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Reconstruction of Nonuniformly
Sampled Bandlimited Signals Using
a Differentiator–Multiplier Cascade

Stefan Tertinek and Christian Vogel, Member, IEEE

Abstract—This paper considers the problem of reconstructing a
bandlimited signal from its nonuniform samples. Based on a dis-
crete-time equivalent model for nonuniform sampling, we propose
the differentiator–multiplier cascade, a multistage reconstruction
system that recovers the uniform samples from the nonuniform
samples. Rather than using optimally designed reconstruction
filters, the system improves the reconstruction performance by
cascading stages of linear-phase finite impulse response (FIR)
filters and time-varying multipliers. Because the FIR filters are
designed as differentiators, the system works for the general
nonuniform sampling case and is not limited to periodic nonuni-
form sampling. To evaluate the reconstruction performance for a
sinusoidal input signal, we derive the signal-to-noise-ratio at the
output of each stage for the two-periodic and the general nonuni-
form sampling case. The main advantage of the system is that
once the differentiators have been designed, they are implemented
with fixed multipliers, and only some general multipliers have to
be adapted when the sampling pattern changes; this reduces im-
plementation costs substantially, especially in an application like
time-interleaved analog-to-digital converters (TI-ADCs) where
the timing mismatches among the ADCs may change during
operation.

Index Terms—Discrete-time differentiator, Farrow structure,
nonuniform sampling, Taylor series expansion, time-interleaved
analog-to-digital converter (TI-ADC), time-varying multiplier.

I. INTRODUCTION

I N digital signal processing, the standard method for con-
verting a continuous-time signal into a discrete-time signal

is uniform sampling where samples are taken at uniform time
instances. If the continuous-time signal is bandlimited and
the sampling rate is at least equal to the Nyquist rate, then
the original signal can be uniquely reconstructed from these
uniform samples by ideal low-pass interpolation [1]. In many
practical applications, sampling occurs at nonuniform time
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instances [2]. Similar to uniform sampling, if the average
sampling rate is at least equal to the Nyquist rate, then the
bandlimited continuous-time signal is uniquely determined by
these nonuniform samples [3]. Although direct reconstruction
using continuous-time interpolation functions is, in principle,
possible [4], [5], a practical implementation of these functions
with high precision is computationally difficult. Alternatively,
iterative reconstruction methods can be used [2], [6], but they
have potential convergence problems and are computationally
demanding. To benefit from an all-digital implementation, the
most efficient reconstruction method is to recover the uniform
samples from the nonuniform samples in the digital domain. A
practical digital reconstruction technique is to use time-varying
discrete-time filters, which are automatically obtained by
sampling and truncating the ideal continuous-time interpola-
tion functions. To circumvent the problems associated with
truncation, the authors in [7] assumed a slight oversampling
and developed least-squares and minimax design procedures
based on a time-frequency function. Although the obtained
reconstruction filters have minimum order, a new design is
required for each sampling instance such that online design
increases the implementation costs significantly. However,
for -periodic nonuniform sampling, where the nonuniform
sampling instances form an -periodic pattern, the design
problem can be posed as one of a filter bank. The obtained
reconstruction filters approximating the ideal ones in [8]
have orders less than those proposed in [9] and [10]. Recon-
structing periodic nonuniformly sampled signals is of practical
importance in time-interleaved analog-to-digital converters
(TI-ADCs) where timing mismatches among the ADCs give
rise to the recurrent sampling pattern [11]. Although these
mismatches are usually assumed to be known, estimating them
is also an issue [12], [13]. More importantly, temperature and
aging affect the mismatches, causing the sampling pattern to
change during operation [14]. To avoid online filter redesign in
that case, a digital fractional delay filter bank was developed
in [15] for moderately oversampled signals. Applying their
framework developed in [7], the same authors used polynomial
impulse response time-varying finite-impulse response (FIR)
filters for reconstruction in the two-periodic case [16], [17].
Although the obtained filter orders are higher than those in [7],
the implementation costs are kept low in that the filters are
designed offline and are implemented with fixed multipliers;
only a few general multipliers need to be adapted when the
sampling pattern changes. Yet, using multivariate polynomials
for the -periodic case significantly increases the design and
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implementation complexity, such that these filters with the
current design techniques may only be used for small time
errors and small [18].

A. Contribution of this Paper and Relation to Other Work

To make the -variate polynomial impulse response filter
approach generally applicable, it was pointed out in [17] that
a scheme with a reduced number of subfilters and systematic
design techniques for the general case are required. In our pre-
vious work [19], we derived one such special scheme consisting
of an FIR filter designed as differentiator and a time-varying
multiplier. The main advantage of that system is that designing
the optimal reconstruction filters reduces to designing a simple
FIR differentiator. Because this design is independent of , the
system can, in fact, be used for any number of and does not
face the design problems reported for the -variate polynomial
impulse response filters in [18]. The simple filter design comes
with the drawback that the system is neither optimal in any sense
nor can it achieve an arbitrarily small reconstruction error, con-
trary to the polynomial impulse response filters.

The main contribution of this paper is to extend the system in
[19] and propose the differentiator–multiplier cascade (DMC),
an all-digital reconstruction system that improves the recon-
struction performance by cascading several stages. Because
each stage consists only of linear-phase FIR filters designed as
differentiators and time-varying multipliers, the DMC can also
be used for the general nonuniform sampling case. Moreover,
the implementation costs are reduced because once the FIR
differentiators have been designed, they are implemented with
fixed multipliers, and only a few general multipliers need to be
adapted when the sampling pattern changes over time.

