same SNR as the speech being recognized, the performance of the mask estimation can be
improved even further. We call such a classifi@heating classifier since it is assumed that the global
SNR of the speech being recognized is knapriori. Figure 8.25 shows the recognition performance
obtained when spectrographic masks are estimated using such a cheating classifier. Masks obtained with

cheating classifiers are seen to result in much greater accuracies than masks obtained with aiir classif
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Figure 8.22 Spectrographic mask estimated using a fairFigure 8.23 Oracle mask for the same utterance
classifier for an utterance of speech corrupted to 10 dB
by white noise
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Figure 8.24 Recognition accuracy on speech corruptedrigure 8.25 Recognition accuracy on speech corrupted
by white noise, with unreliable spectrogram methoddy white noise, with unreliable spectrogram methods
using masks obtained by a fair classifier using masks obtained by a cheating classifier

8.5.1.2 Experimentswith music

For experiments with music a single reliable/unreliable classifier was trained for each frequethcy ba
using speech corrupted by music to several SNRs between 0 dB and 30 dB. Spectrographic masks for all
utterances corrupted by music were estimated using these classifiers. Figure 8.26 shows the estimated
spectrographic mask for an utterance of speech corrupted to 10 dB by music. Figure 8.27 shows the recog-
nition accuracy obtained with masks estimated using this classifier. We observe that a small improvement
in recognition accracy is obtained at all SNRs over blase using covariance-based estimation. This is an

improvement over the performance using either spectral-subtraction-based estimation or VTS-based esti-
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Figure 8.26 Spectrographic mask estimated for anFigure 8.27 Recognition accuracy on speech corrupted
utterance corrupted by music to 10 dB using a “fair"with music using masks estimated by a fair classifier.
reliable/unreliable classifier.

167

20F ] 20
18 f 18
16 f 16

L 14F 7 14

[} [}

© ©

S12p 7 S12

5 2

1o f 10

s =
8t f 8
6f f 6
4t 7 4
2t 2

0.5

1
Time (Secs)

25

Time (secs)

Figure 8.28 Spectrographic mask estimated for theFigure8.29 Oracle mask for the same utterance
same utterance as the one above using a cheating classi-

fier.

100

[+
S

Recognition Accuracy (%)
3

=  Cluster marginal estimation
Correlation joint estimation

Baseline

10 15
SNR (dB)

20

25

1001
S
N—
> L —_—
380 - = = ="
b - - —
S — -
< —~ - ../-‘
.E P /’/
g 400 - 7
gi . %:/ ——  Cluster marginal estimation
S L .z — — Correlation joint estimation
,.% 20 -z ]
T —--  Spectral subtraction
== —--  Baseline
0 5 10 15 20 25
SNR (dB)

Figure 8.30 Recognition accuracy on speech corruptedrigure 8.31 Recognition accuracy on speech corrupted
with music using masks estimated with a cheating claswith music using oracle masks

sifier.



Chapter 8. Estimating the locations of corrupt regions in spectrograms 168

mation, where no improvement was obtained at all. However, even for elabsi$ied estint@n, the rec-
ognition performance obtained with bounded cluster marginal estimation based on the estimated masks is
poorer than the baseline performance. Also, it is doubtful whether the improvement in recognition ac

racy seen with covariance-based reconstruction is significant and waytydower to other experimés.

The performance of classifier-based mask estimation for speech comigitedusic can be improved
significantly using aheating classifier, where the classifier is trained using speech corrupted to the same
global SNR as the speech being recognized. Figure 8.28 shows the mask estimated by a cheating classifier
for the same utterance represented in Figure 8.26 The oracle mask for theefstaown in Figure 8.29
It can be seen that the “cheating” mask is a much better approximation foathe mask than the one
obtained using a fair classifier, or any of the other methods described earlier. Figuised®3the recog-
nition performance obtained by applying incomplete spectrogram methods with the cheating masks on
speech corrupted by music. We note that a significant improvement over baseline is obtained using the
cheating masks with both cluster-based reconstruction and covariance-based reconstrufetodrthén
performanceobtained with cluster-based reconstruction using the estimated masks is comparable to the
performance obtainedith covariance-based reconstruction using oracle masks, shown in Figure 8.31, at

most SNRs.

8.6 Discussion and Conclusions

All of the spectrographic mask estimation methods described in this chapter have been reasonably suc-
cessful at estimating masks for speech corrupted by white noise. The recognition accuracy obtained using
spectrogram reconstruction methods with the estimated spectrographic masks are significantly higher than
the baseline recognition accuracy obtained with cepstra derived directly from the noisy speeththa fa
recognition accuracy obtained with cluster marginal reconstruction in conjunction with spectrographic
masks using VTS-based estimation is significantly higher than the performance obtained with VTS, our
best algorithm to compensate for white noise prior to the work reported in this thesis. Figure 8.32 compares
the recognition accuracy obtained using VTS compensation, and cluster marginal reconstruction and cova-
riance joint reconstruction with VTS-based estimation of spectrographic masks, on speech corrupted with
white noise to several SNRs. We observe that the performance obtained with covariance joint reconstruc-

tion is comparable with that obtained with VTS, and that obtained with cluster marginal reconstruction is



Chapter 8. Estimating the locations of corrupt regions in spectrograms 169

100f —— Cluster marginal estimation
— — Correlation joint estimation
-—-- VTS

----- Spectral subtraction
Baseline

801

601

401

201

Recognition Accuracy (%)

0 5 10 15 20 25
SNR (dB)
Figure 8.32 Comparison of recognition accuracies obtained on speech corrupted with white noise with VTS compen-
sation, and with incomplete spectrogram methods using spectrographic VTS-based spectrographicemaskesTh

for VTS and covariance joint reconstruction are almost coincident and therefore indistibguisha

in fact significantly higher than that obtained with VTS compensation, especially at low SNRs.

