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The healing of bone fractures is a well-orchestrated physiological process involving

multiple cell types and signaling molecules interacting at the fracture site to replace and

repair bone tissue without scar formation. However, when the lesion is too large, normal

healing is compromised. These so-called non-union bone fractures, mostly arising

due to trauma, tumor resection or disease, represent a major therapeutic challenge

for orthopedic and reconstructive surgeons. In this review, we firstly present the

current commonly employed surgical strategies comprising auto-, allo-, and xenograft

transplantations, as well as synthetic biomaterials. Further to this, we discuss the

multiple factors influencing the effectiveness of the reconstructive therapy. One essential

parameter is adequate vascularization that ensures the vitality of the bone grafts

thereby supporting the regeneration process, however deficient vascularization presents

a frequently encountered problem in current management strategies. To address this

challenge, vascularized bone grafts, including free or pedicled fibula flaps, or in situ

approaches using the Masquelet induced membrane, or the patient’s body as a

bioreactor, comprise feasible alternatives. Finally, we highlight future directions and novel

strategies such as 3D printing and bioprinting which could overcome some of the current

challenges in the field of bone defect reconstruction, with the benefit of fabricating

personalized and vascularized scaffolds.

Keywords: large bone defects, bone regeneration, tissue engineering, vascularization, three-dimensional printing

INTRODUCTION

The reconstruction of large bone defects caused by trauma, disease or tumor resection is a
fundamental challenge for orthopedic and plastic surgeons. Their critical size exceeds the intrinsic
capacity of self-regeneration and consequently bone repair is delayed and impaired. This type
of lesion is termed non-union bone fracture and requires additional treatment with bone graft
materials in order to restore pre-existing function (Dimitriou et al., 2011). Successful bone
augmentation procedures should include an osteoconductive scaffold with sufficient mechanical

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 February 2020 | Volume 8 | Article 61

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00061
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbioe.2020.00061
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00061&domain=pdf&date_stamp=2020-02-12
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00061/full
http://loop.frontiersin.org/people/686419/overview
http://loop.frontiersin.org/people/862122/overview
http://loop.frontiersin.org/people/656133/overview
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Vidal et al. Large Bone Defect Regeneration

stability, an osteoinductive stimulus to induce osteogenesis,
and should enable osseointegration and vascularity (Albrektsson
and Johansson, 2001; Giannoudis et al., 2008). The currently
available treatment strategies of bone loss are based on
autologous, allogeneic or xenogeneic bone transplantation, as
well as synthetic biomaterials. Although autologous bone grafting
still represents the gold standard technique for large bone
reconstruction, several factors limit its application. A major
restricting parameter is the volume of bone needed to treat this
type of injury, as well as the associated pain and possible donor
site complications due to the additional surgical intervention at
the bone harvest site. Similar disadvantages may be observed
for allogenic bone grafts including immunogenic reactions and
transfer of diseases (Aro and Aho, 1993). Furthermore, many of
these standard clinical grafting approaches fail due to the lack of
adequate vascularization. Insufficient vascularity of the fracture
site reduces the exchange of gas, nutrients and waste between
the tissue and the blood system, as well as the delivery of cells to
the site of injury, leading to inner graft necrosis (Mercado-Pagan
et al., 2015; Fernandez de Grado et al., 2018). To circumvent
this problem, vascularized bone transfers represent an excellent
option that ensures bone vitality and avoids graft resorption.
Nevertheless, complex fractures and their reconstructions require
modeling of the transferred bone to adapt to the anatomical shape
and extensive microsurgical techniques to connect the graft to the
blood system. Some patient bioreactor attempts have also been
made whereby a customized bone graft is implanted ectopically
in the patient for several weeks before transferring it into the
bone defect. Innovative fabrication approaches in the field of
bone tissue engineering include three-dimensional (3D) printing
and bioprinting to enable ex vivo personalized bone grafts based
on anatomical medical imaging. They are generally composed of
calcium phosphate/polymer composites or porous titanium. To
enhance the material healing properties, 3D printed scaffolds can
potentially include cells, growth factors, and vasculature. In this
review, we present the current techniques clinically available for
the reconstruction of critical-sized bone defects and point out
future challenges and possibilities of new treatment modalities
using customized and vascularized bone grafts with a focus on
3D printing and bioprinting fabrication methods.

