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Models with interacting dark energy can alleviate the cosmic coincidence problem by allowing dark

matter and dark energy to evolve in a similar fashion. At a fundamental level, these models are specified

by choosing a functional form for the scalar potential and for the interaction term. However, in order to

compare to observational data it is usually more convenient to use parametrizations of the dark energy

equation of state and the evolution of the dark matter energy density. Once the relevant parameters are

fitted, it is important to obtain the shape of the fundamental functions. In this paper I show how to

reconstruct the scalar potential and the scalar interaction with dark matter from general parametrizations. I

give a few examples and show that it is possible for the effective equation of state for the scalar field to

cross the phantom barrier when interactions are allowed. I analyze the uncertainties in the reconstructed

potential arising from foreseen errors in the estimation of fit parameters and point out that a Yukawa-like

linear interaction results from a simple parametrization of the coupling.

DOI: 10.1103/PhysRevD.75.083509 PACS numbers: 98.80.Cq, 95.36.+x

I. INTRODUCTION

Recent data from type Ia supernovae (SNIa) [1,2], cos-

mic microwave background (CMB) [3], and large scale

structure (LSS) [4] all point to the fact that the Universe

recently has entered into a stage of accelerated expansion.

This is an unexpected and revolutionary discovery that

calls for new physics, since gravity is always an attractive

force.

The simplest possibility to explain the acceleration of

the Universe is to postulate the existence of a cosmological

constant of the right magnitude. While this assumption is

still compatible with all available data, it is unsatisfactory

on the grounds of the huge amount of fine-tuning required.

Hence, exploratory models with scalar fields possessing a

varying nonzero vacuum energy density, usually called

quintessence models [5], have been studied as an alterna-

tive to the cosmological constant solution. One of the most

important tasks ahead of observational cosmology is to

devise methods and gather data to successfully and un-

equivocally distinguish between these two possibilities.

Finding evidence for an evolving vacuum energy would

be one of the greatest discoveries of the century.

What is the appropriate scalar potential that could re-

produce the observed data? There has been a large number

of papers dealing with the possibility of reconstructing the

potential directly from the data [6–14], and it is fair to say

that any statement about the form of the potential depends

upon some level of parametrization. The procedure also

has been extended to reconstruct the potential and the form

of the scalar-gravity coupling in the Jordan frame of a

scalar-tensor gravity theory from data on luminosity dis-

tance and linear density perturbation [15]. It was also

shown that in phantom and nonphantom scalar-tensor

theories that it is possible to reconstruct the potential and

the function in front of the noncanonical kinetic term for

the scalar field from a given form of the Hubble function

H�t� when the scalar field � / t, where t is the cosmologi-

cal time, with [16] and without matter [17]. More recently

Guo, Ohta and Zhang [18] studied the reconstruction of the

scalar potential directly from parameterizations of the

equation of state.

An intriguing possibility is that the scalar field is not

totally decoupled from our world [19]. Although the cou-

pling to baryonic matter is severely constrained, it is still

possible to allow for a coupling to nonbaryonic dark mat-

ter. From a Lagrangian point of view, these couplings could

be of the form W���m0
�  or W���m2

0
’2 for a fermionic

or bosonic dark matter represented by  and ’, respec-

tively, where the function W of the quintessence field �
can in principle be arbitrary. In this scenario, the mass of

the dark matter particles evolves according to some func-

tion of the dark energy field �, leading to an effective

equation of state for the dark matter.

I will consider exploratory models for dark energy with

a canonical scalar field coupled to dark matter. The lagran-

gian for this class of models is specified by the choice of

two functions of the scalar field: the scalar field potential

V��� and W���, the function that characterizes the cou-

pling to dark matter. Specific forms for the scalar potential

and for the interaction, such as power-law or exponential

functions, have been extensively studied in the literature

[20–22].

However, instead of postulating a concrete model by

choosing definite parametric forms for V��� and W���,
it is often more convenient and completely equivalent to

introduce a time-dependent parameterization for the dark

energy equation of statewDE�a� and for a coupling function

��a�, where a�t� is the scale factor of the Universe. In fact,

this approach is widely used in the uncoupled case in order

to test for the time variation of dark energy since it is much

easier to compare to SNIa observations [23]. For the

coupled case, an analysis of the impact of interactions on

SNIa observations was performed using a specific coupling
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either in the Einstein [24] or Jordan [25] frame of a scalar-

tensor theory. More recently, parameterizations of wDE�a�
and ��a� were directly used to study the effects of DE-DM

interactions on fits from SNIa data [26].

