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Reconstruction of longitudinal distributed incoherent sources
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We describe measurement of the degree of coherence induced by a random light source distributed along the
longitudinal z axis. If this degree of coherence is measured only between all the in-plane pairs of points placed
along the radial lines it is proportional to the Fourier transform of the source’s three-dimensional intensity
distribution as seen from the paraxial far zone. A reconstruction of the source shape from the measured
degree of coherence is also demonstrated.  1996 Optical Society of America

Imaging by a very long-baseline interferometer1 can
be explained by the relation between the far-field
degree of coherence and the intensity distribution of
the imaged object as formulated by the Van Cittert–
Zernike theorem. Explicitly, it is manifested in this
theorem that the two-point degree of coherence in the
far field of a quasi-monochromatic, spatially incoherent
light source is proportional to the Fourier transform of
the source’s planar intensity distribution. This long-
term theory was updated recently because new results
were obtained2,3 that indicate that the far-field degree
of coherence is modified in a particular way if the
source is distributed along the longitudinal axis.

In Refs. 2 and 3 we presented the two-point degree of
coherence induced by a three-dimensional (3-D) quasi-
monochromatic incoherent source from the paraxial
far zone. Two different schemes were proposed to
measure this degree for two applications. In one
scheme the degree of coherence degenerates into a two-
dimensional (2-D) function containing the information
about the 3-D source in the same manner as appears
in a coherently photographed hologram. The complex
distribution of this degree of coherence is actually
analogous to a Fourier hologram. Therefore, by illu-
minating a hologram with a transparency distribution
of this degree of coherence in front of a spherical lens,
we reconstructed the 3-D object in the vicinity of the
lens’s back focal plane.2 Inherently the 2-D hologram
cannot contain all the 3-D information about the origi-
nal object. Therefore this hologram cannot be trans-
formed exactly back into the 3-D object, a problem that
also exists in other conventional holograms.

To overcome this holographic ambiguity problem
we proposed recording a 3-D degree of coherence and
having a precise representation of the 3-D intensity
distribution emitted from the source.3 The precise
reconstruction is achievable because this degree of
coherence is proportional to the 3-D Fourier transform
of the intensity distribution emitted from the 3-D
source and observed form the far paraxial zone.

In this Letter we present an experimental demon-
stration of the degree of coherence induced by a lon-
gitudinal distributed incoherent source. This degree
of coherence is obtained in the form of a complex visi-
bility function of interference gratings in a Young-
experiment configuration.4 Although a 3-D system is
considered in the theory, we simplify the experimen-
tal setup by measuring a complex visibility along only

one transverse coordinate, say, x, understanding that
the extension to the additional transverse dimension y
is straightforward. The reconstruction of the source’s
distribution from the measured complex visibility is de-
scribed below.

A typical configuration is shown in Fig. 1. A 3-D
light source Issrsd in the coordinates frs  sxs, ys, zsdg
illuminates, among others, two points on the x–
y plane located far from the source. We assume
that the source is a collection of incoherent quasi-
monochromatic point sources of spherical waves.
Starting our analysis from a well-known expression5

generalized in a straightforward manner for 3-D
sources, the mutual intensity between any two points
on the x–y plane with coordinates (xi, yi), i  1, 2, is

Jsx1, y1, x2, y2d  C
Z

Issrsdexpf2jksR1 2 R2dgd3rs ,

(1)

where k  2pyl, l is the average wavelength, Ri is the
distance of a point source to the ith observation point,
C is a constant, and the integration is done over a vol-
ume instead of over a plane as in Ref. 5. When simple
geometrical arguments are employed to approximate
the distance sR1 2 R2d, the mutual intensity becomes2
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Fig. 1. Schematic illustration for calculation of the degree
of coherence between P1 and P2.
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where x̂  sx1 1 x2dy2, ŷ  s y1 1 y2dy2, Dx  x1 2 x2,
and Dy  y1 2 y2.

At first glance we note a few properties of this mu-
tual intensity. First, it contains information about the
depth dimension of the source through the variable zs
in the exponent. Second, the modules of J, in general,
are space variant because of the dependence on x̂ and
ŷ. Finally, although J is space variant, the intensity
distribution is uniform over the observation plane as in
the case of a planar incoherent source.6 The far-field
intensity distribution is given by

I sx, yd  JsDx  0, Dy  0d  C
Z

Issrsdd3rs ; I0 .

(3)

We conclude that, in general, the modules of the mutual
intensity induced by a 3-D incoherent source are space
variant in a special way, depending on the product of
the center of gravity of the measurement points sx̂, ŷd
and the distance between them (Dx, Dy); i.e.,

jJsx1, y1, x2, y2dj  jJsDx, Dy, x̂Dx, ŷDydj .