All of these methods of mask estimation can also be expect to perform equally well on other stationary
or quasi-stationary noises. However, their performance on speech corrupted by music is very poor. The

reason for this poor performance is easy to understand in each of the methods.

The spectral subtraction noise estimate given by Equation (8.1) is based on the assumption that the
underlying speech signal varies much faster than the noise [Hirsch 1995]. Music violates this assumption.
As a result, the noise estimator described by Equation (8.1) is unable to estimate the noise spectrum, and

spectrographic masks based on SNR values computed using these estimates of the noise spectrum are also

erroneous.

VTS makes the explicit assumption that the corrupting noise is stationary. In fact, we only obtain a sin-
gle estimate of the noise spectrum over the entire utterance, and masks are obtained based on this estimate
of the noise spectrum. The procedure can be modified to work with short, sliding windows of speech, to
compute a time varying estimate for the noise spectrum. However, such a procedure would still be con-

strained to tracking only slowly varying noises. It would not be able to track noises whose spectrum varies

as fast as that of music.

Of the three methods, classifibased metids of estimating spectrographic masks hold the most prom-
ise. They have been seen to perform quite well on speech corrupted bynwisie. The performance
obtained on white noise with the “cheating” classifier is, in fact, comparable with that obtainadnsith

compensation. While the performance of unreliable spectrogramodgon speech corrupted by music
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using spectrographic masks obtained with “fair” classifiers is not significantly better than the baseline, a
significant improvement in recognition accuracy is obtainable when cheating classifiers are used to obtain
the masks. This is, in fact, the first time that any consistent improvement has been obtained on speech cor-

rupted with music.

We note here that although we refer to the case where the classifgirhas knowledge of the global
SNR of the speech being recognized as a “cheating” classifier, this may be a misnomer. It is relatively easy
to estimate the global SNR of speech corrupted by white noise to within a few dB of the true SNR [Hirsch
1995]. Thus it is quite possible to perform the classification in two steps, the first identifying the global

SNR of the speech, and the second using the appropriate classifier for the mask estimation.

A more serious problem is the assumption that the kind of noise corrupting the speech signal is known
a priori. Implicit in this assumption is the assumption that the kind of noise corrupting the speech that is
used to train the classifier is identical to the kind found in the test data. While this is possible for many
commonplace noises, such as car noise, or even factory floor noise, the sheer variety of sounds in music
makes it highly unlikely that the precise type of musical sounds used to train the classifier will also be

found in the test utterance.

However, many possible solutions suggest themselves to this problem such as adapting the classifier to
the kind of sounds found in the test utterances. In the following, concluding, chapter of this thesis, we dis-

cuss them among several other issues.
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Chapter 9
Summary and Conclusions

9.1 Summary of major results and contributions

In this thesis we have tried to improve recognition accuracy of noisy speech by developing data com-
pensation techniques based on the missing-feature paradigm. In the missing-feature paradigm noisy
regions of spectrograms are identified and deleted to minimizeffibet of corupting noise, resulting in
incomplete spectrograms with missing regions. Recognition is performed based on the information in the

incomplete spectrograms.

Conventional missing-feature methods modify the recognizer to perform recognition with the incom-
plete spectrograms. The missing regions are not reconstructed. Instead, the manner in \alpicstdtie
ori likelihoods of sound classes is computed is modified. While this is theoretically optimal, it introduces
the constraint that recognition has to be performed using the spectrogram itself. It is well known that
speech recognition accuracy is much higher wresfopmedwith features such as cepstra which are com-
puted from spectrograms by various transformations. As a result, while conventional +faasimg
methods result in recognition performance that is fairly robust to corruption by noise, the best recognition
performanceobtained when using these methods (which is the recognigdiormanceobtained with
spectrograms of clean speech) is frequently inferior to the recognition accuracy obtam#uewiepstra

of noisy speech.

What is unique about the work in this thesis is thategenstruct the missing portions of the spectro-
gram to get complete spectrograms, so that cepstral (or related) features can be deritieenfrofme
recognition rformancebtained using this approach is superior to that obtained using conventional meth-

ods. To the best of our knowledge, this approach has not been tried prior to this thesis.