The second contribution is to introduce a reconstruction
principle that is different from the (mostly filter bank based)
methods proposed so far. Based on our work in [19] where
we considered canceling an error spectrum in the frequency
domain, we show in Section II how to perform error canceling
in the discrete-time domain. For this purpose, we develop in
Section III a discrete-time equivalent model that represents
the nonuniform samples as the sum of the uniform samples
and error samples accounting for the amplitude error due to
nonuniform sampling. Based on this equivalent model, the
idea is to cancel the error samples by first reconstructing
them and then subtracting their reconstructed version from the
nonuniform samples. This principle leads in Section IV and
Section V to the proposed DMC that cancels the error samples
using a cascade of reconstruction stages. In Section VI, we
show how redrawing the DMC leads to a system with a reduced
overall delay, but at the cost of a slightly worse reconstruction
performance. To evaluate the reconstruction performance of
the system for a sinusoidal input signal, we derive in Section V
the theoretical signal-to-noise ratio (SNR) at the output of each
stage for the cases and large . Section VIII deals with
the practical implementation of the DMC and considers some
implementation issues. Simulation results in Section IX illus-
trate the reconstruction performance and confirm the derived
SNR expressions. Finally, Section X gives the conclusions.

Fig. 1. (a) Uniform sampling, (b) nonuniform sampling, and (c) two-periodic
nonuniform sampling.

II. NONUNIFORM SAMPLING AND

PROPOSED RECONSTRUCTION PRINCIPLE

Uniform sampling refers to taking periodically spaced sam-
ples from a continuous-time signal , as shown in Fig. 1(a).
Denoting the sampling period as , uniform sampling produces
the sequence

(1)

which is referred to as the uniform sequence. We assume
throughout this paper that is bandlimited, i.e., its Fourier
transform satisfies

(2)

where is the signal bandwidth. Because (2) ensures that sam-
pling occurs at least at the Nyquist rate, the original signal
can be recovered from the uniform sequence [1].

Nonuniform sampling, by contrast, refers to taking samples
at arbitrary time instances and produces the sequence

. In this paper, we assume that the time instances deviate
from the uniform sampling points according to

(3)

as shown in Fig. 1(b). The time errors , given as fraction of
the average sampling period , determine the deviation of the
nonuniform from the uniform sampling instances and are as-
sumed to be known. With (3), the sequence obtained by nonuni-
form sampling becomes

(4)

which is referred to as the nonuniform sequence. When the time
errors are periodic with period , i.e., , we have
the -periodic nonuniform sampling case, which is depicted in
Fig. 1(c) for . In TI-ADCs, for example, this periodic
sampling pattern is caused by timing mismatches among the
ADCs. We further assume that the time errors are less than
some tenth, a typical range for such an application [20].

The goal of reconstruction in the digital domain is to recover
the uniform sequence in (1) from the nonuniform sequence

in (4). To this end, we propose the reconstruction principle
shown in Fig. 2. The model part corresponds to the discrete-time
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Fig. 2. Proposed reconstruction principle consisting of a model part and a re-
construction part.

equivalent model for nonuniform sampling that will be derived
in Section III. This model represents the nonuniform sequence

as the sum of the uniform sequence and an error se-
quence ; i.e.,

(5)

where accounts for the amplitude error introduced by
nonuniform sampling. Given the model in (5), the main idea
is to reconstruct from by canceling . As the
reconstruction part in the figure shows, this requires two steps:
reconstructing the error and subtracting the reconstructed
error from . This subtraction results in the recon-
structed uniform sequence

(6)

which will be equal to if we can perfectly reconstruct ,
i.e., if . Based on the reconstruction principle in
Fig. 2, we will start with deriving the discrete-time equivalent
model in the next section and continue with developing the re-
construction system in later sections.

III. DISCRETE-TIME EQUIVALENT MODEL FOR NONUNIFORM

SAMPLING OF BANDLIMITED SIGNALS

In this section, we derive a discrete-time equivalent model
for sampling a bandlimited continuous-time signal at the
nonuniform time instances in (3). We use the term equivalent
model because nonuniform sampling of turns out to be
equivalent to uniform sampling of both and all of its
weighted derivatives. To derive the model, consider the th
sampling instance shown in Fig. 3. An ideal sampling device
samples at the uniform time instance , leading to the
correct sample value . However, nonidealities deter-
mined by the time error cause sampling to occur at the
nonuniform time instance , resulting in the incorrect
sample value . Now, the basic idea is to model

as the sum of and the error sample
that accounts for the amplitude error due to nonuniform

sampling. Because we assume that is sufficiently small and
that is bandlimited, the resulting small amplitude error
suggests a local signal representation. Therefore, we expand

into a Taylor series about the uniform sampling instance
. In general, assuming that all derivatives of exist, the

Taylor series expansion of the signal about the time instance
is [21]

(7)

Fig. 3. Sampling a continuous-time signal���� at the nonuniform time instance
�� � � � , rather than at the uniform time instance �� , introduces the am-
plitude error ���� �.

Fig. 4. Equivalent model for nonuniform sampling of a continuous-time signal
���� having all derivatives.

where determines the deviation from , and denotes
the th derivative of . Applying this relation to Fig. 3 and
considering the Taylor series expansion about all sampling in-
stances, we set and and can express (7) as

(8)

where the amplitude error is

(9)

Equations (8) and (9) constitute the equivalent model for
nonuniform sampling depicted in Fig. 4. The model represents
the nonuniform samples as the sum of the
uniform samples and the error samples , which
are the weighted sum of uniform samples of all derivatives of

. In particular, the figure shows that the th term in this
sum consists of , which is produced by a chain of
continuous-time differentiators with frequency response ,
being sampled at and weighted by .

