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Functional Magnetic Resonance Imaging (fMRI) is a standard tool to measure the

hemodynamic response which is related to activation patterns in the human and animal

brain. In conventional anatomical MRI, the decay and precession rates are regarded as

sources of artifacts, but in applications such as functional MRI (fMRI), they are physi-

ological quantities of interest. Single-shot parameter assessment by retrieval from signal

encoding (SS-PARSE) acknowledges local decay and phase evolution in MRI, so it models

each datum as a sample from (k, t)-space rather than k-space. Because local decay and

frequency vary continuously in space, discrete models in space can cause artifacts in the

reconstructed parameters. Increasing the resolution of the reconstructed parameters can

more accurately capture the spatial variations, but the resolution is limited not only by

computational complexity but also by the size of the acquired data. For a limited data set

used for reconstruction, simply increasing the model resolution may cause the reconstruc-

tion to become an underdetermined problem. This dissertation presents a solution to this

problem based on cubic convolution interpolation. Because the local decay and frequency

are exponential time functions, FFTs can not be directly applied to the reconstruction
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algorithm. A polynomial expansion is proposed so that FFTs can be used to accelerate

reconstruction.

The second contribution of this dissertation is a new method to optimize the nonuniform

FFT (NUFFT). This work was motivated by the nonuniform k-space trajectory in SS-

PARSE. With the polynomial expansion, the cost function of the reconstruction of SS-

PARSE is represented by a linear combination of 2-D Fourier transforms whose inputs are

uniformly distributed data and outputs are nonuniformly distributed frequency responses.

The gradient of the cost function in the reconstruction is also a linear combination of 2-D

Fourier transforms whose inputs are nonuniformly distributed data on the frequency domain

and outputs are functions on a 2-D nonuniform grid. FFTs can be applied to neither the

cost function nor the gradients function because of the nonequally spaced inputs or outputs.

In this dissertation, we focused on the 1-D Fourier transforms with uniform inputs and

nonuniform outputs. The basic form of the optimization of the NUFFT is a nonlinear

problem. In this dissertation, this nonlinear problem was reformulated to find the least-

square solution of a linear problem. The computational accuracy of the NUFFT is also

improved by the new method. The results can be easily extended to 2-D or the case with

nonuniform inputs and uniform outputs.

After validating and testing these ideas with a single-coil MRI system, we extended

the framework to parallel MRI systems, which have multiple receiving coils. Existing re-

construction methods estimate the maps of coil sensitivities by imaging “standard” objects.

These convenient methods do not account for the change of coil sensitivities caused by the

imaged objects. We propose a new algorithm that concurrently reconstructs the coil sensi-

tivities along with magnitude, decay and field map. The core of this algorithm is the fast

approach and the interpolation method we developed for SS-PARSE. From the simulation

results, we observed significant improvement in the reconstruction accuracy of the decay

function that is of the interest in fMRI.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI), which is also called nuclear magnetic resonance

imaging (NRMI) or spin imaging, is an important application of the theory of nuclear

magnetic resonance (NMR). MRI may also be the most important development of the

medical diagnostic imaging since Wilhelm Röentgen’s X-ray. Its medical applications have

revolutionized clinical diagnosis. In the last several decades, six scientists were awarded

Nobel Prizes in three different disciplines (physics, chemistry, and physiology or medicine)

for their works related to MRI.

In an MRI experiment, the nuclear magnetization of hydrogen atoms in water in hu-

man or animal body are aligned by a powerful external magnetic field. After the aligned

magnetization of the hydrogen nuclei is tipped by a radiofrequency (RF) wave, a gyromag-

netic field is generated. The gyromagnetic field is captured by the signal receiving coils.

The received signal is interpreted as the spatial-frequency response of the imaged object,

so Fourier analysis is a fundamental tool in image reconstruction.

MRI is non-invasive and non-ionizing. MRI is superior to computerized tomography

(CT) in soft-tissue imaging, such as neurological (brain), musculoskeletal, cardiovascular,

and oncological imaging. Abundant diagnostic information is provided by changing the

parameters of a MRI system.