There are several other advantages to this approach. The reconstruction methods we propose are based
on very simple statistical models of the distribution of spectrograms and are computationally much simpler
than the best current techniques. Also, the recognizer need not be modified in any manner sinte the
noise compensation procedure including the identification of noisy regions of spectrograms, reconstruction

of the regions, and derivation fefatures is done independently of the recognizer.
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We propose several spectrogram reconstruction methods and focus on the two most effective ones,
cluster marginal reconstruction and covariance joint reconstruction. The proposed spectrogram recon-
struction methods in this thesis were found to be extremely effective at compensating for additive white
noise. The recognition performance obtained was significantly superior to the performance atithined
our previous best algorithm, VTS. On non-stationary noise it was found that the techniques developed
could be very successfully applied, provided the spectrographic masks identifying the noisy regions of the
spectrograms could be accurately estimated. Thus, the problem of compensating for non-stationary noises
has been reduced to one of reliably estimating spectrographic masks. While the problem of estimating
spectrographic masks has not been completely solved for the case of non-stationary noises, it has been
shown that class#ir-based estimation of spectrogin&c masks is a viable approach to solving this prob-

lem.

The missing-feature-based noise compensation methods developed in this thesis are the best data-com-
pensation solutions to compensating for white noise developed to dateafEhalgo a partiadolution to
the problem of compensating for non-stationary noises, reducing the problem to one of reliably identifying
spectrographic masks. The problem of estimating masks is one of estimating very crude, binary informa-
tion regarding the degree of corruption in the various elements of the spectrogram, and may be much more
tractable than the problem of actually tracking the spectrum of the noise. ®theonsider the meth-
ods developed in this thesis to be a first serious step towards compensating for non-stationary noises as

well.

The complete noise compensation procedure consists of two steps:
1) Identification and deletion of the noisy regions of the spectrograms

2) Reconstruction of the deleted regions

The following sections describe our findings on these issues in reverse order.

9.2 Reconstruction of missing regions

A spectrogram can be visualized as a surface on a two dimensional support, where the two dimensions
are time and frequency. Incomplete spectrograms are surfaces where giome géthe surface are miss-
ing. When the missing elements of the spectrogram are randomly distributed it was found that they could

be effectively reconstructed by simple geometrical methods such as linear and non-linealatiger In
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this situation it was found that Bar interpolabn was generally moreffedive than non-linear interpola-
tion. Also interpolation along the time axis was much more effective than interpolation along the fre-

guency axis.

Much better reconstruction was obtained when the missing regions were reconstructed on the basis of
the statistical properties of the elements of spectrograms of clean speechusiénéased reconstruction
methods proposed in this thesis assume that spectral vectors are segregated into a number of clusters, each
of which has a Gaussian distribution. The resulting mixture Gaussian distribution is used to reconstruct the
missing regions of spectral vectors. These methods only use the statistical correlations among tifferent e
ments of a spectral vectdrd, correlations across frequency) to reconstruct the missing components of the
vector.Covariance-based reconstruction methods, on the other hand, model the sequence of spectral vec-
tors in the spectrogram as the output of a WSS random process and use the statigticaeteps of this
process to reconstruct missing regions of the spectrograms. These methods use pairwise statistical correla
tions among all elements of the spectrograe ¢orrelatons both across frequency and across time) to
reconstruct missing regions. It was found that covagdmsed nthods resulted in superior reconstruc-

tion compared to clust-based nthods when random elements of the spectrogram were missing.

When the missing regions of the spectrogram are induced by corrupting noise they do not occur at ran-
dom locations. Instead, they occur in blocks and are related both to the spectrum of the corrupting noise
causing the deletions and to the spectrum of the underlying speech itself. In this situation it was found that
geometrical reconstruction techniques, or any methods that involved reconstruction based only on the
geometry of the spectrogram, were completely ineffective. Recognition accuracies obtainegpsiith c
derived from spectrograms where noisy regions were deleted and reconstructed by geometrical methods
were comparable to those obtained with cepstra derived from the noisy spectrogram itself. However recon-
struction based on the statistical properties of the spectrogram was more effective. In partioglair, rec
tion accuracies obtained with cepstra derived from spectrograms reconstructed by covariahce-base
reconstruction methods were seen to be significantly superior to the baseline accuracy obtained using the
cepstra of noisy speech. For cluster-based reconistnydt was found that modeling the distribution of
spectral vectors by a single cluster resulted in comparable or better recognition accuracies thag mode

the distribution by a number of clusters.

When speech is corrupted by additive noise the observed value of any element of the spectrogram is the
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upper bound on the true value of that element since the spectrogram now represents the sum of the energie
in the speech and the noise. Therefore, while it is still appropriate to delete the noisy regiong@f spect
grams, the observed value of these regions are an upper bound on their true value and can be used to condi-
tion the estimates of the missing regions. It was found that when the estimates of missing regions were
conditioned by these upper bounds, they i@rsuperior tdhose obtained when bounds were not used. In
particular, it was found thakecognition accuracies obtained when reconstruction wesrmed with the

best cluster-based reconstruction methddster marginal reconstruction, recognition accuracies on

speech corrupted to 10 dB by noise were comparable to the accuracy obtained on clean speech, provided
the spectrographic masks identifying the noisy regions of the spectrogram to be deleted were accurately

known.

Another factor affecting reconstruction is the fact that even the regions of the spectrogram that have not
been deleted are affected by noise. It was found that reducing the noise level in these elemerttalby spec

subtraction prior to reconstruction improved reconstruction still further.

9.2.1 Discussion

Analysis of the covariance between the different elements of the spectrshoava that covariance
across frequency is greater than covariance across time. However, due to the finite length of the spectral
vectors (only 20 elements in our experiments), the number of neighboring elements available to recon-
struct any point is much more restricted when reconstruction is based only on elements within the same
vector, than when it is based on elements of different vectors. As a result, linear interpolation along time

results in better reconstruction than interpolation afoaguency.