By considering specific points on the x–y plane,
we reduce the four-dimensional mutual intensity
given by Eq. (2) to a 3-D function. The desired
points are all the pairs situated simultaneously on
a radial line emanating from the origin. Formally,
this restriction satisfies the condition x1y2  x2y1. If
we use the relation r̂Dr  x̂Dx 1 ŷDy, the mu-
tual intensity appears now in the general form of
Jsx1, y1, x2, y2d  JsDx, Dy, r̂Drd, where r̂ 

p

x̂2 1 ŷ2

and Dr 

p

Dx2 1 Dy2. Measuring the degree of
coherence along these special points enables us to
reconstruct (by a 3-D inverse Fourier transform) the
3-D intensity distribution of the source as seen from
the observation plane. To see that, let us change
the variable r̂ to q  r̂DryDrmin. Substituting the
new variable into Eq. (2) and normalizing J yield the
following complex degree of coherence:

msDx, Dy, qd ;
JsDx, Dy, r̂Drd
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where C0  I21
0 exps jkqDrminyRd. Equation (4) indi-

cates that the degree of coherence along the coordinates
(Dx, Dy, q) is a 3-D Fourier transform (with scaling
factors) of the source’s 3-D intensity distribution, as
seen from the far paraxial zone.

The experimental system is shown in Fig. 2. As
mentioned above, we have reduced the system’s dimen-
sions to one transverse coordinate only for simplicity,
realizing that the new physics (i.e., the relation be-
tween the far-field coherence and the source’s depth
distribution) is demonstrated as well in the reduced

system. For this system Eq. (4) naturally becomes
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21 exps jKpDkminyRd

3
Z Z
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where the variable x̂ is replaced by p  x̂Dxy
Dxmin. The source’s intensity distribution is recon-
structed from the 2-D inverse Fourier transform of the
measured degree of coherence, i.e.,
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∑

m

µ
Dx

lR
, pDxmin

lR2
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, (6)

where IFT2-D indicates a 2-D inverse Fourier trans-
form. Equation (6) describes the reconstruction pro-
cedure of the source from the measured data.

The incoherent source in the following experiment
is a two-point object produced by rotating a diffuser
in front of two laser beams. Because of the different
distance of each point source to the detection setup,
the points are distributed in the sxs, zsd plane (see
Fig. 2). The changeable pinholes are made by two
slits tilted toward each other. Along each line parallel
to the x axis there are effectively two pinholes with
different distances between them. We change the
pinholes’ center of gravity by moving the slits together
in parallel to the x axis. For each slit’s location x̂, a
set of interference gratings, each for a different Dx, is
obtained in the back focal plane of the cylindrical lens.
The experiment’s parameters are l  0.63 mm, R 

71 cm, x̂max  9.5 mm, Dx  0.2–0.6 mm, Dzs  9 cm,
and Dxs ,2 mm.

Sixty-four sets of interference gratings, f ive gratings
in each, were measured. Each of the sets was obtained
for a different pinhole’s center of gravity x̂. The visi-
bility and the phase of each grating were measured and
collected into the computer’s memory. The complex
visibility obtained from five gratings (five distances Dx
between the pinholes) in sixty-four different centers of
gravity is shown in Figs. 3(a) and 3(b). Note that the
frequency of the visibility function along x̂ increases

Fig. 2. Experimental setup: BS, beam splitter; M’s,
mirrors.
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Fig. 3. (a) Magnitude and (b) phase of the degree of
coherence as a function of sDx, x̂d. (c), (d) Same as
(a) and (b) after transformation of the coordinates to
sDx, x̂DxyDxmaxd.

Fig. 4. Reconstruction of the source by an inverse Fourier
transform of the complex function shown in Figs. 3(c) and
3(d). (a) Gray-level image, (b) 3-D plot.

linearly with Dx and that the distance between any two
peaks of brightness, in each mth column [see Fig. 3(a)],
follows the relation lR2yDzsDxm > 3.53 m21 cm, m 

2, . . . 6, as indeed expected from Eq. (5)
To reconstruct the source shape from the sampled

complex visibility one first needs to transform the mea-
sured data to the coordinates sDx, pd. To gain more
longitudinal resolution it is worth changing the coordi-

nates (Dx, x̂) to sDx, x̂DxyDxmaxd. The minimum ob-
ject depth that can be resolved now is lR2yx̂maxDxmax

instead of lR2yx̂maxDxmin, as results from Eq. (5). As
a result of this transformation the visibility plane is not
completely occupied with measured data. Zero values
are filled in the entire area of missing data, as is shown
in Figs. 3(c) and 3(d).

The reconstruction of the source shape, shown in
Fig. 4, was obtained by a 2-D inverse Fourier trans-
formation of the complex visibility shown in Figs. 3(c)
and 3(d). The zero padded areas in Figs. 3(c) and
3(d) can be considered a bandpass filtering and ex-
plain the noise that surrounds the two bright points in
Fig. 4. One can extrapolate the visibility function into
the zero padded areas and thus reduce the degradation
in the reconstructed image. However, this subject is
beyond the scope of the present preliminary demon-
stration.

In conclusion, a new kind of space-variant degree
of coherence was experimentally demonstrated. This
degree of coherence was obtained in the far f ield of
an incoherent source distributed along the longitudi-
nal axis. We demonstrated a reconstruction of an ax-
ially distributed source from this degree of coherence,
measured by a Young-experiment setup. The experi-
mental results confirm the theory developed in Refs. 2
and 3. Extending the system to three dimensions
promises a new method of incoherent holography and
3-D imaging.
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