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Graph Neural Network reconstruction in IceCube

1. Introduction

1.1 The IceCube detector and IceCube Upgrade

The IceCube Neutrino Observatory [1] is a cubic-kilometer scale neutrino detector embedded

in the Antarctic ice of the South Pole. Neutrinos interact inside or close to the detector volume

and produce secondary particles that can emit Cherenkov light. A fraction of this light is then

collected by the photo multipliers (PMTs) [2] in our detector modules, also known as Digital

Optical Modules (DOMs), which are situated on 86 detector strings, with 5160 DOMs in total. One

region within the IceCube detector is denser both in the horizontal spacing of the strings and the

vertical spacing between DOMs, compared to the rest of the detector volume. The higher density of

photo-cathode area pushes the energy threshold for detected neutrinos below the first atmospheric

neutrino oscillation maximum at 25 GeV, down to 10 GeV. This region is called DeepCore [3] and

is used for oscillation [4] [5] and beyond standard model physics [6].

Figure 1: Layout for the IceCube, DeepCore, and

planned Upgrade strings.

An additional low-energy extension to the

detector, called the IceCube Upgrade [7], is

currently in construction and will improve our

sensitivity in oscillation physics. This exten-

sion comprises 7 strings even denser in spacing

than the DeepCore strings. The strings will

be outfitted with calibration devices, as well

as novel detector modules. While the current

DOMs exclusively contain downward-pointing

PMTs, the new models will also feature PMTs

that cover an almost 4c solid angle region to

improve the directional resolution of arriving

neutrinos. The IceCube Upgrade is planned to

go into operation in 2023/2024.

1.2 Neutrino oscillation physics

Neutrinos produced in the earth’s atmosphere can travel through the entire earth’s volume.

While traveling, they oscillate between the different flavors: electron (a4), muon (a`), and tau (ag).

Under standard assumptions about the oscillation parameters of the neutrino, the density profile of

the earth, and the atmospheric particle flux model, we can make a prediction about the appearance

rate of a neutrino with a set of given experimental observables inside the IceCube detector. These

properties are the neutrino’s energy, traveled distance, flavor, and whether it underwent a charged

current (CC) or neutral current (NC) interaction.

As we assume symmetry in the azimuthal direction, the travel distance can also be expressed

by the zenith angle of the neutrino arrival direction in the detector. Additionally, we do not have

a direct handle on the flavor and the interaction type of a neutrino event. However we primarily

encounter two different event topologies: track(-like) and cascade(-like) events. Charged-current

a` interactions, as well as a fraction of ag interactions, will imprint themselves as track events.

All other flavors and interaction types will appear as cascade events. In summary, to perform an
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Graph Neural Network reconstruction in IceCube

oscillation analysis in IceCube, we have to estimate the neutrino energy, the zenith angle of the

arrival direction, and the event topology of each neutrino interaction.

2. Low-energy neutrino event reconstruction

2.1 Current methods

The current baseline approach uses a likelihood-based method using "photon tables". Using a

parametrization that describes a neutrino event, we can predict the number of Cherenkov photons

and the direction they will be emitted in. The photon tables then describe the propagation of those

photons through the detector. To reconstruct an event, the algorithm then minimizes the likelihood

between said recorded event and photon table predictions as a function of event parameters. While

this method works, there are certain issues. Most of these can be summed up with computational

cost.

Figure 2: New DOM architectures for the Upgrade

strings.

The reconstruction of one event using the

baseline method takes approximately 40 s. As

we handle numbers of events on the order

of 107, the time necessary compounds very

quickly; calling for weeks of HPC cluster us-

age. Additionally, the current photon tables as-

sume only downwards-facing PMTs. We would

therefore have to expand the already large pho-

ton tables by another dimension to accommo-

date for the additional PMT directions. The

current photon tables require compression, after which they are still a few GB in size. While

they currently fit into the memory of most systems, this cannot be expected with the additional

dimension. The expansion of photon tables will also increase the time needed for the minimization

of each event reconstruction likelihood, exacerbating the first point. The need for more efficient

algorithms apparent.

An additional benefit of a faster reconstruction algorithm is that it can be used earlier in the

data processing chain. Currently, our events are filtered to remove background events due to muons

and noise before they are passed to the reconstruction algorithm. This is due to the aforementioned

time it takes to reconstruct a large amount of events. With a faster algorithm, we can reconstruct

the events earlier in the processing chain and could in addition use the reconstructed parameters to

improve the data selection.

Machine learning approaches excel with respect to speed and flexibility. These approaches,

specifically deep neural networks, have found many applications in the current physics landscape,

also in the IceCube collaboration [8][9]. Popular machine learning approaches include Convolu-

tional Neural Networks (CNNs) or Multilayer Perceptrons (MLPs). These however have caveats,

such as the requirement of fixed-size inputs, or the assumption of symmetries in our detector.