Geometrical reconstruction methods base the reconstruction of missing regions only on the regions that
are present in the spectrogram. Since these regions have also been corrupted by noise, even in the best
case, the reconstructed regions would be at least as noisy as the remaining regions. Additionally, when
blocks of elements are missing, simple interpolation-based reconstruction completely ignoresdteel expe

nature of speech spectrograms and the correlations between their elements.

Among statistical reconstruction methods, covariance-based reconstruction methods use the covari-

ances both across time and across frequencerform reonstruction. Cluster-based methods base the
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reconstruction only on covariances between different elements of the same vector. As a result, covariance
based techniques are able to identify many more observed elements in the spectrogram to base the recon-
struction on and their performance is consequently better than that ei-tlased reanstruction when

the bounds on the values of the missing regemesiot considered. Among clustbased reconstruction
methods, it was found thatdreasing the number ofudters does not improve reconstruction in any man-

ner. This seems to indicate that the global distribution of spectral vectors is as well modeled by a single

Gaussian as it is by a mixture of Gaussians, for the purpose of reconstruction.

When the observed value of noisy regions is used as an upper bound in the estimation the performance
of multiple cluster based reconstruction improves dramatically. The bounding information improves the
accuracy of identification of the cluster that any vector belongs to, thereby localizing the region in which
the reconstructed vectors can lie very effectively. The identification of clusters is teaerassification
problem. The bounding information is seen to improve the accuracy of classification muchreaodie g
than it does the accuracy of the reconstruction, given the distribution of the complete vector. As a result,
the improvement in multiple-cluster-based methods is much greater than that of single-cluster-based recon-

struction or covariance-based reconstruction.

9.2.2 Relative merits of the reconstruction techniques

Cluster-based reconstruction techniques are seen to be superior to covariance-based lieconstruct
when the upper bounds on the values of the missing regions are known. However covariance-based recon-
struction methods still hold some advantages. First, they are seen to be the superior reconstruction method
when no information about the missing regions is availalbde fo bounding information is available).
Second, they are far less computationally expensive than cluster-based methods. Thus they would be the

methods of preference where computational expense is an issue.

9.3 Identification and deletion of the noisy regions of the spectrograms

Accurate identification of noisy regions of spectrograms, orsfieetrographic masks, is crucial for
missing-feature based noise compensation methodsaffdmive. We havahown that if spectrographic
masks can be accurately identified spectrogram reconstruction methods can be used to compensate very

well for fairly high levels of noise. However, errors in the estimation of the masks can causefohe p
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mance of these methods to degrade quickly.

Conventional methods use spectral-subtraction-based running estimates of the noise spectrum to iden-
tify noisy regions of the spectrogram. We have evaluated three methods of estimating masks: spectral-sub-
traction-based mask estimation, VTS-based mask estimation, and etdsssied maskséimation. Of the
three, spectral-subtraction-based mask estimation is similar to the procedure used in conventional methods.
VTS-based estimation and classifbased estimi@in are new techniques that have been introduced in this

thesis.

It was found that all three methods were effective in estimating masks for speech corrupted by white
noise. The best performance was obtained using VTS-based mask estimation. The combination of VTS-
based mask estimation and the best cluster-based reconstruction method resulted in the best recognition

accuracies obtained with any data compensation method to date.

None of the mask estimation methods weifective on speech capted by music. However, it was
found that if the type of music corrupting the speech and the global SNR of the corrupted speech were
known a priori, good estimates of the masks were obtained with clessifised estimation, anaysifi-
cant improvements could be seen in recognition accuracy. Similar results have been reported by Seltzer

[Seltzer 2000].

Discussion

Estimation of the spectrum of a random process is a difficult task. It is necessary toshificieantly
long sample of the process to obtain reliable estimates. It is important that the spectrum of the noise does
not vary much within this segment. Spectral subtraction, VTS, and other methods of estimating the spectra
therefore work best when the noise spectrum is stationary or slowly varying. They agffeeiye when
the corrupting noise is white. It can be expected that these methods will be equally effective on other
slowly varying or stationary noise. However, when the spectrum being tracked is that of a non-stationary
signals such as music, the estimates of the spectrum are very poor, or completely wrong. As aaesult spe

trographic masks estimated using such estimates are very poor.

Classifier-based mask estimation, on the other hand, does not attempt to estimate the noise spectrum.
However, the features being used for the classificaiersensgive to the global SNR of the speech. As a

result, classifr-based estint@n is effedive only when the global SNR is knovarpriori.
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9.4 Topicsfor further investigation

The methods presented in this thesis have been very successful at compensating for noise when spectro-
graphic masks can be reliably found. When the corrupting noise is white, the masks can be very well esti-
mated by VTS-based estimation. VTS-based mask estimation is dependent on the estimate of the noise
spectrum obtained by VTS. It is known that VTS is quite successful at estimating noise spectra when the
noise is slowly varying or stationary [Kim 1998]. VTS-based estimation of spectrographic masks will gen-
erally perform relialy when the corrupting noise is slowly varying or stationary. We expect, therefore, that
the methods presented in this thesis will, inegah result irsignificant improvements in recognition accu-

racy on speech corrupted by stationary or slowly varying noises.