Assuming that is bandlimited according to (2), we can
convert Fig. 4 into the discrete-time equivalent model shown
in Fig. 5. The bandlimitedness ensures that exists for
all and allows us to change the order of differentiation and
sampling. To be specific, we can replace each continuous-time
differentiator with frequency response by an equivalent dis-
crete-time system with frequency response , where

[1]. Since generating the th derivative using a chain of
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Fig. 5. Discrete-time equivalent model for nonuniform sampling of a bandlim-
ited continuous-time signal ����.

such systems introduces the factor , the factor in (9)
will be canceled. Therefore, inserting (9) into (8) and using (1),
(4) and , we can write (5) as

(10)

where

(11)

Similar to the model in Fig. 4, in Fig. 5 is produced
by a chain of ideal discrete-time differentiators with frequency
response [1]

(12)

which is equivalent to write ,
where the impulse response of the differentiator, , is
convolved with itself -times. In view of this,
denotes -times (discrete-time) differentiating an arbitrary
sequence . For example, refers to
differentiating the sequence in (10), which is equivalent
to sampling the derivative of a corresponding bandlimited con-
tinuous-time signal . Furthermore, we refer to (11) as the
th-order error or, equivalently, the error of order ; this

notation indicates that higher order errors contribute less to the
total error than lower order errors because of the smaller
weighting factor . For example, the second-order error

(or error of order ) contributes less
to the total error than the first-order error
(or error of order ). Note further that for vanishing ,
the model in Fig. 5 reduces to the uniform sampling process
in (1). Moreover, if we consider only the first terms in the
model, then the approximation is equal to a Farrow structure
whose subfilters have frequency responses , for

[22]. This approximation was used in [23]
to transform the design problem of a fractional delay filter

Fig. 6. First stage consisting of a discrete-time differentiator � �� � and a
time-varying multiplier � .

into one of a first-order differentiator, but the derivation of the
subfilters (differentiators) in the Farrow structure was given in
the frequency domain. In [24], the Taylor series expansion in
(7) about was interpreted as an infinite filter bank, where
the analysis filters have frequency responses and the
synthesis filters have impulse responses , for .
Contrary to these approaches, we will use the discrete-time
equivalent model to derive a reconstruction method for nonuni-
formly sampled signals in the following sections.

IV. FIRST-ORDER ERROR CANCELING USING A DISCRETE-TIME

DIFFERENTIATOR AND A TIME-VARYING MULTIPLIER

Having introduced the model part of the reconstruction prin-
ciple in Fig. 2, we now consider the reconstruction part and de-
rive the reconstruction system in Fig. 6. We refer to this system
as the first stage because it will be the first stage of the DMC
developed in Section V. In our previous work [19], we obtained
this system by canceling an error spectrum in the frequency do-
main. The derivation was simplified by considering only the
two-periodic nonuniform sampling case, and it was pointed out
that the system can be adapted for the -periodic case by using
an -periodic time-varying multiplier. By contrast, the deriva-
tion in this section is given in the time domain and is solely
based on the reconstruction principle in Fig. 2. Since the time
errors will not be assumed periodic, it will become clear that
the reconstruction system also works for the general nonuni-
form sampling case.

We begin by recalling that, given the model
, our goal is to cancel the error by subtracting its recon-

structed version from . Comparing (5) and (10) shows
that

(13)

Thus, to cancel , we cancel each error term by
subtracting its reconstructed version from . To find

, observe from (11) that could be produced from
using two basic operations: discrete-time differentiation and
time-varying multiplication. To illustrate the error reconstruc-
tion in the ideal case, let us assume that we knew . We could
then apply these two operations to to exactly reconstruct
each . In particular, differentiating and multiplying by

would give , which is equal to the first-order
error . In a similar manner, we could also reconstruct the
higher order errors. Knowing , however, would not require
a reconstruction system, and the only available sequence is

. But since also consists of according to (10), we
can reconstruct each by applying the same two operations
to , and thereby to . Because we saw in Section III that
higher order errors contribute less to the total error , we
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begin with canceling . To simplify the error analysis, we
approximate using the first two error terms in (10); i.e.,

(14)

where will be used for error evaluation. We now apply
the two-step approach described above: error reconstruction and
subtraction from .

In the first step, we reconstruct by differentiating
and multiplying by ; thus, we obtain the reconstructed first-
order error through

(15)

which can be approximated with (14) by

(16)

It should be emphasized that approximating in (14), and
thus in (16), only serves to simplify the SNR derivation
in Section VII, whereas the actual reconstruction step in (15) is
performed on itself, including all error terms. The approx-
imation in (16) also shows that the step in (15) not only recon-
structs the error but also introduces two addi-
tional errors; the first error is of order because
it is produced by multiplying the error of order
by ; the second error is of order because it is
produced by multiplying the error of order by .
Analyzing additionally introduced errors with respect to their
order will allow us to neglect some of them. In fact, we will see
in Section VII that for the th DMC stage, errors up to order

are sufficient to determine the SNR and higher order
errors can be neglected. The simulation results in Section IX
will confirm this conclusion.