With the development of hardware and computing technologies, functional magnetic

resonance imaging (fMRI) is becoming a standard procedure with useful applications in

patients management [1]. fMRI is interested in hemodynamic responses, which reflect the

neural activities in the brains or spinal cords of humans or animals.

Blood Oxygenation Level Dependent (BOLD) fMRI was introduced by Ogawa [2] and

Kwong [3]. The change of neural activity in a region of the brain causes the changes in
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blood oxygenation. The changes, called the BOLD effect, can be detected by magnetic

resonance imaging (MRI). The BOLD effect is the basis for almost all fMRI experiments to

map patterns of activation in the working human brain [1].

Because the BOLD produces some physical effects that are omitted in conventional

MRI models, the classical reconstruction methods based on Fourier transforms must be

changed to accommodate aspects of fMRI, such as long readout time and nonuniform k-

space trajectories.

1.1 Organization of the Thesis

In this chapter, we briefly review the history and basic principles of MR imaging.

In Chapter 2, we detail the major problem — the reconstruction of single-shot param-

eter assessment by retrieval from signal encoding (SS-PARSE). A new iterative reconstruc-

tion methods based on a more accurate physical model is developed. After reviewing some

similar works, we focus on two issues: quality improvement and a fast algorithm.

In Chapter 3, implementation of an FFT with nonuniform sampling, in the reconstruc-

tion is investigated.

In Chapter 4, we extend concepts stated in Chapters 2 and 3 to parallel imaging.

Chapter 5 concludes the thesis. The innovative ideas are summarized, and possible

future work is discussed.

1.2 A Brief History of MRI

In the 1930’s, Isidor Rabi investigated the relationship between nuclei, magnetic field

and external RF. In 1944, his work was awarded the Nobel Prize in physics “for his resonance

method for recording the magnetic properties of atomic nuclei”.

In 1946, Felix Bloch [4] and Edward Purcell [5] laid the physical foundation of MRI.

They independently observed the phenomenon of NMR. They also theoretically explained

the experiments. They were awarded the Nobel Prize “for their development of new methods
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for nuclear magnetic precision measurements and discoveries in connection therewith” in

1952.

From 1950 to 1970, the major developments of NMR were in chemical and physical

molecular analysis.

In 1971, Raymond Damadian [6] successfully used NMR to discriminate malignant

tissue from normal tissue in a rat by measuring relaxation times of the different tissues.

In 1973, in a paper that almost was not published [7], Paul Lauterbur illustrated the

internal structure of a clam acquired by MRI. The door to medical applications of MRI was

opened. In the same decade, Peter Mansfield mathematically analyzed the RF signals of

MRI and developed a method for fast imaging. Lauterbur and Mansfield shared the 2003

Nobel Prize in physiology or medicine “for their discoveries concerning magnetic resonance

imaging”.

1.3 MRI Model

1.3.1 Basic Concepts

Spin, a quantum mechanical property, can interact with an external magnetic field B0.

The nuclei, which have an odd number of protons or neutrons, have a non-zero spin or

magnetic moment. Without an external magnetic field, the randomly oriented spin angular

momentum cannot be detected. When an external magnetic field B0 is applied, M0, the

magnetic moment along the external field direction, is generated [8]:

M0 =
ρ0γ

2
~

2

4kT
B0 (1.1)

where ρ0 is the spin density, γ is a constant called the gyromagnetic ratio, ~ , h/(2π) in

terms of Planck’s quantum constant h, k is the Boltzmann constant, and T is the absolute

temperature. This magnetic moment vector precesses around the external field direction
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with an angular frequency called the Larmor frequency given by

ω0 = γB0 (1.2)

1.3.2 The 1D Imaging and the Fourier Transform

In order to have a detectable signal, a radio-frequency (RF) magnetic field is applied

for a short time to make the magnetic field that is produced by the aggregate proton

spins precess along with the magnetization. This precession generates a changing flux in a

nearby coil. The changing flux is a signal modulated at the Larmor frequency ω0. After

demodulation, the received signal is given by [8]

s(t) =

∫

ρ(x)eıφG(x,t)dx (1.3)

where φG(x, t) = −γx
∫ t
0 G(τ)dτ , and the G(t) is the gradient in the z-direction. This signal

is called free induction decay (FID).