However, VTS-based estimation of masks, as presented in this thesis, uses a single estimate for the
noise spectrum for the entire utterance. This estimate can be significantly improved by permitting the esti-
mate to vary from frame to frame. There &we possible ways of doing this.

1) Estimate the noise spectrum in a sliding window of the speech

2) Use a Kalman filter formulation of VTS to recursively estimate the noise in each inclramregfor

speech

In the first approach the estimate of the noise spectrum within any frame of speech would be obtained
based on a small segment of speech, say 1 second long, centered at that frame. It is expected that such an
estimator would be able to track the spectrum of slowly varying noises better than the direct formulation of

VTS used in this thesis.

In the second approach amriori distribution of the noise spectrum would be assumed and recursively
updated based on every incoming spectral vector of noisy speech. It has been shown that this method of
estimating the noise spectrum is significantly superior to the standard VTS formulation at tracking time-

varying noises [Kim 1998].

Classifier-based estimation of spectral masks has been seen to leffqattee for white noise. It has
also been observed to be effective when the global SNR and type of corrupting noise are assumed to be
knowna priori. Both these requirements, however, may be unrealisti@r8legposibilities present them-
selves to improve the performance of classifier based systems.

1) Use features that are based specifically on the characteristics of speeclihaatiiee nature of the



Chapter 9. Summary and Conclusions 178

noise, for classification

2) Adapt the classifier in an unsupervised manner

3) Correlate the classification decisions regarding the elements of the spectrogram

In the first approach we would use computable features of the speech waveform that are known to be
corrupted by noise. For example, for voiced speech the ratio of the energy in the harmonicdaf fhe pi
guency to that at other frequencies, within any band of frequencies, is high for clean speech, and lower at
other frequencies [Morgan 1997]. However, when speech is corrupted by noise, this ratio would change.
Other features that suggest themselves are the average spectral tilt within any frequenitye harake
characteristics of speech spectra, etc. These feaardikely to be more invariant to the kindrafise cor-
rupting the speech than the simple power spectral values and their derivatives used in this thesis. Promising

results using this approach have been reported by Seltzer [Seltzer 2000].

In the second approach the distributions of the classes would be adapted to the noisy data in an unsuper-
vised manner. Adaptation methods such as MAP [Duda 1973] or MLLR [Leggetter 1994] could be used to
adapt the distributions. Classification would be done with the adapted distributions. This method would be
expected to result in better masks than classification without adaptation would, provided the baseline clas-
sifier is reasonably correct. Also, adaptation could be used even when speech-specific featsezsfare

classification.

In the third approach we would take advantage of the fact that when speech is corrupted by noise, the
noisy regions of the spectrogram occur in blocks. Thus, the fact that any particular element is neisy imm
diately raises the probability that the elements surrounding it are noisy (and to be deleted) too. This corre-
lation could be captured by statistical models such as Markov fields. Use of these models can be combined

with adaptation and speech specific features.

Another approach that could be used to estimate spectrographic masks would be to treat noisy regions
of spectrograms as outliers in an otherwise normal distribution and use outlier identification techniques,
such as those described in [Tukey 1977], to identify them. This method would be useful for speech cor-

rupted by sharp or transient noises such as door slams and phone rings,

Although the reconstruction obtained using the methods developed in this thesis is extremely good, it

can be improved further. Cluster-based reconstmdechniques model the sequence of spectral vectors in
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the spectrogram as the output of an IID process. The distribution of the vectors is modeled simply as a
Gaussian mixture distribution. No information regarding the sequentiality of the vectors is retained. A
superior cluster-based representaticould be to model the sequence of spectral vectors as the output of
an HMM. This is just a simple extension of the cluster-based model, wheaigthwi probability of the

various clusters is made dependent on which cluster the previous vector belonged to. However, the intro-
duction of this simple probability enforces temporal constraints on the model and would be expected to

improve cluster identification and reconstruction significantly.

An even better model would be to model the sequence of vectors as the output of a higher order HMM.
In a higher order HMM of ordelN  theepriori probability of any cluster is made conditional to the cluster

that the previoutN vectors belonged to. As a result, a much greater constraint is placed on thelsequentia
ity of the vector. One serious disadvantage with higher order HMMs is the exponential increase in the
number of parameters need for the model with increabing . The estimates obtained for the parameters
with any amount of finite data, would be very poor. Also, the reconstruction would become extremely
expensive computationally. A simple, and intuitively appealing solution to this problem is to use what we
term atree-structured higher order HMM. In a standard higher order HMM the clusters that any of the past
vectors can belong to are assumed to be identical to the clusters that could be associated with the current
vector. In a tree-structured HMM the number of clusters modeling past vectors would be fewer than the

clusters modeling the current vector. Figure 9.1 represents such a model schematically.

t©—3©©© O > ?@

Figure 9.1 The panel to the left represents the manner in which data is modeled idardtard order HMM. The
same 6 clusters covers the space at every time instant. The right panel shows datey rimodetree-structured
HMM. A smaller numbers of clusters are used to represent the distribution of dadedins further back in time.