PRESENT MANAGEMENT STRATEGIES
FOR LARGE BONE LESIONS

The current reconstructive options for large bone defects,
including autologous iliac grafting, autologous vascularized
fibula transplantation, Masquelet’s induced membrane, massive
allografts and in vivo patient bioreactor strategies are presented
in Figure 1 and discussed in this section.

Bone Grafts
The leading treatment for bone defect reconstruction remains
bone grafting. The purpose of a bone graft is to support the
repair process through osteoinduction, osteoconduction, and
osteogenesis (Albrektsson and Johansson, 2001; Oryan et al.,
2014). They can be categorized into different types based on the

FIGURE 1 | Current biological bone reconstruction techniques. Bone defects

arising due to the resection of tumors or non-union fractures can be treated

with the various methods indicated, with the benefits (+) and disadvantages

(−) of each technique outlined.

tissue source: autologous, allogeneic and xenogeneic bone grafts,
as well as synthetic and biological biomaterials (Brydone et al.,
2010). The selection of the ideal bone graft depends on several
factors including the geometry, size and tissue viability of the
bone defect, the biological and biomechanically characteristics
of the bone graft, and the known advantages and associated
complications of each graft option (Laurencin et al., 2014).

Autografts

Autologous bone grafting, still the clinical standard
reconstruction technique, entails harvesting bone tissue
from an anatomical donor site and transplanting it to the
recipient defect site (Sanan and Haines, 1997). The iliac crest is
the preferred harvesting site for this type of transplant, whereby
approximately 20 cm3 of cancellous bone is collected and used as
a bone block or morselized into bone chips in order to fill a bone
defect (Athanasiou et al., 2010). Autologous bone contains the
patient’s own osteogenic cells and osteoinductive proteins, such
as bone morphogenetic protein 2 (BMP2), BMP7, and platelet-
derived growth factor (PDGF), providing optimal osteogenic,
osteoinductive, and osteoconductive properties without risk
of viral transmissions, while pain, hematoma, possible visceral
injuries at the donor site and extended surgery time because
of the two surgical sites are the main drawbacks (Albrektsson
and Johansson, 2001; Parikh, 2002). Another disadvantage of
cancellous bone grafting is that large amounts of bone graft
cannot be obtained for critical-sized defect reconstruction
(Oryan et al., 2013). Successful repair depends on osteogenic
cell survival and tissue viability after transplantation to the
recipient site, while neovascularization plays a determinant
role. To overcome the disadvantage of limited vascularization,
free vascularized bone flaps have been employed. Taylor et al.
reported the first successful large bone defect reconstruction
using a free vascularized bone transfer (Taylor et al., 1975).
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Vascularized bone grafts, such as an autologous vascularized
fibula flap, iliac crest flap, rib flap, and radius flap, allow the
reconstruction of large bone defects and are often used as a last
resort to avoid limb amputation for patients. Fibula and iliac
crest flaps have been used for the pelvis, head of long bones, and
maxillofacial reconstruction. Free vascularized bone flaps are
particularly suitable for mandible reconstructions after ballistic
trauma or tumor resections. An optimal option for large bone
defect reconstruction using autografts is a vascularized cortical
autograft (Rizzo and Moran, 2008). Mandible reconstruction
is predominantly performed by a fibula flap. Another option
described in the literature for a hemimandible reconstruction
is the iliac crest flap that has an adequate bone height to
ensure osseointegration (Taylor, 1982, 1983, 1985) and allows
optimal shape reconstruction of the mandible ramus. The
fibula is dissected, harvested with a vascular pedicle, shaped
and transplanted into the bone defect where it is reconnected
to the local vasculature (Figure 2). This vascularized bone
graft contains the patient’s own cells, growth factors and a
vascularization bed thereby reducing graft resorption, enhancing
healing and permitting better diffusion of antibiotics. Hidalgo
et al. evaluated the fibula flap for mandible reconstruction
and reported long-term outstanding functional and aesthetic
results without bone resorption in non-irradiated and irradiated
patients (Hidalgo and Pusic, 2002). Free fibula flap transfers
for mandibular and maxillary reconstruction achieved 98.7%
graft survival in some studies (Peng et al., 2005; Taylor et al.,
2016). Further to this, pelvic ring reconstruction employing
a double-barreled free vascularized autologous patient fibula
graft after resection of malignant pelvic bone tumors was
reported (Ogura et al., 2015). Additionally, lumbosacral spinal
defects reconstruction was also achieved with the use of a fibula
flap (Moran et al., 2009). The major complications of free
vascularized bone flaps are post-operative vascular thrombosis
and hence failure and free flap loss. The fibula flap requires
laborious microsurgery to reconnect to the vasculature, and
the need for sculpting of the graft to fit the anatomy of the
bone defect. Furthermore, this technique requires extended
anesthesia, specialized technical surgical skills and the sacrifice
of blood vessels.