Let

k(t) =
γ

2π

∫ t

0
G(τ)dτ (1.4)

where k(t) is called the k-trajectory [9], which samples the spatial-frequency domain. Then

(1.3) can be written as

s(t) =

∫

ρ(x)e−ı2πk(t)xdx (1.5)

(1.5) shows that the signal s(t) is related to the spin density of the sample ρ(x) by a Fourier

transform. This is the foundation of the reconstruction of conventional MRI. Two k-space

trajectories are illustrated in Figure 1.1.
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Figure 1.1: Two MRI trajectories.

The concept of 1D imaging can be extended to multi-dimensional Fourier imaging.

s(t) =

∫

ρ (r) e−ı2πk(t)·rdr (1.6)

where r is a multi-dimensional vector. In this case, t controls the values of the vector of k(t),

which correspond to the frequency-domain coordinates of the Fourier transform. Thus, the

signal s(t) can be interpreted as a sample of the Fourier transform of ρ(r) at the frequency

coordinate k(t). In this way, a one-dimensional signal can sweep through an n-dimensional

space.

1.3.3 Spatial Resolution in MRI

Limited readout time in MRI applications restricts the number of collected samples,

the number of phase encodings and the coverage of k-space. The inversion problem based

on partially covered k-space is called a limited-Fourier inversion problem [8]. In the discrete
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case, the 1D image ρ(x) is reconstructed by

ρ(x) = ∆k
N−1∑

n=0

s(n)e−ı2πn∆kx (1.7)

where ∆k is the k-space sampling interval. The total width of k-space coverage is W =

N∆k. Let L be the size of the field of view (FOV). To avoid aliasing, the Nyquist criterion

must be met

∆k =
1

L
≤ 1

A
(1.8)

where A is the physical size of the original image.

From (1.7), we have

s(n) =

N−1∑

k=0

ρ(k)e−ı2πnk∆x (1.9)

where ∆x is the spatial resolution, the smallest size that can be measured for a given object:

∆x =
L

N
=

1

N∆k
=

1

W
(1.10)

1.4 Relaxation and Field Inhomogeneity

In an MRI experiment, after the RF pulse is turned off, the longitudinal magnetization

field begins to exponentially recover with a time constant T1, the longitudinal relaxation

time. T1 is also called thermal or spin-lattice relaxation time.

T2 is the exponential decay rate of the FID for an ideal MR experiment. T2 is also known

as transverse relaxation. Because of static magnetic field inhomogeneities, an observed FID

decays with an exponential constant T ∗
2 that is smaller than T2.

In soft tissues, the typical T1 is about 1 second. T2 and T ∗
2 are at the level of mil-

liseconds. For most biological tissues, T1 values are typically 5 to 10 times longer than T2

values [10].
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The spin density and T1 and T ∗
2 among different tissues are the basis of the MRI

contrast mechanism. Because the T ∗
2 relaxation rate of blood depends on whether or not

the hemoglobin is bound with oxygen, the T ∗
2 map as a function of space is of interest in

fMRI. The BOLD contrast is also described by R∗
2, the reciprocal of T ∗

2 .

The magnetic field inhomogeneity also causes phase changes in the observed signal. In

Chapter 2, we will model the relaxation and field inhomogeneity by revising the (1.6) [11]:

s(t) =

∫

ρ (r) e−(R∗

2(r)+ıω(r))te−ı2πk(t)·rdr (1.11)

Conventional methods to estimate R∗
2 and ω are all based on multi-shot MRI. In tra-

ditional MRI, R∗
2 and ω can also be compensated by manipulating the RF sequence (see