This model has the intuitive appeal that while the distribution of data at any instant is dependent on the
distribution of data occurring in the past, it is less and less dependent on the precise location of the past

data points as they get further away from the current data point. Additionally, the total number of parame-
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ters needed in such a model would be much fewer than a standard higher-order HMM and vwejate the
be much better estimated. Reconstruction would simply proceed by identifying the cluster that the current
vector belongs to, and reconstructing the missing portions of the vector based on the distribution of that

cluster.

Covariance-based renstruction was seen to be superior to cluster-based reconstruction both when ran-
dom elements of the spectrogramerey deleted, and when theumds implied by the observed values of
noisy elements were not consiéd.However, once the bounds were considered it was found to be much
better to use multiple-clust-based remstruction. The application of the bounds improved theracgof
cluster identification greatly, resulting in this improved performance. Similar improvement could be
expected from covariance-based reconstruction if the spectral vectors in the spectrograssumed to
be generated by one of a number of WSS random processes. Reconstruction would then consist of identify-
ing which processes generated what vector and using the parameters of that process, as welkas the cr
covariance between that process and the processes that generated adjacent vectors, to recaostruct the
plete vector. This model would be fairly complex and, possibly, computationally expensive. A simpler
model might be to model the distributions of short sequences of vectors (say 5-10 vectors) using a cluster-
based representation. Reconstruction would proceed as in the case of cluster-based reconstruction - the
cluster that any sequence of vectors belongs to would be identified, and the distribution of that cluster

would be used to reconstruct the missing components of the central vector in the sequence.

9.5 Some remaining questions

While we have shown that the methods in this thesis are very effective on speech corrupted by white
noise, and expect that they will perform equally well with other slowly varying noises, the only situation
where they have been tested is when the recognition system itself has been trainkmsihbeech. This
is not such a serious problem as long as the noise remains additive. Experiments show that the recognition
accuracies obtained when the best cluster-based reconstruction technique is used with the gle (oracl
spectrographic masks for theertinces, the recagion accuracy obtained on speech corrupted by noise to
5 dB SNR is comparable to the accuracy obtained when the recognizer is trained with speech at 5 dB SNR.
In other words, the recognition accuracy obtained with 5 dB speech on the clean speech recognizer after

missing-feature based compensation is applied is acsbfe with the recognition accuracy obtained with
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a matched recognizer where system has been trained to recognize 5 dB speech. Previous experience with
other data compensation algorithms indicates that if the mi$saigre-based compensation were to be
applied to both the data used to train the recognizer and the data being recognized, even better gerformanc

may be achieved.

However, in all of this, it has been assumed that the noise is additive, and that a clean uncorrupted cor-
pus of speech exists such that the noisy speech could be modeled as speech from this corpus to which noise
has been added. The statistical properties of this clean corpus have been used for the compensation. The
guestion that arises is: what happens when such a clean corpus is not available. In such a situation, both
VTS-based spectrographic mask estimation, and cluster or covariance-based reconstruction cannot be per-

formed as described in this thesis. We have not worked out a satisfactory solution to this problem yet.

Another question that remains unanswered in all the experiments reported in this thesis is the effect of
linear filtering on the reconstruction. It has been assumed everywhere that the speech hasupted corr
solely by additive noise. However, when speech is recorded using arbitrary microphones the filter response
of the microphone and the recording environment affect the speech as well. In such a situation the proce-
dure that estimates spectrographic masks would have to estimate the log-spectrum of the impulse response
of the filter as well. The filter response would then have to be subtracted out of the log-spectral values
before reconstruction isepformed. Since VTS has bedmsvn in other work to be extremely effective at
estimating these filter characteristics, we hypothesize that the performance of the rettomdtab-

nigues would not be affected greatly by linear filtering. However, this hypothesis remains to be tested.

Finally the effect of non-linear phenomena such as non-linear filtering or clipping cannot be modeled as
additive noise. In such a case, while the entire concept of reconstructing the badly damaged regions of the
spectrogram remains valid, the precise manner in which bounding or other information is extracted from
the observed values of the spectrogram would depend on the panpimenommon affecting the speech.

We have not investigated the effect of amon-linear phenomena on our methods.

9.6 Futuredirections

This thesis has presented a set of data-compensation methods based on thdeatastngaradigm

that are seen to be very effective on speech corrupted by slowly varying noises. However, for any noise
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compensation solution based on the methods described in this thesis to be complete some of the questions
mentioned in this chapter would have to be answered. The primary question is the effect of not having a
corpus of clean speech to begin with. Since the best current sgeegmition systems rely on “multi-

style” training, where the system is trained with speech recorded under various conditions, this is fre-
guently the case. It may be possible to obtain the distributions of the spectrograms of clean speech from the
clean regions of the spectrograms of the multi-style training data. However, for this to be possible, it is
important to be able to identify these regions of these spectrograms first. Thus, the primary focus of any

future work would have to be on improving the estimation of spectrographic masks under these conditions.

Even if the spectrographic masks were perfectly identified, the statistical properties of the spastrogra
of clean speech would have to be estimated from these incomplete spectrogram. There has been significant
work in the fields of statistical analysis on estimating the statistical properties of incomplete data [Ghahra-
mani 1994][Little 1987]. However, these methods would have to be adapted to work on spectrographic
data, to develop the kind of statistical models used with the reconstruction techniques. This would have to

be a part of any future work.