In the second step of our approach, we cancel in (14)
by subtracting its reconstructed version found in (15). This
subtraction gives the reconstructed uniform sequence

(17)

which corresponds to the output of the first stage. Fig. 6 de-
picts the first stage of the reconstruction system given by (15)
and (17). The discrete-time differentiator followed by
the time-varying multiplier produces the reconstructed first-
order error which is subtracted from to cancel .
The resulting reconstructed uniform sequence in (17) can be ap-
proximated with (14) and (16) by

(18)

where errors of order and higher have been neglected.
Equation (18) shows that has been canceled, but at the
cost of the additionally introduced error . Besides ,
which is inherent in our model for , this additional error
limits the reconstruction performance of the first stage by intro-
ducing a performance floor [19]. Moreover, large time errors ,

Fig. 7. Proposed DMC. Each stage consists only of discrete-time differentia-
tors � �� � and time-varying multipliers.

which occur in bunched sampling [9], lead to a poor reconstruc-
tion performance because may become larger than the
error actually being canceled. On the other hand, the poly-
nomial impulse response time-varying FIR filters introduced in
[16] and [18], of which the first stage in Fig. 6 is a special case
[19], can be designed to achieve optimal overall performance
in the least-squares and minimax sense for an arbitrarily small
reconstruction error. As increases, however, the filter design
becomes increasingly complex, whereas the first stage still re-
quires only the design of a differentiator, independent of .
This significant advantage in the filter design, but the poor re-
construction performance, motivates the extension of the first
stage to improve the reconstruction quality, as will be shown in
the next section.

V. DMC FOR CANCELING HIGHER ORDER ERRORS

To extend the first stage, we derive in this section the DMC
in Fig. 7, a multistage reconstruction system using only dis-
crete-time differentiators and time-varying multipliers. Com-
pared with the first stage in Fig. 6, the DMC improves the recon-
struction quality by also canceling the higher order errors ,

, and so on. Generally speaking, the difficulty in extending
the first stage is the additionally introduced error. In particular,
we saw in (18) that using to cancel introduces the
error . If we extended the first stage by using to
cancel only the second-order error (or even higher order
errors), then the reconstruction quality would only slightly im-
prove because the error would still be left. Therefore,
an obvious idea is to use to cancel both and .
The problem with this approach is that reconstructing the ad-
ditionally introduced errors in each stage becomes increasingly
complex.

The idea leading to the DMC is based on the fact that the
output of the first stage, , is closer to than , where
closer is defined in terms of the SNR. Hence, rather than ,
we use for further error reconstruction. In particular, we
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use to cancel and simultaneously. To this end,
we approximate using the first three error terms in (10); i.e.,

(19)

where and will be can-
celed and will be used for error evaluation. Applying again
the two-step approach from before, we first reconstruct
and using by

(20)

(21)

respectively, which can be approximated with (18) and ne-
glecting terms of order and higher by

(22)

(23)

Then, we cancel and by subtracting their recon-
structed versions and , respectively, from . This
subtraction gives the reconstructed uniform sequence

(24)

which corresponds to the output of the second stage. Fig. 7
shows the second stage given by (20), (21) and (24). The
output of the first stage, , runs through two differentiators

to produce and . These two sequences are
multiplied by and to generate the reconstructed
errors and , respectively. Using (19), (22) and
(23), we can approximate (24) by

(25)

Similar to the first stage, (25) shows that and in
(19) have been canceled, but at the cost of the two additionally
introduced errors and ; they are caused
by the errors and of the first stage propagating
through the first-order branch ( followed by ) of
the second stage. By contrast, the same two errors propagating
through the second-order branch do not introduce any signifi-
cant error terms. This will be the key observation in Section VI
to redraw the DMC and derive a reconstruction system with
reduced delay.

We can further improve the reconstruction quality by adding
a third stage. Using to cancel , and simul-
taneously, we approximate using the first four error terms
in (10); i.e.,

(26)

where will be used for error evaluation. To cancel ,
and , we first reconstruct them using by

(27)

(28)

(29)

Then, we subtract these reconstructed errors from and
get the reconstructed uniform sequence

(30)

which corresponds to the output of the third stage. Fig. 7
shows the third stage given by (27)–(30). The output of the
second stage, , runs through three branches to produce

, and , which are subtracted from to
cancel , and , respectively. Inserting (25) into
(27)–(29), and the result with (26) into (30), we can approxi-
mate by

(31)

where errors of order and higher have been neglected.
Similar to the first and second stage, the three additionally in-
troduced errors in (31) are caused by the errors ,

and of the second stage propagating through the
first-order branch of the third stage.

To simplify the SNR derivation in Section VII, we gener-
alize this error propagation through each stage. Defining the re-
maining error of the th stage as

(32)

where the stage number , 2, 3, we can approximate the
remaining error of the first stage with (18) by

(33)

where . Similarly, we can approximate the re-
maining error of the second stage with (25) by

(34)

and the remaining error of the third stage with (31) by

(35)

From (33)–(35), it can be seen that the remaining error of the
th stage may be expressed as

(36)

As depicted in Fig. 8, can be approximated by two
terms: the error , which accounts for approximating
in the th stage, and the additionally introduced error ,
which corresponds to the remaining error of the ( )th stage,

, propagating through the first-order branch shown in
the figure. Note that (36) only consists of errors up to order

and higher order errors have been neglected. We will
see that this gives a reasonable approximation for each stage
because the derived SNR based on (36) agrees with the simula-
tion results in Section IX. Simulation results also showed that
additional stages improve the reconstruction quality further
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Fig. 8. Approximating the remaining error of the �th stage, �� ���, by (36).

Fig. 9. DMC-RD.

and are needed especially for large time errors. The overall
complexity of the reconstruction system, however, increases
considerably.

This section concludes by considering the total delay of the
DMC. In Section IX, we will see that a practical implementation
of the system requires the design of a linear-phase FIR filter
whose frequency response approximates the frequency response
of the ideal differentiator. Assuming that this FIR filter has a
delay of , the delay of the th stage in Fig. 7 is because
of the chain of differentiators. Therefore, the total delay of the
DMC with stages is

(37)

where , 2, 3 in our case. For , for example, the
total delay with three stages is which is larger than
a delay of for a filter bank based reconstruction system. To
use the DMC in an application requiring a low system delay, we
will show in the next section how redrawing the DMC leads to
a reconstruction system with reduced total delay.