Figure 1.3). Since the readout time is short, it it not necessary to model R∗
2 and ω. Single-

shot MRI needs a long readout time (see Figure 1.4), so the decay and phase precession can

not be omitted any more. [11] suggested an iterative method for single-shot MRI. We will

review this method in Chapter 2.
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1.5 Functional MRI (fMRI)

For many years, it has been known that the functions of the human brain are controlled

by different areas of the cerebral cortex. Several modalities are successful in mapping brain

functions onto related laminae. Positron emission tomography (PET) detects brain activ-

ities by measuring regional cerebral blood flow (rCBF). Magnetoencephalography (MEG)
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and electroencephalography (EEG) detect the magnetic or electronic signal generated by

the activated brain, but they can hardly locate which areas the signal is from. fMRI is a

noninvasive modality that efficiently maps brain function.

Before the late 1980’s, the imperfections caused by T ∗
2 were regarded as a negative factor

in MRI. The technique of spin echo can be used to refocus the RF pulse and compensate

T ∗
2 relaxation. Another method is to shorten the interval between the excitation RF pulse

and the signal sampling.

Later, it was recognized that the paramagnetic material in blood can be used to mark

blood vessels and generate effective contrast. Because deoxyhemoglobin is more param-

agnetic than oxyhemoglobin (oxyhemoglobin is more diamagnetic than deoxyhemoglobin),

deoxyhemoglobin is magnetically susceptible. This means that an oxygen intensity change

can cause a change in the MRI signal, making deoxyhemoglobin a natural contrast agent.

Because the consumption of oxygen reflects brain activities, one can map brain function

by analyzing an MRI signal. The goal of fMRI is to detect brain activation with sensory,

motor and cognitive processes.
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Chapter 2

Reconstruction of SS-PARSE

Single-shot parameter assessment by retrieval from signal encoding (SS-PARSE) ac-

knowledges local decay and phase evolution in MRI, so it models each datum as a sample

from (k, t)-space rather than k-space. Because local decay and frequency vary continuously

in space, discrete models in space can cause artifacts in the reconstructed parameters. In-

creasing the resolution of the reconstructed parameters can more accurately capture the

spatial variations, but the resolution is limited not only by computational complexity but

also by the size of the acquired data. For a limited data set used for reconstruction, simply

increasing the model resolution may cause the reconstruction to become an underdetermined

problem. In this chapter, we present a solution to this problem based on cubic convolution

interpolation. Because the local decay and frequency are exponential time functions, FFTs

can not be directly applied to the reconstruction algorithm. A polynomial expansion is

proposed so that FFTs can be used to accelerate reconstruction. Results on simulated data

and phantoms demonstrate reduced computation time and improved quality.

2.1 Introduction

Twieg [9] and Ljunggren [12] introduced the k-space formalism to unify different MRI

techniques. Based on this formalism, the observed MRI signal s(t) is the Fourier transform

of local transverse magnetization M(x):

s(t) =

∫

M(x)eık(t)·xdx + ε(t) (2.1)

where s(t) is the observed MRI signal, ı is
√
−1, M(x) is local transverse magnetization

at location x, and ε(t) is white complex Gaussian noise. The last factor in the integrand
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represents the spatial phase modulation imposed by the imaging gradients at time t:

k(t) = γ

∫ t

0
G(t′)dt′ (2.2)

The advantage of this model is that M(x) can be reconstructed from s(t) by a Fourier

transform when s(t) is appropriately rearranged, but it is physically inaccurate, especially

for long readout MRI. The premise of this model is that local decay and phase evolution

are insignificant; that is, local transverse magnetization does not change during the signal

acquisition. For long readout time, magnitude, decay and phase-angle precession of local

transverse magnetization is inevitable.

In conventional anatomical MRI, the decay and precession rates are regarded as sources

of contrast, but in applications such as functional MRI (fMRI), they are physiological

quantities of interest [13, 14]. fMRI measures signal changes caused by neural activity in

the brain or spinal cord of humans or other animals. So fMRI is interested in a series

of images or — more precisely — a single evolving image, not a single static image as in

conventional MRI methodology. SS-PARSE recognizes this reality and uses a more accurate

model [11]:

s(t) =

∫

M0(x)e−[R∗

2
(x)+ıω(x)]teık(t)·xdx + ε(t) (2.3)

where M0(x) is the local transverse magnetization immediately following excitation, R∗
2(x)

is the local net relaxation rate, and ω(x) is the local frequency offset.