Allografts

Bone allografts are harvested from living donors during joint
replacement (e.g., femoral heads) or from cadavers, and
stored frozen and processed and transplanted into another
patient (Keating and McQueen, 2001). Given the limitations
of autografts, allografts became an alternative to large bone
defect reconstruction. Allografts are used as powders, chips or
complete bone structural forms, so called massive allografts
and can be provided as a fresh graft, fresh-frozen, freeze-dried,
demineralized, de-lipidized by solvents or supercritical carbon
dioxide, and sterilized by irradiation (Bostrom and Seigerman,
2005; Zimmermann and Moghaddam, 2011). The primary
advantage of allografts is their immediate availability in different
sizes and shapes (Muscolo et al., 2004). They are composed
of the extracellular bone matrix containing growth factors that
stimulate regeneration, do not present complications associated

with donor site harvesting, and present favorable mechanical
strength (Mankin et al., 1996). For these reasons, allografts
are particularly interesting for complex skeletal reconstruction
after resection of bone tumors in pelvic bones of young
patients. However, allografts present variable osteoinductive
and osteoconductive properties and have lower osteogenic
potential compared to autografts (Coquelin et al., 2012). Other
disadvantages are the possibility of immune rejection and disease
transmission (Aro and Aho, 1993). To overcome the latter
disadvantage, Capanna et al. (1993) described a technique for the
reconstruction of large metadiaphyseal bone defects, combining
a massive allograft to support a centrally located autologous
fibula flap with the aim of improving allograft incorporation
and decreasing the risk of mechanical instability. This technique
has proven efficacy for large bone defect reconstruction (Bakri
et al., 2008). Other clinical studies described the use of allografts
alone or associated with other therapies such as autologous
concentrated bone marrow-derived cells (Putzier et al., 2009;
Faldini et al., 2011; Scaglione et al., 2014).

Xenografts

Xenografts are harvested from different species and transplanted
for patient bone defect repair, and the most commonly used are
of bovine, porcine, or coral origin. The primary advantages are
the high availability, favorable porosity for bone tissue ingrowth
and comparable mechanical strength to native bone. However,
similar to allografts, xenografts, when treated for clinical use, may
lose part of their osteoinductive and osteoconductive abilities
(Dimitriou et al., 2011). Moreover, a significant disadvantage
of xenografts is the possible transmission of zoonotic diseases
and immune rejection. Finally, xenografts have ethical and
religious concerns. Karalashvili et al. (2017) described the use
of a decellularized bovine bone graft in a zygomatic large
bone defect reconstruction and reported long-term retention
of graft shape without resorption and bone integration. Bovine
cancellous xenografts have also been used in the treatment of
tibial fractures in elderly patients and showed favorable healing
outcomes (Bansal et al., 2009). However, the number of published
studies using xenografts in large bone defect reconstruction is still
limited and indeed clinical trials using bovine bone have shown
poor results, describing graft rejection and failure in host tissue
integration (Elliot and Richards, 2011; Patil et al., 2011; Shibuya
et al., 2012; Ledford et al., 2013).