Given a parameterization for wDE�a� and ��a� with

parameters fitted by observations, it is important to inves-

tigate the shape of the potential and interaction functions

that results in those parameterizations. They define the

fundamental model behind the parameterizations. In this

article I will show how to reconstruct the scalar potential

and the interaction from the general parameterized forms

of the dark energy equation of state wDE�a� and a coupling

function ��a� and provide a few concrete examples.

II. RECONSTRUCTION

The reconstruction program proposed here generalizes

the one first developed by Ellis and Madsen [27]. I consider

a spatially flat universe composed of three perfect fluids,

namely, dark energy, nonbaryonic dark matter, and bary-

ons. The dark matter and baryons are nonrelativistic pres-

sureless fluids and Einstein’s equations result in

 

H2 � 8�G

3
��� � �DM � �b�

_H �H2 � � 4�G

3
��� � �DM � �b � 3p��;

(1)

where H � _a=a and the dark energy is described by a

scalar field � with energy density and pressure given by

 �� � 1

2
_�2 � V���; p� � 1

2
_�2 � V���; (2)

with an equation of state w� defined by w� � p�=��.

Conservation of the stress-energy tensor requires that the

total energy density and pressure obey

 _� T � 3H��T � pT� � 0: (3)

Introducing the coupling function ��a� between dark en-

ergy and dark matter as

 ��a� � d lnm �a�
d lna

(4)

results in the following equation for the evolution of the

DM energy density �DM [28]:

 _� DM � 3H�DM � ��a�H�DM � 0: (5)

Also, conservation of baryon number requires

 _� b � 3H�b � 0; (6)

and Eq. (3) then implies that the dark energy density should

obey

 _� � � 3H��� � p�� � ��a�H�DM � 0: (7)

Notice that the parametrization Eq. (4) implies

 W���a�� � e�
R

1

a
��a0�d lna0

(8)

normalized such that W���a � 1�� � 1.

Combining Eqs. (2), (7), and (8) one obtains a modified

Klein-Gordon equation for the scalar field:

 

��� 3H _��
�

dV

d�
� ��0�

DM

a3
dW

d�

�

� 0; (9)

in agreement with Das, Corasaniti, and Khoury [21].

One can now proceed to reconstruct the potential and the

interaction for a given parametrization of the equation of

state w�a� and the interaction ��a�. The first step is to find

the time variation of dark matter energy density, which is

easily obtained by solving Eq. (5):

 �DM�a� � ��0�
DM
a�3e�

R

1

a
��a0�d lna0 ; (10)

where ��0�
DM

is the nonbaryonic DM energy density today. It

is more useful to work with the variable u � lna, and one

can write

 �DM�u� � ��0�
DM
e�3ue�

R

0

u
��u0�du0 : (11)

The second step is to substitute �DM�u� into Eq. (7), which

in terms of u reads

 �0
��u� � 3�1� w��u�����u� � ��u��DM�u� � 0; (12)

where 0 � d=du, and find a solution ���u� with initial

condition ���u � 0� � ��0�
� , with ��0�

� being the dark en-

ergy density today.

In the third step one constructs the Hubble parameter:

 

H2�u�
H2

0

� �be
�3u ��DMe

�3ue�
R

0

u
��u0�du0 ���f�u�;

(13)

where �X � ��0�
X =�

�0�
c , the critical density today is ��0�

c �
3H2

0
=�8�G�, and H0 is the Hubble constant. The function

f�u� that determines the evolution of the dark energy

density is in general obtained numerically.