2.2 Graph Neural Networks

Graph Neural Networks (GNNs) are a good candidate to amend these issues. In GNNs the

information is represented by a collection of nodes These nodes can then be connected by edges,
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based on their relationship to each other. The convolutional layer then collects the information of

the neighbors around each node, as described by the edges. This approach allows us to encode

information in an irregular configuration, as opposed to CNNs, that are limited by their regular

convolutional kernel.

GNNs have been used previously in IceCube, but only for signal classification [10]. The

approach presented in this proceeding is among the first to employ GNNs for reconstruction and

interaction type classification.

3. Description of technique

3.1 Building the graphs

Figure 3: Schematic of the network architecture used.

We propose a method that works on a per-

pulse basis. Each detector event is described

a as a pulse series, i.e. a list of pulses. In the

simplest way, each pulse can be described by

following quantities: the hit DOM, and there-

fore the position of the pulse, collected charge,

and time recorded. For the IceCube Upgrade,

we also introduce the pointing direction of the

PMT, as well as the type of optical module that

registered the charge. We can then represent

each event by a graph, with the nodes repre-

senting the pulses in an abstract 5-dimensional

(or 12-dimensional for the Upgrade) space. The

next task is to connect these nodes to each other

with edges. We use the : nearest neighbors

calculated from the Euclidean distance in posi-

tion and time to decide which nodes should be

connected by edges. The edges are bidirectional and unweighted.

3.2 Graph convolutional layers

After building the graphs, we can apply various convolutional layers. In essence, convolutional

layers extract the information about a given input and expand them onto additional dimensions. In

our first efforts, we found the ’topology adaptive graph convolutional network’ layer (TAGCN) [11]

in the PyTorch Geometric package [12] to fit our needs the best. TAGCN provides a fixed-size,

CNN-like filter, expanding established methods to the graph language. In our approach, we employ

a combination of average pooling and maximum pooling.

3.3 Graph pooling and decoding

Traditional neural network methods, such as CNNs or MLPs, usually require a fixed input size.

This makes per-pulse approaches difficult, as the number of pulses per event varies. GNNs however,

provide a method called graph pooling. By pooling a graph, the graph information is shaped to fit a
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given input size, by e.g. taking the average, the maximum, or the sum of a set of values. We perform

this step after applying the graph convolutional layers. This way we circumvent losing information

by prematurely summarizing our input. The output is then passed to MLPs for additional learning

and decoding to our parameters of interest.

3.4 Training targets and loss functions

In our oscillation analysis, we are primarily interested in three quantities: neutrino energy, the

zenith angle of the arrival direction, and the event topology. The energy range we operate in spans

from approximately 1 GeV to 1000 GeV. To provide a loss that is not biased towards higher energies,

we train on the logarithm of the energy in base 10 (log10(�)), in combination with a mean squared

error (MSE) as the loss function. For the zenith angle, we found the conversion of the angle \ to a

2D cartesian [sin(\), cos(\)] and then using an MSE loss function to yield the best results. For the

event topology, we want to distinguish between two signatures, track and cascade event hypothesis,

so we choose a binary cross entropy loss.

A schematic for the network is shown in Fig. 3.

4. Results

We split the application of our method into two parts: The first part details the application of

our reconstruction to simulation of our current oscillation analysis, as well as a comparison to our

baseline reconstruction algorithm. In the second part we apply the GNN algorithm to the simulation

of the upcoming IceCube Upgrade and illustrate the improvement in resolution coming from the

additional strings and detector modules.

4.1 Application to the current IceCube oscillation analysis

For training, we use a mixture of Monte Carlo simulations of a4, a`, and ag interaction events.

The simulation events have undergone a removal of noise pulses using an algorithm. For testing

we use the final event selection also used for our oscillation analyses, which includes the removal

of background events from muons and noise. We then predict our parameters of interest, energy

� , zenith angle \, and event topology, and compare them to the Monte Carlo truths. We can

also compare our results to the resolution of our baseline algorithm based on photon tables for

reconstructing the energy and the zenith angle. Results are shown in Fig. 4.

For both resolution in zenith angle and energy, we can see that the 68% bands of GNN-

reconstructed events for are generally more constraining than the bands for the baseline, especially

at lower neutrino energies. This result is especially satisfactory, as it is not only an overall

improvement, but also specifically for neutrino events with energies that are usually harder to

reconstruct, due to the low number of recorded pulses.