VI. REDUCING DELAY OF DMC

The DMC with reduced delay (DMC-RD) derived in this sec-
tion is shown in Fig. 9. The main difference to the DMC in Fig. 7
is that the second stage uses not only for error reconstruc-
tion but also . Likewise, the third stage uses not only
but also and . Closer inspection of Fig. 9 shows that,
because each stage has only a delay of when the differentiator
is replaced by an FIR filter, the DMC-RD has indeed a reduced
total delay compared with the DMC.

To derive the second stage in Fig. 9, we recall that in the
second DMC stage, runs through the first and second-
order branch to reconstruct and , respectively. The
error analysis in (22) and (23) showed that the significant addi-
tional errors were introduced in the first-order branch, whereas
those introduced in the second-order branch could be neglected.
To reduce the delay, we therefore use to reconstruct ,
rather than . Clearly, we replace in (21) by

(38)

which can be approximated with (19) and neglecting terms of
order and higher by

(39)

Subtracting (20) and (38) from cancels and
and gives the reconstructed uniform sequence

(40)

which corresponds to the output of the second stage. Fig. 9 de-
picts the second stage given by (20), (38) and (40). Comparing
it with Fig. 7 shows that we could have obtained it by rewiring
the second-order branch of the second DMC stage. Using (19),
(22) and (39), we can approximate (40) by

(41)
Comparing in (25) with (41) shows that the additional

error has been introduced. The simulation results
in Section IX will show that this additional error slightly de-
creases the reconstruction performance of the DMC-RD com-
pared with the DMC.

By a similar argument, we can derive the third stage in Fig. 9.
Recall that in the third DMC stage, runs through the
second and third-order branch to reconstruct and ,
respectively. Because the additional errors introduced in these
branches could be neglected, we use to reconstruct ,
and to reconstruct . Clearly, we replace in (28)
and in (29) by

(42)

(43)

respectively. Subtracting (42) and (43) together with in
(27) from gives the reconstructed uniform sequence

(44)

which corresponds to the output of the third stage. Fig. 9 de-
picts the third stage given by (27) and (42)–(44). Comparing it
with Fig. 7 shows that we could have obtained it by rewiring the
second and the third-order branch of the third DMC stage. Sim-
ilar to the analysis in (41), it can be shown by approximating

that an additional error has been introduced, which again
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decreases the reconstruction performance of the DMC-RD com-
pared with the DMC.

Finally, because each stage in Fig. 9 has only a delay of ,
the total delay of the DMC-RD with stages is

(45)

which is less than that of the DMC in (37). For the example
from before, the total delay with three stages is
which is only half of the total delay of the DMC.

VII. PERFORMANCE ANALYSIS OF DMC

To determine the theoretical reconstruction performance of
the DMC, we derive in this section the SNR at the output of
each stage for a sinusoidal input signal. Although outlined for
arbitrary , we derive the SNR explicitly only for and
large .

A. SNR for

We define the SNR at the output of the th stage as

(46)

where the nominator represents the energy of the input se-
quence with the corresponding discrete-time Fourier
transform (DTFT) , and the denominator represents
the energy of the remaining error with the corresponding
DTFT . Since the time errors are -periodic, i.e.,

, they can be represented by the discrete-time
Fourier series [1]

(47)

with Fourier series coefficients .
With the period and assuming to be zero-mean,

we obtain and , and therefore

(48)

Using (48) and given a sampled sinusoidal input signal
, we show in Appendix A that the SNR at

the output of the three DMC stages is given by

(49)

(50)

(51)

for . Note that, contrary to the assumption of zero-
mean time errors in this paper, an expression for was
derived in [19] assuming ; this led to a more efficient
polyphase implementation of the first stage since every second
sampling instance is ideal.

B. SNR for Large

In principle, we could derive the SNR for arbitrary by
finding the corresponding discrete-time Fourier series in (47)
and following the derivation in Appendix A. But with increasing

, the derivation becomes tedious because of the increasing
number of Fourier series coefficients . For large , though,
the following consideration simplifies the derivation. The
spectrum of an -periodic nonuniformly sampled sinusoidal
signal contains spurious tones within the frequency
range . For small , the magnitude of each tone depends
heavily on the particular values of the time errors [25]. As

increases, this dependence becomes less significant because
the error power due to nonuniform sampling is distributed over
an increasing number of spurious tones. Since this may be
thought of as a noise floor introduced by nonuniform sampling,
we use a stochastic analysis in the following. In particular, we
replace the known time errors by a wide-sense stationary
and ergodic discrete-time random process. We assume that this
random process has zero mean and the autocorrelation function

(52)

with the average power . Similarly, denoting the
autocorrelation function of and as and ,
respectively, with the corresponding average power and

, we define the SNR at the output of the th stage as

(53)

Because we perform a stochastic analysis, we consider a sam-
pled sinusoidal input signal of the form .
Assuming the random phase to be uniformly distributed in the
interval , the sinusoidal sequence has the autocorre-
lation function

(54)

and the average power . Given these assumptions,
we show in Appendix B that the SNR at the output of the three
DMC stages is given by

(55)

(56)

(57)

for . Based on the derivations in Appendix A
and Appendix B, SNR expressions can also be obtained for the
DMC-RD.