Synthetic Biomaterials

Langer and Vacanti described tissue engineering by the use of
biocompatible materials associated with cells and/or biological
factors, in order to replace or repair tissues or organs.
Various biomaterials have been employed in the treatment of
bone defects. Calcium phosphate ceramics (CaP ceramics) are
synthetic materials composed of calcium hydroxyapatites (HA),
therefore possessing a composition similar to the native bone
matrix. CaP ceramics are primarily produced by sintering at
high temperatures and are available with variable porosity and
in construct or granules format, with their main advantage being
their osteoconductivity (Albrektsson and Johansson, 2001; Lee
et al., 2006; Samavedi et al., 2013). CaP ceramics most commonly
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FIGURE 2 | Fibula free vascularized flap. The anatomy including the tibia, fibula and major vessels is indicated. The surgical steps comprising the fibula flap, the gold

standard clinical technique for large bone defect reconstruction, is demonstrated. Step 1 illustrates the flap dissection to obtain the bone flap with its vascular

pedicle. Step 2 represents the bone flap with its vascular pedicle ready to be transplanted to the bone defect.

employed in bone reconstruction are biphasic calcium phosphate
(BCP), tricalcium phosphate (TCP), and HA. HA presents
excellent osteoconductive and osseointegration properties and
their macroporosity and pore interconnectivity allow excellent
cell adhesion and proliferation, leading to osteoconduction
and osteoinduction after transplantation in vivo, as well as
revascularization of the implant (Bucholz et al., 1987; Eggli et al.,
1988). TCP has higher pore interconnectivity than HA which is
crucial for neovascularization and osteoconduction (Ogose et al.,
2006), however, this higher interconnectivity gives TCP lower
mechanical properties compared to HA and TCP is reabsorbed
faster than HA after implantation (Torres et al., 2011). BCP
is the combination of TCP and HA. BCP exploits the main
advantages of both TCP and HA as they can be combined
in various ratios (Daculsi et al., 1989). Calcium phosphate
cement (CPC) differs from calcium phosphate ceramics because
they are made at ambient temperatures from hydrolysis and
are regarded as biomimetic. CPC can be used as filler by
injection and for creating 3D printing constructs (Brown and
Chow, 1983; Brown, 1987; Bertol et al., 2016), however, their
slow degradation may delay bone formation (Lodoso-Torrecilla
et al., 2018). Bioactive glass or bioglass is a synthetic silicate-
based ceramic. It is rapidly resorbed in the first 2 weeks
after implantation allowing a rapid new bone and vascularized
implant ingrowth (Gerhardt and Boccaccini, 2010; Kurien et al.,
2013). Synthetic bone substitutes are an excellent alternative to
biological grafts in small bone defect reconstruction. However,
due to the insufficient strength to sustain the body load and
insufficient neovascularization ingrowth, bone substitutes are not
the best option for large bone defect reconstruction (Stanovici
et al., 2016). Their association with recombinant human growth

factors and/or stem cell therapies could be a solution for this main
disadvantage (Gomez-Barrena et al., 2011, 2019). Orthounion
is an ongoing clinical trial studying the use of bone marrow
mesenchymal stem cells combined with a bone substitute to
fill the non-union in a surgical procedure (Verboket et al.,
2018). Another ongoing clinical trial, Maxibone1, is studying
the safety and efficacy of autologous cultured stem cells and
calcium phosphate biomaterials in alveolar bone augmentation
(Gjerde et al., 2018).

Megaprothesis

After trauma or resection of a malignant or benign aggressive
tumor, the reconstruction of large bone defects is necessary
to prevent amputation. The use of metal megaprotheses
began in the 70s, and in the 90s, it became popular.
Megaprotheses replace the affected bone tissue instead of
regenerating bone tissue and there has been a significant
evolution of their components since inception in order
to ensure corrosion resistance, to avoid fractures of the
material, for better fixation, and to guarantee osseointegration.
Modular megaprostheses today allow the association of different
components to customize large bone defect reconstruction
(Hattori et al., 2011). Prostheses may have a coating of
hydroxyapatite and silver for osseointegration and to prevent
infection and various studies have shown excellent limb survival
after surgery with a follow up of up at 20 years (Mittermayer
et al., 2001; Gosheger et al., 2006; Jeys and Grimer, 2009;
Shehadeh et al., 2010). There are two significant complications
after reconstruction with megaprosthesis, mechanical and