Many methods to acquire proper signals to reconstruct some combination of M0, R∗
2

and ω have been proposed [15–20]. [21, 22] suggested time-segmentation and frequency-

segmentation to accelerate the reconstruction of local magnitude in the presence of frequency

offset; [23] estimated ω from multi-scan MRI; [24, 25] jointly reconstructed R∗
2 and ω; [26]

recovered M0 and ω0 in the presence of R∗
2. All of these methods require multiple scans or

echoes and none of them jointly estimate all three terms of M0, R∗
2 and ω.
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In this chapter, we address the following three issues in the reconstruction algorithm

of SS-PARSE after reviewing the iterative reconstruction method.

• how to implement a higher-resolution reconstruction.

• how to do an efficient line search in the iterative reconstruction algorithm.

• how to interpret this nonlinear problem of SS-PARSE in terms of Fourier transforms.

2.2 Iterative Reconstruction Method

The discrete version of (2.3) on the spatial (x, y) grid indexed by i is given by

sn =
∑

i

M0ie
nWieıkn·xi

︸ ︷︷ ︸

ŝn(M0,W)

+εn (2.4)

where Wi = − [R∗
2i + ıωi]∆t, kn = k(n∆t), and ∆t is the sampling interval. Our goal is to

reconstruct M0, W from the observed signal s by solving (2.4).

For traditional MRI, local transverse magnetization in (2.1) can be reconstructed by

taking the inverse Fourier transform of an appropriately formatted version of s(t) because

the trajectory k(t) samples the frequency domain of one image M(x). SS-PARSE is dif-

ferent; its trajectory samples the frequency domains of different images that are related

by an exponential time function enW. Because the problem is now nonlinear and does not

have the structure of an FFT, one must use an iterative method to solve this problem [27].

We propose to use an iterative conjugate-gradients (CG) algorithm to minimize the cost

function:

J(z) =
∑

n

|sn − ŝn(z)|2 + R(z) (2.5)

with respect to z, where z = {M0,W}, and R(z) is a regularization term. In the follow-

ing discussion, we omit the regularization term for simplicity, though the method easily

incorporates such a term if desired.

12



The CG algorithm used to reconstruct z is initialized as follows [28]:

Initialization

• Set z = z0

• Steepest descent: ∆z0 = −∇zJ (z0)

• Line search: α0 = argmin
α≥0

J (z + α∆z0)

• z1 = z0 + α∆z0

After the first iteration, the following steps constitute one iteration of moving along subse-

quent conjugate direction ∧zn, where ∧z0 = ∆z0:

1. ∆zn = −∇zJ (zn)

2. βn =
(
∆zT

n ∆zn

)
/
(
∆zT

n−1∆zn−1

)

3. ∧zn = zn + βn ∧ zn−1

4. αn = argmin
α≥0

J (zn + α ∧ zn)

5. zn+1 = zn + αn ∧ zn

The gradients ∇zJ computations include two parts:

∂J

∂M0
=

N∑

n=1

fnenWejkn·x (2.6)

∂J

∂W
= M0

N∑

n=1

nfnenWejkn·x (2.7)

where fn = [ŝn − sn]∗ and N denotes the length of sn.

There are three problems with this method:

• Because local decay and frequency vary continuously in space, discrete models in space

can cause artifacts in the reconstructed parameters. Increasing the resolution of the

reconstructed parameters can more accurately capture the spatial variations, but the

resolution is limited not only by computational complexity but also by the size of the

acquired data. For a limited data set used for reconstruction, simply increasing the

resolution may cause the reconstruction to become an underdetermined problem.
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• Directly evaluating J(z) and ∇zJ (z) is computationally intensive.

• An accurate line search requires several evaluations of J(z).