Finally, there may be situations where it may be required to perform recognition using log spectra. In
such a situation, better recognition accuracies may be obtained using missing feature method®-the rec
nizer itself were trained using incomplete spectrograms of noisy speech. The mathematics for this are
readily available [Ghahramani 1994]. However, the actual implementation of such a solution siilsrema

to be done.
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Appendix A
Derivation of selected statistical relationships

A.1 Mean Squared Error (MSE) of an MAP estimate

In this section we derive the formula for the mean squared error of the MAP estimate of a Ganssian

dom vector.

Let X,, andX, be jointly Gaussian vectors. Ligf, Dm be the mean vector and covariance
matrix respectively oiX,,, . Lefl, an®,, be the mean vector and covariance maXix of O,].et

be the cross-covariance betweXp, & . The conditional distributXp, of is seen to be a Gaussian

of the form (Section 2.5.4)

— T _ -1
P(Xm‘xo) = CeXp(_O-S(Xm_ }J.m—@mo@ 100(Xo_ UO)) (emm_emo@oi@om) (Al.1)
(Xin = M ©1e®@ 00(Xo = o))

The MAP estimate oX,,, conditioned oy, is given by

A

Xm = argmaxy { P(Xm\Xo)} (A1.2)

which gives us

A

Xm = p.m + @mo@_loo(Xo — p‘O) (A1.3)

i.e. the MAP estimate oK, is simply the expected valuXpf i.e. Xm = E[X] .
The MSE of the MAP estimate is defined as

MSE(Xm) = E[trace((Xpy—Xm)(Xpy—Xm) )| X
(A1.4)

MSE(;(m) = trace(E[ (X, — >A<m)(Xm - ;(m)T‘ Xdl)

9 - T
However, E[ (X, = Xm)(X,—Xm) [X,] is simply the variance (ﬁ(Xm‘Xo) and is seen from

-1

Equation (A1.1) to b&®, 1, — ©,10©00P0om - We thefore get

mo
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MSE(Xm) = trace(@mm—emoegieom) (A1.5)

MSE(;(m) = trace(O,,,) — trace(@moegieom) (A1.6)

A.2 M SE increases as length(S,,) increases

In this section we show that the mean squarear of the MAP estimate of theissing components of

a Gaussian random vectocigases as the number ofssing components ingases.

Consider two incomplete observatios Xl of a Gaussian random MecX; . is identical to
X1, except that it has one more component missing Xian . Let the vector of observed components of
X1 beX; , . and the vector of missing componentXin  Xhe, . Similarly, let the observed and miss-
ing components oK, bX, , am¥, , respectively. SiKge has one more component missing than

X1, we would have

X2,m = [Xl, me Xa]

(A2.1)
X1,0 = [Xg 00 Xdl
where X, is the component that is additionally missingin
Thea pogteriori distributions ofX; ,, anX, ,, would be given by
P(Xz, m|X2,0) = P(X1 m Xa|X2,0) (A2.2)
P(Xl,m‘xl, o) = P(Xllm‘Xa, X3 o) (A2.3)

and would both be GaussiaR(X; |X5 ;)  dA@X_ |X, ) would also be Gaussian [Papoulis 1991].
1, m”20 al|”r2,0

Let Oy, be the variance dP(Xy i, Xa| X3 4) - The MSE of the MAP estimateXgfy, is then
trace(O o) -
Let Oy be the variance dP(Xy | X5 X, o) - L@mm1  be the varianc®¢K | X5 o) . Let

0., be the variance oP(X,|X . LD be the cross covariance bet¥ X.and , condi-
aa a2, 0 mal eEh £
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tioned onX, , . Then it can be shown (Section A.1) that
A AT _ A -1 T
Ommi = Omm1 —0,121022Cma1 = ©mm1 — 0,53011219ma1 (A2.4)
sinceB,, is the variance of a single component and is therefore simply a positive number.
The MSE of the MAP estimation (Xl, m is the trace@f, ;1 . We get from Equation (A2.4) that

trace(®, 1) = trace(émml) —e;itrace(emaleLal) (A2.5)

It is easy to see thﬁtace(@malelqal) has to be a positive number. Therefore

e;itrace(emalelqal) >0 (A2.6)

It is also easy to see (Section A.1) theace(O ) = trace(émml) +0,, ie.
trace(O,p) 2 trace(émml) (A2.7)
Combining Equations (A2.5) and (A2.7), we get
trace(©,,n1) < trace(®,m2) — e;itrace(emalelqal) (A2.8)

Combining Equations (A2.7) and (A2.8) we get

trace(©,,mp) = trace(©,,,1) (A2.9)

In other words, the MSE of estimation ¥f ,,  is less than the MSE of estimatiXp pf . Itis easy

to extend the above logic to show that in general the MSE of estimation is greater for the vector with the

greater number of components missing.
A.3 Average distanceto closest element in an incomplete spectrogram with
random elements missing, as a function of the drop fraction

In this section we derive the formula for theeeage distance between amyirg in a sequence, where

random elements have been deleted, and the closest observed point as a function of the drop fraction.