1www.maxibone.eu
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non-mechanical complications. Implant design may cause
inherent mechanical complications and those reported in
the literature include aseptic loosening, failure of soft tissue
attachments, and prosthesis stem fractures. These complication
rates are between 5 and 48%, as described in the literature
(Ahlmann et al., 2006; Gosheger et al., 2006; Holl et al., 2012)
and robust modular megaprostheses have helped to reduce
this mechanical complication (Choong et al., 1996; Jawad and
Brien, 2014). Non-mechanical complications include infection,
tumor relapse, and wound healing disorders. Infection and
wound necrosis are common complications in oncological
cases due to malnutrition, immunosuppression, lack of local
tissue vascularization, and extensive implant reconstruction (Jeys
et al., 2005; Jeys and Grimer, 2009; Pala et al., 2015). Silver
coated prosthesis, antibiotics therapy, and meticulous surgery
techniques may reduce these complications; however, non-
mechanical complications are the primary threat in large bone
defect reconstruction using megaprosthesis.

Masquelet Induced Membrane
Technique
The induced membrane method known as the Masquelet
technique consists of a two-stage operative procedure. The first
stage includes a debridement of the defect site, soft-tissue repair
and the insertion of a cement spacer composed of polymethyl
methacrlyate (PMMA) that allows the maintenance of the bone
height and stability, and the formation of a pseudosynovial
membrane due to a foreign-body reaction. In the second step,
performed 6–8 weeks later, the cement spacer is removed
and the cavity is refilled with an autologous cancellous bone
graft (e.g., from the iliac crests), while preserving the induced
membrane. This membrane has various functions, in particular
it prevents the resorption of the cancellous bone graft, supports
vascularization and corticalization, and functions as a delivery
system for osteomodulatory and angiogenic growth factors like
transforming growth factor (TGFβ), bonemorphogenetic protein
2 (BMP2) and vascular endothelial derived growth factor (VEGF)
(Masquelet, 2003; Pelissier et al., 2004; Masquelet and Begue,
2010). This innovative technique is indicated in acute and chronic
infected or non-infected massive bone defects of any size (4–
25 cm) and shape, at different anatomical sites in children and
adults (Masquelet et al., 2000; Azi et al., 2019). Its consolidation
rate varies from 82 to 100% with delays ranging from 4 months
to 1 year. The main complications include infection, failure of
a step in the surgical procedure (persisting infection or non-
union), re-fracture and severe bone graft resorption (Morelli
et al., 2016; Han et al., 2017). Different studies reported the
Masquelet’s approach as effective, for instance Sivakumar et al.
(2016) and Mathieu et al. (2019) described the use of the induced
membrane technique in the management of large bone defect
reconstruction in open fractures of the femur, tibia, and fibula
bones. A recently published review reported the application of
the induced membrane technique in patients with osteomyelitis,
suggesting this technique is an excellent alternative to solve
long bone infected defects by controlling the local infection
(Careri et al., 2019).

Ilizarov Method
The Ilizarov method is a convenient tool for the treatment of
patients suffering from poly−trauma conditions, with multiple
fractures, osteomyelitis, and infected non-unions. The principle
of the Ilizarov’s technique is to stimulate bone growth by
bone distraction that produces neovascularization, and stimulates
new bone formation (Aronson et al., 1989; Ilizarov, 1990).
The surgical procedure consists of the use of an external
circular fixator and a corticotomy. The external fixator stabilizes
the bone and allows early weight-bearing. A distraction of
0.25 mm, four times per day, commencing after a delay of
5 to 10 days post-surgery is performed and an osteogenesis
activity occurs in the bone gap (Spiegelberg et al., 2010). The
length of bone that can be produced by this technique is
up to 20 cm per limb segment. Barbarossa et al. conducted
a study of 30 patients with osteomyelitis and infected non-
union of the femur treated with the Ilirazov technique
and reported efficacy in saving the limbs with osteomyelitis
(Barbarossa et al., 2001). Large blood vessels expressing smooth
muscle α-actin were shown to co-express BMP2 which was
involved in enhancing osteogenic activity at the site (Matsubara
et al., 2012). The Ilizarov’s bone distraction technique also
offers the possibility of correcting a defect of axis, and
allows a lengthening of the limb, however, it has associated
drawbacks such as several weeks lag time required to heal
large segmental defects, with extended hospital recovery and
discomfort for patients, as well as risks of osteomyelitis along the
transcutaneous pins.