VIII. IMPLEMENTATION ISSUES

A practical implementation of the proposed reconstruction
systems requires the design of a filter whose frequency response
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Fig. 10. Practical implementation of the DMC with two stages using a linear-
phase FIR filter ���� with filter delay �.

approximates the frequency response of the ideal discrete-time
differentiator in (12). In this paper, we consider the de-
sign of a differentiator using a causal linear-phase FIR filter with
frequency response and filter delay . The advantage
of using this filter is that it can be easily designed in MATLAB
and that its antisymmetric impulse response allows us to reduce
the number of filter coefficients. Fig. 10 shows a practical im-
plementation of the DMC with two stages using an FIR filter
with -transform . Due to the filter delay, the time errors
in the reconstruction branches of each stage are also delayed.
Consider, for example, the second stage in the figure. To gen-
erate , the time errors in the first-order branch are de-
layed by because runs through two FIR filters before
it is multiplied by in this branch. Consequently, is also
delayed by before can be subtracted. Similar delays
are used when implementing the DMC-RD.

The filter delay also becomes crucial for choosing the type
of linear-phase FIR filter. Because the ideal differentiator has
an antisymmetric impulse response, the FIR filter realizing the
differentiator can only be of type III or IV [1]. In general, an
FIR filter of type IV has a delay of an integer (depending on
the filter order) plus one-half; this would require delaying the
time errors by one-half, too, which could only be done by in-
terpolating them. Therefore, we use an FIR filter of type III,
which has an odd number of filter coefficients and an integer
delay [1]. Moreover, because the frequency
response of this filter has a zero at , the designed differen-
tiator shows an additional low-pass characteristic and requires
a cut-off frequency for the design. The drawback is that this
low-pass characteristic introduces a certain amount of oversam-
pling. Although a larger for the design reduces oversampling,
the number of filter coefficients, and thus the overall complexity,
may increase considerably. On balance, the antisymmetric im-
pulse response of the filter allows us to additionally halve the
number of filter coefficients [1].

IX. SIMULATION RESULTS

This section presents simulation results that illustrate the de-
sign and performance of the DMC and the DMC-RD with three
stages. For the simulations, we designed an FIR differentiator
using the MATLAB function firpm, which uses the Parks-Mc-
Clellan optimal equiripple design algorithm [1]. To evaluate the
overall reconstruction performance, we computed the SNR at

the output of each stage over samples. For the th
stage, the SNR was computed by

(58)

where the output sequence for the DMC and
for the DMC-RD, for , and

for both systems. The delay was computed by (37) for the
DMC and by (45) for the DMC-RD. Because there are filters
in the th stage of each system, the total number of filter coeffi-
cients for both systems with stages is

(59)

Furthermore, the time errors used in the simulations were
either predefined or a sequence of independent and identically
distributed Gaussian random numbers with zero mean and stan-
dard deviation .

To confirm the theoretical SNR derived in Section VII-A for
the DMC and , we sampled a sinusoidal signal nonuni-
formly with time errors while increasing
its frequency from 0 to the Nyquist frequency . Fig. 11(a)
shows that the computed SNR at the output of the three stages
matches the theoretical SNR given by (49), (50) and (51), con-
firming also the discussion in Section V that the reconstruc-
tion performance of the th stage is only determined by errors
up to order . The deviation for frequencies close to
zero and close to the Nyquist frequency is due to the low-pass
characteristic of the designed FIR differentiator, as discussed in
Section VIII. In particular, a two-periodic nonuniformly sam-
pled sinusoidal signal with frequency has a spurious tone
at . For close to zero, this tone falls into the cut-off
region of the FIR differentiator, causing the error power to de-
crease and thus the SNR to increase. For close to the Nyquist
frequency, the tone falls directly into the cut-off region, causing
the signal power to decrease and thus also the SNR; this explains
the need for an oversampled input signal. However, the figure
also shows that oversampling can be reduced by designing a
differentiator with a higher cut-off frequency and a suffi-
ciently large number of filter coefficients , but at the cost of
an increased overall complexity. Moreover, for fixed filter de-
sign parameters (say, for and ), oversam-
pling increases with each additional stage because the chain of
differentiators in each stage decreases the overall cut-off fre-
quency. Finally, we can directly compare this figure with Fig. 6
in our previous work [19]. In that paper, we assumed and

(half of the sampling instances are ideal), which cor-
responds to time-shifting the time errors assumed in Fig. 11(a)
by 0.005. The comparison shows that assuming half of the sam-
pling instances to be ideal gives an improved SNR for frequen-
cies close to the Nyquist frequency, besides the advantage of
effectively reducing the number of filter taps by two.

To confirm the theoretical SNR derived in Section VII-B for
large , the same simulation was run with time er-
rors . Because the SNR was computed over 8192
samples, this simulation demonstrates the reconstruction per-
formance for the general nonuniform sampling case. Fig. 11(b)
shows that the computed SNR at the output of the three stages
matches the theoretical SNR given by (55)–(57) up to some dB.
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Fig. 11. SNR versus normalized frequency for reconstructing a nonuniformly
sampled sinusoidal signal: Computed SNR before reconstruction (dash-dotted),
theoretical SNR (dashed) and computed SNR after reconstruction using the
DMC for different filter design parameters � and � (solid). (a) Time errors:
� � �, � � �������� ������. (b) Time errors: � � ����, � � ����.

The deviation is due to the cross-terms that were neglected in
the SNR derivation in Appendix B.