Having obtained the Hubble parameter, the fourth step

consists of solving the evolution equation for the scalar

field obtained from Eqs. (1) and (2):

 

�

d ~�

du

�

2

� � 1

4�

�

d lnH�u�
du

� 3

2
��DM�u� ��b�u��

�

;

(14)

where ~� � �=MPl is the scalar field in units of the Planck

mass (MPl � 1=
����

G
p

) and

 �DM;b�u� �
�DM;b�u�

���u� � �DM�u� � �b�u�
: (15)

In the fifth step one numerically inverts the solution ~��u�
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in order to determine u� ~�� to finally obtain

 

~V� ~�� � V�u� ~���
��0�
c

�
�

1

3

H�u�
H0

dH=H0

du
�H2�u�

H2
0

� 1

2
�be

�3u

� 1

2
�DMe

�3ue�
R

0

u
��u0�du0

�

(16)

and

 W�u� ~��� � e�
R

0

u
��u0�du0 : (17)

This completes the reconstruction procedure. I will now

work out some examples of this procedure. I adopt �� �
0:7, �DM � 0:25, and �b � 0:05 in the following. In all

examples I integrate the field equation starting from ui �
�1:8, corresponding to zi � 5:05, and I arbitrarily set
~��ui� � �1.

III. EXAMPLES

A. Constant w� and �

I start by considering the simple example of a constant

equation of state w� and constant coupling �. In order to

gain some intuition, I first show in Fig. 1 the reconstructed

potential for w0 � �0:99 and � � 0. As expected, the

scalar field evolves slowly in a very flat potential. Notice

that the potential energy is slightly below 0:7�c today due

to the small kinetic energy of the scalar field.

I now turn on the interaction. In this case one has [29]

 �DM�a� � ��0�
DM
a�3��; (18)

and the solution to Eq. (7) is
 

���a� � ��0�
� a

�3�1�w�� � �

�� 3w�

� ��0�
DM

�a�3�1�w�� � a�3���: (19)

The first term of the solution is the usual evolution of DE

without the coupling to DM. From this solution it is easy to

see that one must require a positive value of the coupling

� > 0 in order to have a consistent positive value of �� for

earlier epochs of the Universe. This feature remains in the

case of varying w� and in the rest of the paper I will

assume that � is positive.

In Fig. 2 I show the effects of the coupling in the

reconstructed potential. I use w0 � �0:9 and � � 0, 0.05

and 0.1. The scalar potential becomes steeper for larger

values of the coupling due to the different dynamics intro-

duced by the DE-DM coupling.

One might have expected that the introduction of the

coupling could allow the possibility of having a phantom

equation of state, w� <�1. However, it is easy to show

that one can write Eq. (14) for both the uncoupled and

coupled cases as

 

�

d ~�

du

�

2

� 3

8�
�1� w��u�����u� (20)

in the general case of a time-varying equation of state and

hence, in order to have a real scalar field one must consider

only w��u� � �1.

However, the fitter who is unaware of the interaction

would instead find an effective equation of state weff�u�
defined implicitly by

 ��0�
� e

�3�1�weff�u��u � ��0�
DM
e�3u � ���u� � ��0�

DM
e��3���u:

(21)

In Fig. 3 I show that the effective equation of state can in

fact cross the phantom barrier. This possibility was also

recently pointed out in the context of scalar-tensor theories

of gravity [30].

One also easily can reconstruct the interaction W� ~�� in

this simple case:

 W� ~��u�� � e�u; (22)

which of course guarantees that W� ~��u � 0�� � 1 as re-

 

– 0.998 – 0.996 – 0.994 – 0.992
0.7

0.7005

0.701

0.7015

0.702

0.7025

0.703

0.7035

V( )

FIG. 1 (color online). Reconstructed potential for w� �
�0:99 and � � 0.

 

– 0.98 – 0.96 – 0.94 – 0.92

1

1.5

2

2.5

V( )

FIG. 2 (color online). Reconstructed potential for w� � �0:9
and � � 0 (solid line), � � 0:05 (dashed line), and � � 0:1
(dotted-dashed line).
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quired. In Fig. 4 I plot the reconstructed interaction term

for w � �0:9 and � � 0:05, 0.1 and also for w � �0:99
and � � 0:1. Notice that the interaction increases with

time, corresponding to a mass that decreases with increas-

ing redshift. One can see that the interaction term becomes

steeper with increasing � and decreasing w.