FUTURE DIRECTIONS IN LARGE BONE
DEFECT RECONSTRUCTION

In-Patient Bioreactor
The principle of this approach is to use the patient as their
own bioreactor, and entail the fabrication of a customized
bone graft utilizing medical imaging and 3D printing, and the
implantation of these osteoinductive materials in ectopic sites
such as under the skin or in muscles. After several weeks, the
pre-fabricated bone graft is used for large skeletal reconstruction.
The possibility of producing substitute organs or body parts
inside human bodies, therefore using the body as a living
bioreactor was introduced (Cao et al., 1997; Vacanti and Langer,
1999) and Orringer et al. (1999) first treated an angle to angle
mandible and total lower-lip reconstruction with a prefabricated
osteocutaneous flap. A dacron-polyurethane tray was packed
with autologous cancellous bone graft and with BMP7. This tray
was implanted in the fascia above the scapula for generating a
composite pre-fabricated flap (Orringer et al., 1999). Warnke
et al. (2004) developed the bone-muscle-flap prefabrication
technique for maxillofacial reconstruction. They grew a subtotal
mandible composed of a titanium mesh cage filled with bone
bovine mineral blocks, bone mineral granules associated with
BMP7, and autologous bone marrow concentrated cells inside
the latissimus muscle and vascularization was provided by
the thoracodorsal pedicle. Seven weeks postoperatively, the
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FIGURE 3 | Workflow involved in customizable bone construct fabrication. (1) CT scans of the patient’s bone are acquired. (2) Computer aided software enables the

processing of CT images in order to (3) 3D print personalized scaffolds for (4) bone defect reconstruction. The lower panel illustrates a real large bone defect

reconstruction in a sheep metatarsal bone model.

prefabricated bone muscle flap was microsurgically transplanted
with its vascular pedicle in the mandible. Vascular supply
of the flap was successfully maintained. A favorable aesthetic
and functional outcome was obtained (Warnke et al., 2004).
Mesimaki et al. (2009) then described a 3 step surgery method
to reconstruct a large bone maxillary defect by forming a
prevascularized construct by filling a titanium mesh cage with
autologous adipose-derived stem cells (ASCs), BMP2 and beta-
tricalcium phosphate (β-TCP) granules and inserting it in
the patient’s left rectus abdominis muscle, with vascularization
provided by the inferior epigastric artery, and subsequent
transplantation for maxillary bone reconstruction. Other studies
described the use of the pectoralis major – hydroxyapatite blocks
flap, pedicled using the thoracoacromial artery, for mandible
reconstruction (Heliotis et al., 2006; Tatara et al., 2014). A further
alternative comprised a polymethylmethacrylate chamber filled
with autograft implanted against the periosteum of the iliac
crest which was transplanted to the mandibular site after
8 weeks, with the donor periosteum sutured with the local
periosteum to reestablish the vascularization (Cheng et al., 2006).
Kokemueller et al. (2010) reported hemimandible reconstruction
by utilizing cylinders of β-TCP loaded with cells and morcellized
autologous bone graft that were implanted in the latissimus dorsi
muscle with a central vascular bundle and transplanted after
6 months. The main advantage of the patient bioreactor method
compared to the alternative surgical treatments proposed for
large bone defects reconstructions (e.g., autologous vascularized
fibula, iliac crest) is that it avoids the process of harvesting
native bone and creating further skeletal defects. However, this
method does not apply to emergency cases and requires at least
two surgical sites.

3D Printing Techniques and Production
of Personalized Surgical Guides and
Scaffolds
3D printing is an emerging technology that permits the