In Fig. 11, a large number of filter coefficients was chosen in
order to confirm the theoretical SNR of each stage. To illustrate
the implementation complexity in a practical case, we chose an
example from [18], where , the filter cut-off frequency

and the magnitude of the time errors is less than
0.02. Using the DMC with two stages for the reconstruction,
we performed the same simulation as in Fig. 11 but for different
time errors, three of which are shown in Fig. 12. An SNR of 80
dB over the frequency range as design goal is achieved
with an FIR differentiator designed with filter coef-
ficients. With the total number of filter coefficients
computed by (59), an implementation of the system using trans-
posed direct-form FIR structures requires 33 fixed multipliers
for the three FIR filters and three general multipliers for the
time-varying multipliers. We emphasize that, because of the dif-
ferent design specifications, it is difficult to directly compare the
resulting implementation complexity to that of the polynomial
impulse response time-varying FIR filters in [18]. For the given
example, the filters in [18] were designed in the minimax sense,
which is a much stricter design goal because for every sampling
instance, the error after reconstruction is guaranteed to be less
than a specified one.

To determine the number of filter coefficients required to
achieve a certain SNR, we sampled a noise signal, bandlimited
to the filter cut-off frequency , nonuniformly with
time errors and reconstructed it using the DMC

Fig. 12. SNR versus normalized frequency for reconstructing a nonuniformly
sampled sinusoidal signal: Computed SNR after reconstruction using the DMC
for different time errors �� � 	
. Filter design parameters: � � ����, � �
��.

and the DMC-RD. Fig. 13 compares the SNR of the second
and third stage of both systems for different filter cut-off fre-
quencies (a similar plot showing the SNR of the first stage
for can be found in [19]). Each data point represents
the SNR for an FIR differentiator designed with filter taps,
with the total number of coefficients computed by (59). It can
be seen that with increasing , the SNR at the output of each
stage increases up to a maximal value where the differentiator
is sufficiently well designed and the SNR is only limited by the
remaining error of each stage. As illustrated in Fig. 13(a) for

, the second stage of the DMC achieves an SNR of 95
dB with a total number of 63 filter taps. To get the same SNR for

requires 123 filter coefficients, i.e., about twice as
many. Although Fig. 13(b) shows that the third stage achieves
an SNR of up to about 130 dB, the number of filter coefficients
increases considerably, especially for small oversampling. The
two figures also confirm that the DMC-RD performs slightly
worse than the DMC, as discussed in Section VI.

The dependence of the reconstruction performance on the
magnitude of the time errors is illustrated in Fig. 14. We sam-
pled a noise signal, bandlimited to the filter cut-off frequency

, nonuniformly with and time errors and
used the DMC for reconstruction. We generated 20 uniformly
distributed random numbers in the interval [0.001,0.1], using
them as to produce time errors with varying magnitude. The
figure shows the SNR after reconstruction as a function of the
SNR before reconstruction. Each data point corresponds to one
of the 20 values, and the lines interpolating the data points indi-
cate the SNR tendency. Since time errors large (small) in mag-
nitude give a small (large) SNR before reconstruction, it can be
seen that the SNR after reconstruction decreases with increasing
magnitude of the time errors. Reconstruction eventually fails
once the magnitude of the time errors exceeds a maximum value
where the lines in the figure intersect; this makes our assump-
tion of time errors less than some tenth necessary, similar to
the polynomial impulse response time-varying FIR filters [17].
The figure also illustrates the influence of the filter design on
the reconstruction performance. The SNR at the output of the
third stage increases roughly linearly with decreasing magni-
tude of the time errors or, equivalently, with increasing SNR be-
fore reconstruction. This SNR increase at the output flattens as
the magnitude of the time errors becomes too small, indicating
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Fig. 13. SNR versus total number of filter coefficients for reconstructing a
nonuniformly sampled noise signal, bandlimited to different filter cut-off fre-
quencies � : Computed SNR before reconstruction (dash-dotted) and after re-
construction using the DMC (solid) and the DMC-RD (dashed). Time errors:
� � ��, � � ����. (a) Output of stage 2. (b) Output of stage 3.

Fig. 14. SNR after versus SNR before reconstructing a nonuniformly sampled
noise signal, bandlimited to the filter cut-off frequency � : Computed SNR be-
fore reconstruction (dash-dotted) and after reconstruction using the DMC. Time
errors: � � � (solid) and � � ���� (dashed); 20 values for � , given by
uniformly distributed random numbers in the interval [0.001,0.1]. Filter design
parameters: � � ����, � � ��.

that more filter coefficients are needed to design the differen-
tiator when the SNR before reconstruction is large.

The oversampling performance of the DMC and the
DMC-RD is compared in Fig. 15. We sampled a bandlim-
ited noise signal nonuniformly with time errors

while increasing its bandwidth from 0 to the
Nyquist frequency (the maximum bandwidth). The figure
illustrates that oversampling increases with each additional
stage. More specifically, the first stage improves the SNR for a
noise signal bandlimited up to 0.9 times the Nyquist frequency,
despite a filter cut-off frequency of only . Although
oversampling reduces to 0.8 with three stages, the SNR at the

Fig. 15. SNR versus normalized bandwidth for reconstructing a nonuniformly
sampled bandlimited noise signal: Computed SNR before reconstruction
(dash-dotted) and after reconstruction using the DMC (solid) and the DMC-RD
(dashed). Time errors: � � ��, � � ����. Filter design parameters:
� � ����, � � ��.

output of the third stage is significant. Similar to Fig. 13, this
figure also shows that the DMC-RD performs slightly worse
than the DMC.