The distorted shape of the bands for the reconstructed energy stems from two sources. In the

energy range below 10 GeV our selection is biased towards higher reconstructed values due to the

hard lower threshold at 8 pulses. On the other hand, above 100 GeV, a fraction of the neutrino

energy is transferred into secondary particles that do not emit Cherenkov light and are therefore

invisible to the detector.
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Figure 4: Bands comparing the resolution vs energy of our GNN with the baseline algorithm, for the zenith

angle cos(\) (left) and the neutrino energy � (right). 68% of the best reconstructed events lie between the

plotted bands. The dashed lines indicate the target values.

Over all tested samples, the standard deviation of the difference between true and reconstructed

cos(\) for the GNN is fcos(\) , GNN = 0.36 and for the baseline algorithm fcos(\) , Retro = 0.44.

Due to the aforementioned distortion in the energy bands, we select the true neutrino energy range

between 10 and 100 GeV for the evaluation of the energy resolution. There, for the standard deviation

of the difference between true and reconstructed log10(energy) we obtain flog10 (E) , GNN = 0.24 for

the GNN and flog10 (E) , Retro = 0.26 for the baseline algorithm.

Figure 5: Receiver operating characteristic curve with

area under curve (AUC) for a track–cascade identifier

using the GNN and the baseline algorithm (BDT).

We then compare the prediction of the

event topology with the baseline algorithm

based on a Boosted Decision Tree (BDT).

Fig. 5 shows the receiver operating characteris-

tic curve for the event topology classifiers using

the GNN and the BDT respectively. We can

see that the ratio between true positive rate and

false positive rate for all thresholds is improved

with the GNN, leading to a higher area under

the curve (AUC).

Another improvement is the speedup com-

pared to the current algorithms. With our GNN,

it is possible to reconstruct one event within

less than 3 ms, offering a speedup on the or-

der of 104. This leads to a reconstruction time

of circa 6 h for the whole simulation dataset on only one GPU. The same reconstruction takes

approximately two weeks using the full IceCube HPC cluster.

In summary, our GNN reconstruction offers not only improvement in the resolution of the

zenith angle of the direction, the energy and the event topology of the neutrino event, but also a

decrease in reconstruction time.
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4.2 Application to the future IceCube Upgrade

Figure 6: Receiver-operator-characteristic curve

and area under curve (AUC) for a track–cascade

identifier using the full Upgrade detector and the

current detector configuration.

To show the flexibility of our approach, we now

use the GNN to reconstruct events simulated for our

future detector upgrade. As this extension also in-

cludes new detector models, we adjust the input pa-

rameters to include additional information: There

are three new detector models, namely the pDOM,

the mDOM, and the D-Egg. The mDOM and the D-

Egg include PMTs that not only point downwards,

but in multiple other directions. So besides the pre-

viously used G-, H-, and I-position of the recorded

pulse, as well as its collected charge and time of

recording, we also include the detector module type

and the direction of the PMT that recorded the pulse.

We train the networks on a dataset, algorith-

mically cleaned of noise pulses, but without major

background rejection. The dataset to test the net-

works are based on the same processing as the train-

ing set, as the event selection for IceCube Upgrade is still in its early development phase. We

are also interested to see the improvement coming from the Upgrade. To do so, we remove pulses

recorded by the new modules, and reconstruct those events with the networks trained in the previous

section. This way we have a direct event-by-event comparison.

Figure 7: Bands comparing the resolution vs energy in the zenith angle cos(\) (left) and the neutrino energy

� (right) for the IceCube Upgrade ("Full Upgrade") and with the Upgrade strings removed ("Current detector

only"). 68% of the best reconstructed events lie between the respective bands. The dashed lines indicated

the target values.

We can see in the results in Fig. 7 that there is an overall improvement in resolution, both in the

width of the bands, as well as the centering around the target values. However, due the premature
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event selection, these results are not final and not representative of the expected resolution for the

IceCube Upgrade. Over all tested samples, fcos(\) , Upgrade = 0.35 and fcos(\) , current = 0.40. In

the true neutrino energy range between 10 GeV and 100 GeV we receive flog10 (E) , Upgrade = 0.22

and flog10 (E) , current = 0.29. Additionally, in Fig. 6 the receiver-operator-characteristic curves of

the track–cascade identifier are shown for both cases. We can see from their shapes, as well from

the area under the curve values of AUCUpgrade = 0.83 and AUCcurrent = 0.75, that there is also an

improvement in the distinguishing power with the additional strings.

5. Conclusion

Graph Neural Networks offer a method for reconstructing and classifying neutrino events for

both the IceCube and the IceCube Upgrade. With our approach we can encode the detector pulses

without major preprocessing such as summary statistics or geometry transformations. Compared to

our current baseline algorithms, our results not only outpace them in resolution, but also in speed.

We will look to improve our performance and investigate the use of our networks for the event

selection in the near future.
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