manufacture of complex-shaped structures with high precision

using layer-by-layer printing of different materials. As illustrated

in Figure 3, the structures of the defects to be reconstructed in

patients are identified based on digital images obtained from a

computed tomography (CT) scan ormagnetic resonance imaging

(MRI), and by using computer-aided design (CAD) software, 3D

printing technology and bioprinting 3D medical models can be

developed (Colin and Boire, 1997; Winder and Bibb, 2005). The

3D printing technologies used for polymer scaffold construction

are: (1) fused deposition modeling (FDM), (2) selective laser

sintering (SLS), and (3) stereolithography (SLA). The FDM

method is the most popular technique developed in the 1980s

and based on construction by melting deposition. The material

commonly used is a thermoplastic polymer, in powder or filament

format, which feeds an extruder tip that melts the plastic and at

its exit is deposited on a surface at a much lower temperature

so that it solidifies rapidly. The extruder tip moves in the x and

y planes to print layer by layer the pattern of the scaffold (Xu

et al., 2014). The resolution of the printed construct is defined

by multiple factors: nozzle diameter, print speed, and number

and height of the layers (Yang et al., 2018). This technique

is simple, rapid, and cost-effective, however, there are limited

choices of biocompatible, medical-grade thermoplastic polymers

available. SLS uses a CO2 laser that sinters, layer by layer, the

material in a powder state, forming the final piece. The final

piece needs to be cleaned to withdraw the powder excess and
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to provide smoothness to the construct surface. SLS allows the
fabrication of large and sophisticated structures (Deckard, 1989;
Mazzoli, 2013). SLA produces 3D models by tracing a beam of
UV light or a laser on a base of a photosensitive resin that
polymerizes (Mondschein et al., 2017). The main benefit of this
3D printing technology is the high level of detail and the excellent
surface resolution (Ji et al., 2018).

3D Printing in Bone Tissue Engineering
Applications
3D printing prototype models can significantly assist with pre-
operative evaluation and intraoperative procedures, for example
for the use of surgical guides in mandibular reconstruction with
osteocutaneous flaps (Bosc et al., 2017; Dupret-Bories et al.,
2018). These studies showed the advantages of using 3D printed
preoperative models and surgical guides including a reduction
in operating time, flap ischemia, morbidity and associated
complications such as infections. Many studies describe the use of
3D printing scaffolds for bone tissue engineering (Kao et al., 2015;
Petrochenko et al., 2015; Saito et al., 2015; Wang et al., 2015).
Various types of ceramics, like HA, β-TCP, alpha-tricalcium
phosphate (α-TCP), BCP, bioactive glasses, and more, have been
used in recent years for the development of 3D printed scaffolds
(Vorndran et al., 2008; Suwanprateeb et al., 2009; Klammert
et al., 2010b), however, these materials are often brittle and do
not match the mechanical properties of bone. To obtain similar
mechanical strength to bone, bioceramics can be blended with
polymers, such as cellulose, poly(D,L-lactic acid-co-glycolic acid)
or polycaprolactone (PCL), before being printed (Liao et al.,
2011). PCL is a polymer, with FDA approval that is widely used in
3D printing. It has a lowmelting temperature (60◦C) (Wang et al.,
2015), favorable viscoelasticity, and is biodegradable. Its slow
degradation and high stiffness make PCL one of the preferred
polymers for the manufacture of a 3D printing scaffold for
bone tissue engineering (Brunello et al., 2016). The use of CT
to create anatomically accurate scaffolds of calcium phosphate
for cranial defects and alpha-TCP for maxillofacial deformities
reconstruction have been described (Saijo et al., 2009; Klammert
et al., 2010a). Direct ink writing (DIW), also called robocasting,
has been one of the most studied and commonly used techniques
for the development of 3D bioceramic scaffolds. DIW is an
extrusion-based additive manufacturing method, in which a
liquid-phase ink containing a high volume content of ceramic
powder is dispensed through a nozzle, following a digitally
defined pattern to create a 3D construct in a layer-by-layer
manner (Lewis, 2006; Feilden et al., 2016). The chief advantages
of DIW is that it applies to a wide range of bioceramics and it is
possible to control pore size, pore orientation, and lattice design
of the printed scaffold. Moreover, it is a high speed, simple and
economic technique (Michna et al., 2005; Miranda et al., 2006)
and has been used to create a hydroxyapatite scaffold for possible
use in maxillofacial reconstruction (Cesarano Iii et al., 2005).