X. CONCLUSION

This paper has introduced the DMC, a novel system for recon-
structing a bandlimited signal from its nonuniform samples. The
system improves the reconstruction performance by a cascade
of reconstruction stages, each consisting only of linear-phase
FIR filters and time-varying multipliers. The main advantage is
that, because the FIR filters are designed as differentiators, the
system can be used for the general nonuniform sampling case
and is not restricted to periodic nonuniform sampling. More-
over, once the FIR differentiators have been designed, they are
implemented with fixed filter coefficients such that implemen-
tation costs are reduced. When the nonuniform sampling pat-
tern changes over time, no filter redesign is required and only a
few general multipliers need to be adapted; this is advantageous,
for example, in TI-ADCs where temperature and aging effects
cause the timing mismatches among the ADCs to vary during
operation.

Several issues in the design and implementation of the
proposed reconstruction system need further investigations. A
major advantage of the system is the design of a simple FIR
differentiator, even for the general nonuniform sampling case.
However, apart from the cases and large , where we
have found analytic SNR expressions, there is the need for a
systematic technique to choose the number of filter coefficients
in the design such that the SNR at the system output achieves
a specified value. The selection can be formulated as an opti-
mization problem, but with a significantly reduced complexity
compared to [18] since the filters and the structure are fixed.
Also, different filter design methods, such as those based on
least-squares error minimization, and a different number of
filter coefficients for each differentiator in each stage might be
compared in terms of the resulting reconstruction performance.
Furthermore, a potential issue in an implementation of the
proposed reconstruction system is the effect of quantization
due to the finite register lengths. In particular, if the magnitude
of the time errors decreases, the time-varying multipliers

in each stage become even smaller and, if not quantized
with a sufficient number of bits, impair the reconstruction
performance.
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APPENDIX A

DERIVATION OF SNR FOR

A. SNR of the First Stage in (49)

We begin by replacing each error term in (33) by its explicit
expression in (11). Then, substituting (48) for gives

(60)

By computing the squared magnitude of the DTFT of (60),
the energy density spectrum is found to be

(61)

Because the first term of this product is an even function, it is
sufficient to consider only positive frequencies. With (12), we
can thus write

(62)
for . Substituting (62) and the DTFT of the sinusoidal
sequence into (61), and integrating over

, we get

(63)

for , and thus the SNR of the first stage in (49).

B. SNR of the Second Stage in (50)

Similar to the first stage, replacing each error term in (34)
by its explicit expression in (11) and inserting (48) gives after
simplification

(64)
Computing the squared magnitude of the DTFT of (64) gives

the energy density spectrum

(65)

where, for and using (12), the first term of this
product can be written as

(66)

Substituting (66) and the DTFT of the sinusoidal sequence
into (65), and integrating over , we get

(67)

for , and thus the SNR of the second stage in (50).
The SNR derivation of the third stage in (51) will be omitted
because it is similar to that of the first and second stage.

APPENDIX B

DERIVATION OF SNR FOR LARGE

We begin with the definition of the SNR in (53). Since
by assumption, we only need to find to obtain

the SNR of the th stage. Using (36) and neglecting the cross
term to simplify the derivation yields

(68)

Approximating the autocorrelation function of by

(69)

we obtain (68) from (69) with . In the following, we derive
an expression for each term in (69).

1) : Setting , the autocorrelation function of
in (11) is

(70)

Because the time errors and the random phase of the
sinusoidal sequence are indepen-
dent, and are independent, too, and we can write
(70) as

(71)

where we have used , the auto-
correlation function of the th derivative of . To find
the joint moment function , consider for a fixed

. Since for each , the resulting random variables and
are jointly Gaussian with zero mean, their joint mo-

ment generating function is [26]

(72)

where and are real variables. From this equation,
is obtained by [26]

(73)
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2) : To compute the autocorrelation function of
, we need the joint probability density func-

tion of and because the two sequences are
not independent ( also depends on ). However,
simulation results have shown that we can approximately
write

(74)

where we have used , and
for any sequence . Because is the au-

tocorrelation function of the differentiator output when the
input is (see Fig. 8), we have the relation [26]

(75)

where

(76)

3) : Substituting (71) with and (74) into (69)
gives

(77)
where is obtained by evaluating the convolution
in (75) at . Equation (77) gives an approximate recur-
sive relation between and , the autocorre-
lation function of the remaining error of the th stage and
the th stage, respectively. With this equation and
the definition of the SNR in (53), we now derive the SNR
of each stage by recursively computing (beginning
with the first stage) and evaluating the resulting expression
at .

A. SNR of the First Stage in (55)

Setting in (77), we get

(78)

where is obtained from (72) and (73) with as

(79)

To find in (78), we compute and evaluate it at
lag zero. Since , we get from (71) with

(80)

and from (75) with

(81)

To evaluate (81) at zero, we replace in (76) by (12),
set and integrate. This gives

(82)

and hence for (81) at lag zero . Finally,
inserting this term and (79) into (78) yields

(83)

with the resulting average power

(84)

and thus the SNR of the first stage in (55).

B. SNR of the Second Stage in (56)

Setting in (77), we get

(85)

where is obtained from (72) and (73) with as

(86)

To find in (85), we compute and evaluate it at
lag zero. Setting in (75) and inserting (83) gives

(87)

To evaluate this equation at zero, we express the convolution
with (76) and the DTFT of as

(88)

Replacing by (12), setting and integrating
gives , and hence for (87) with (82) at lag zero

(89)

Finally, inserting (86) and (89) into (85) yields

(90)

and thus with the SNR of the second stage in (56).
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C. SNR of the Third Stage in (57)

Setting in (77), we get

(91)

where is obtained from (72) and (73) with as

(92)

Following the derivation of the SNR of the first and second
stage, we obtain from (75) with ,
and with (82) and (90) at lag zero

(93)

Finally, inserting (92) and (93) into (91) gives an expression
for with the resulting average power

(94)

and thus the SNR of the third stage in (57).
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