B. Variable w� and constant �

I now analyze the potential reconstructed from the com-

monly used 2-parameter description of the equation of

state [31]:

 w��a� � w0 � w1�1� a�: (23)

A recent fit to SNIa, CMB, and LSS data obtained (without

DE perturbation) [32] is

 w0 � �1:098�0:078
�0:080; w1 � 0:416�0:293

�0:153: (24)

Hence I will assume that it is possible to fit the 2-

parameter equation of state with a 1-� precision of �w0 �
0:08 and �w1 � 0:20. For illustration purposes, I will take

the central values w0 � �0:91 and w1 � 0:4 and study the

effects of dark energy interaction in the reconstruction of

the potential. In Fig. 5 I show the allowed region in the

potential form arising from the 1-� uncertainties in the

estimation of the equation of state parameters. This region

therefore gives an idea of the uncertainty one can expect in

the reconstructed potential given the foreseen errors in the

fit parameters.

In Fig. 6 I show the effect of interaction with � � 0:1 on

the allowed region in the potential form arising from the

1-� uncertainties in the estimation of the equation of state

parameters.

C. Constant w� and variable �

Finally, I analyze the case of a constant equation of state

and an interaction parameterized by the function [33]:

 ��a� � �0

2a

1� a2
; (25)

which is well behaved in the past as well as in the future

 

– 0.98 – 0.96 – 0.94 – 0.92

0.85

0.875

0.9

0.925

0.95

0.975

1

W( )

FIG. 4 (color online). Reconstructed interaction for w � �0:9
and � � 0:05 (dashed line), � � 0:1 (dotted-dashed line), and

w � �0:99 and � � 0:1 (solid line).

 

– 0.95 – 0.9 – 0.85 – 0.8

1

2

3

4

5

6

V( )

FIG. 5 (color online). Reconstructed potential for w0 �
�0:91, w1 � 0:4, and � � 0 (solid line). The allowed region

from the 1-� uncertainties in the estimation of the equation of

state parameters is the region between the dashed lines.

 

– 0.95 – 0.9 – 0.85 – 0.8 – 0.75

2

4

6

8

V( )

FIG. 6 (color online). Reconstructed potential for w0 �
�0:91, w1 � 0:4, and � � 0:1 (solid line). The allowed region

from the 1-� uncertainties in the estimation of the equation of

state parameters is the region between the dashed lines.

 

– 1.2 – 1 – 0.8 – 0.6 – 0.4 – 0.2
u

–1.25

–1.2

– 1.15

–1.1

–1.05

– 0.95

– 0.9

weff(u)

FIG. 3. Effective equation of state for w � �0:9 and � � 0:1.
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and ��a � 1� � �0. In this case one finds

 �DM�a� � ��0�
DM
a�3e2�0�arctan�a���=4�: (26)

The reconstructed potential is shown in Fig. 7 for w� �
�0:9 and �0 � 0:1, 0.2. The interaction function is given

by

 W�u� ~��� � e2�0�arctan�e
u� ~�����=4�; (27)

and it is plotted in Fig. 8. Notice that in this example the

interaction function has an approximate Yukawa-like lin-

ear form, even more so for the �0 � 0:2 case.

IV. CONCLUSIONS

It is natural to study models where the dark energy field

is not totally separated from the rest of the world. In

principle, it can interact with dark matter and this possi-

bility has interesting consequences in the evolution of the

Universe, such as a mass-varying cold dark matter particle

with a nonzero effective equation of state.

In order to compare these models to observations it is

more convenient to use parametrizations of the dark energy

equation of state and the coupling to dark matter. However,

once the parameters are estimated it is important to find the

fundamental Lagrangian of the theory, that is, to determine

the functional form of the scalar potential and its interac-

tion with dark matter.

I showed in this paper how to reconstruct the scalar

potential and the scalar interaction with dark matter from

general parametrizations. For illustration purposes some

examples are worked out. Uncertainties in the reconstruc-

tion due to uncertainties in the estimation of parameters are

analyzed. It is pointed out that the phantom barrier can be

crossed if the fit does not take into account interactions and

that a Yukawa-like linear interaction results from a simple

parametrization of the coupling.

More precise data from CMB, SNIa, and LSS from

different collaborations is expected to arrive in the near

future. These data can be used to estimate the parameters

of simple parametrizations and the procedure shown here

can at least point towards the underlying fundamental

model describing our Universe.
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