The main advantage of 3D printing is direct control over
both the microarchitecture and complex anatomical structure.
These 3D printed models allow the manufacture of customized
scaffolds that mimics the patient’s anatomy (Wubneh et al.,
2018). However, there are different challenges in the translation
of 3D printing bioceramics to clinical application. Firstly, 3D

printed bioceramics are brittle and not suitable for load-bearing
clinical applications. Secondly, the fabrication of a large-size
scaffold for large bone defect reconstruction is time-consuming
and expensive. Moreover, for producing these 3D printed
bioceramics, toxic solvents, and high-temperatures are used in
the printing procedures which may compromise cell viability
(Rodríguez-Lorenzo et al., 2001; Lewis et al., 2006; Trombetta
et al., 2017; Wen et al., 2017; Chen et al., 2019). There have
been multiple in vivo animal studies conducted with 3D printed
customized scaffolds for bone regeneration (Park et al., 2018;
Choi et al., 2019), however, these techniques are still in a
developmental stage for clinical application and not capable of
fabricating large-sized bioceramic scaffolds.

3D Bioprinting a Custom Living and
Vascularized Bone Graft
Bioprinting is another 3D printing technique that uses cell-laden
hydrogels to print structures that after a period of maturation,
will develop complex tissues, such as skin, cartilage, and bone.
Vascularization can be aided by the incorporation of angiogenic
growing factors or endothelial cells into bio-inks (Kolesky et al.,
2014; Fahimipour et al., 2017; Benning et al., 2018). Three
major procedures are the most used in bioprinting: inkjet,
extrusion, and laser-assisted bioprinting. For tissue engineering
applications, thermal and piezoelectric inkjet bioprinters are
commonly used. In the piezoelectric inkjet bioprinter system,
a piezoelectric crystal is used to create different potentials
which generates pressure that allows the bioink ejection in the
form of droplets. In thermal inkjet bioprinting, the printhead
is heated up to 300◦C that generates small air bubbles that
produce pressure pulses to eject bioink droplets. The size of
droplets depends on multiple factors, such as ink viscosity,
the frequency of the current pulse and the gradient of the
temperature (Hock et al., 1996; Hudson et al., 2000; Cui
et al., 2012). The significant advantage of inkjet bioprinting is
its rapid fabrication (Murphy and Atala, 2014). In extrusion
bioprinting, a bioink is dispensed using pneumatic air pressure
or mechanical systems composed of a screw or a piston.
The flow of the bioink is more controlled in the mechanical
system due to the action of the screw. With the pneumatic
air, an interrupted filament is ejected, allowing high precision
in the printed construct. Cells are exposed to high mechanical
stress during this procedure, which may affect cell viability
(Mandrycky et al., 2016). Extrusion bioprinting allows printing
of different types of inks with different viscosities (Ozbolat and
Hospodiuk, 2016; Paxton et al., 2017). The main disadvantage
of this technique is that the high viscosity of the bioink or
cell aggregation can clog the printer tip. Laser bioprinting
consists of the interaction of a pulsed laser source with a ribbon.
This ribbon contains an energy-absorbing layer, and below it,
the bioink is located. A collector-slide receives the droplets of
hydrogel created by the dynamic jet facilitated by the energy
deposition that is created by the laser effect in the ribbon. In
this procedure cells are not submitted to a mechanical stress
(Gruene et al., 2011; Unger et al., 2011) and it is a nozzle-
free cell printing technique with high resolution. Although 3D
bioprinting brings the potential of producing a customized and
vacsularized living bone transplant, this biofabrication technique
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has not yet been tested in clinical cases. Numerous remaining
challenges such as obtaining optimal cell numbers, adequate cell
viability and spatial cell differentiation of the 3D construct, as well
as reconnection to the local vasculature are yet to be resolved.

CONCLUSION

In this review, the current bone reconstructive options for
large skeletal defects such as autologous, allogeneic, biological
and synthetic bone grafts are presented, as well as the future
directions in bone tissue engineering that take advantage of 3D
printing. The current gold standard technique for large bone
defect reconstruction is autologous free vascularized bone flap
transplantation that contains the patient’s cells, growth factors,
and a vascularization bed. However, its main disadvantages are
donor site morbidity, laborious microsurgery, and the need
to sculpt the construct to the anatomy of the bone defect.
Alternatively, allogeneic bone is also used to reconstruct large
bone defects, but it is less osteogenic than autologous bone
and may induce immunogenic rejection and transfer of disease.
3D printing technologies permit the fabrication of personalized
bone grafts and the improvements in the incorporation of
cells, growth factors, and vasculature may revolutionize bone
tissue regeneration.
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