Consider an infinite two-sided sequence where elements are missing with a drop fraction be . In order
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for the nearest neighbor to any element in this sequencerto be  points away, it is necessary thht the
intervening points on either side of the present point are all missing, and that at least one of the two points

N locations away from the current point is present. The probability that the points immediately on
either side of the current point are all missing)uzs(n_l) . The probability that at least one of the two

pointsn locations away from the current point is preseﬂlt—'m(2 . Thus, the probability that the nearest

point to the current pointis  locations away is given by

P(n) = (1-a?)a " (A3.1)

The expected distance of the nearest point to the current point is then given by

[ee)

2(n-1
E[n] = Z n(l—az)a (- (A3.2)
n=1
It is easy to show that sinee< 1
s ng®" Y = e (A3.3)
n=1 (1—0( )
Combining Equations (A3.2) and (A3.3) we get
__1
E[n] = 5 (A3.4)
1-a

For finitely long sequences the expected distance of the closest point would be somewhat larger than
that given in Equation (A3.4) and would depend on the distance of the boundaries of the sequence from the

point in consideration.

A.4 M SE of MAP estimates increases with decreasing covariance between the

estimated and conditioning variables

In this section we show that the mean squared error of the MAP estimate of a Gaussian random vector
increases as the cross covariance between the elements of the vector and the conditioning variables

decreases.
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Consider two jointly Gaussian vectoXs, alg . The MSE of the MAP estimatg, of is given by

MSE(X,,) = trace(®,,,) — trace(@moegieom) (A4.1)

where©,,,,, is the covariance matrix ¥f,, ©,, is the covariance mati¥of  Gapd is the cross

covariance betweeKX,, arX|,

egﬂ, has the same properties@g, i.e,it is symmetric and positive definite. We camrtéfore con-

struct a random vectof |, such tHEEYY'] = Og:; . We can now write

trace(0,,,05e00m) = trace(®,,E[YY'10,,) = trace(E[0,,YY '®y]) (A4.2)
Defining
Z = Op,Y (A4.3)
we get
trace(@moegieom) = trace(E[ZZT]) (A4.4)

If we represent thé " element in thg " row of O asb then it is easy to see from Equation

ij o
(A4.3) thatag®; ;| decreaseg| decreases,ambquentlytrace(E[ZZT]) decreases. Thus, as the

values of‘ei,j‘ , the magnitudes of the covariances between the componnts of and the components of

-1

Xo decreasetrace(@moOg:;Oom) decreases, dndce(O,,,) —trace(0,,,0,0,9om) increases.

Therefore, from Equation , as the covariance between the componeXts of X, and decreases, the

MSE of the MAP estimate ok, increases.
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Appendix B
|terative procedure for joint bounded M AP estimation
The problem of joint bounded MAP estimation is that of finding a set of V&Igé&, §/k such that
Y1 Y2, oYk = argmax, o AP(YL Yoo o VilYa S Yo Yo < Yo o kS Y} (BO.D)
We derive an iterative solution for this estimate in this appendix.

Let y?, yg, ey yE be the estimate obtained after th8 iteration of this procedure. If the + 1™ esti-

mate ofy; is obtained as

yit = argmax, {P(yy, Y5, .- YE|Y2 € Y1 Y2 Yar o0, YicS Vi) (B0.2)

then it is easy to see that

PO LYo o YRV S Y0 Yo S Vo, o VS V) 2 POV VS, oo YRIYE S Y1 Yo S Yo oo, Y S V)

Using Bayes’ rule and eliminating all irrelevant terms, it can be shown that Equation (B0.2) csiateel re

as
n+1 _ n
yp =~ = argmax,{ P(Yl‘Yl Y Yo oo YOk (B0.3)
which is simply the bounded MAP estimateygf conditione@/g;n.., yE . Using similar logic, it can

be shown that if the + 1" estimate oly; is obtained as

y) "t = argmax, {P(y;|y1 L Ya T Y Y S Y Y e V) (80.4)
then
P(y; Lyt ...,anJ'l1 v ,yjn+1, ...,yL“y1 <YL Yo< Yo o VS YY) (B0.5)
> PO Ly Y Y e VYL S Y1 Y2 € Yo e WS V)
In other words, if we were to begin with some set of initial estimyiey%, . y& , and firml et

estimate of eacly; as the bounded MAP estimate of the that component as given by Equation (B0.4), each
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step in the iteration would result in an increas@(iyy, Yo, .-, Vi Y1 < Y1, V2 < Yo, -0, Ve S V)

When P(Yy, Yo, ..., Yi) is GaussiarP(yq, Y, ...,yk‘y1 <YL Yo=Yy oo,V <Y,) has only one

peak. Thus, the iterative solution given by Equation (B0.4) is guaranteed to find this peak, which is the

unique solution to Equation (B0O.1).

Therefore, the iterative solution to the joint bounded MAP estimation of a set of jointly Gaussian vari-
ablesyq, Y,, ..., Y conditioned on the boulyd <Y1, Yo, < Yo, ..., Y S Yy is given by the following
procedure:

1) Initialize all they; values ag = Y,

2) Obtain then + 1" estimate ofy, as

n+1 n+l n+1

y) "t = argmax, {P(y;|y1 L Ye Y Y S Y Y e Vi)

3) lterate untilP(yy, Yo, ..., yk‘y1 <YL Yo<Yo .., VS Y)) converges.
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