2.3 Interpolation

The iterative reconstruction method cannot be used to reconstruct images with arbi-

trary resolution. The degrees of freedom of this reconstruction depends on the resolution of

z, so limited acquired data limits the resolution of the reconstruction. We propose a solu-

tion based on cubic convolution interpolation. Instead of estimating images, this algorithm

computes interpolation coefficients that are used to generate images on a higher-resolution

grid, so the reconstruction algorithm is still a fully determined or overdetermined problem.

Interpolation is an efficient bridge between different resolutions in a discrete represen-

tation. In order to reconstruct images on a high-resolution grid while keeping the recon-

struction algorithm determined or over-determined, we estimate interpolation coefficients

rather than parameter set z, the parameter images to be reconstructed.

There are several candidates for the interpolation. Cubic splines are very popular in ap-

plications because of their minimum curvature property [29]. When we applied cubic splines

to this problem, however, we observed residual blurring in local decay and frequency. To

explain this behavior, we resort to a simplified linearized model. By using splines, we are

actually solving a problem corresponding to something like y = Ax, where A is a lowpass

filter. The character of A makes the reconstruction problem harder, because A is not well

conditioned. Conjugate-gradients has no problem with this in the linear case. The conjugate

directions can still cover the space quickly and reconstruct the unknown x. In the nonlinear

case, the presence of the A matrix exaggerates the effect of nonlinearity. In a nonlinear

problem, A changes from iteration to iteration, which changes the relationship of the conju-

gate directions from iteration to iteration. Thus, the nonlinear local decay/frequency term

will converge more slowly than the linear magnitude term. Without an inordinate number

of iterations, the estimated decay/frequency parameters would be blurred in comparison to
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the magnitude term. The cubic convolution interpolator is different from the cubic splines

interpolator [30]. It passes through zero at neighboring sample locations, so it does not have

to invert a system of equations to match the sample values to the coefficients. We found

that this interpolator yields significantly less blurred results with the same number of itera-

tions. This difference is illustrated in Figure 2.1, where we compared the R∗
2 reconstructed

from cubic spline interpolation, cubic convolution spline, and non-interpolation.

In order to quantify the different blurring of cubic convolution and cubic spline inter-

polations and to further justify our choice of cubic convolution, we designed a special ex-

periment to approximate the point-spread function (PSF) for this nonlinear problem. First,

we noiselessly synthesized s(t) of (2.3) with constant M0, R∗
2 and ω. Then we reconstructed

the three parameter sets with cubic convolution and cubic splines with 80 iterations. Be-

cause of the interpolations, we actually estimated the interpolation coefficients rather than

M0, R∗
2 and ω. The reconstructed coefficients for R∗

2 by cubic convolution and cubic spline

are denoted by Cconv and Cspline. The value of R∗
2 within a small circle (diameter 1/128

of FOV, which is 12.8 × 12.8cm2) at the origin was changed to a different constant value,

and then a new s(t) was noiselessly synthesized based on the changed parameter sets. The

reconstructed coefficients for R∗
2 from the new s(t) by cubic convolution and cubic splines

are denoted by iCconv and iCspline. Let C be the cubic convolution interpolation operator

and S be the cubic spline interpolation operator. The central lines of C(iCconv −Cconv) and

S(iCspline − Cspline) are shown in Figure 2.2. The FWHM is noticeably smaller for cubic

convolution interpolation.

If sampled data are equally spaced, interpolation functions can be written as:

g(x) =
∑

k

cku

(
x − xk

h

)

(2.8)

where ck is an interpolation coefficient that is a function of the sampled data, xk is the

kth interpolation node, h is the sampling interval, and u(x) is an interpolation kernel.

The sampled function f(x) agrees with g(x) at every xk. Cubic convolution interpolation
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Figure 2.1: Reconstructed R∗
2(sec

−1) from different methods. All images have 128 × 128
resolution 80-iteration reconstruction. For (a) and (b), interpolation factors are both 2,
so the interpolation coefficients are 64 × 64; (c) is from a reconstruction with 128 × 128
resolution.
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of cubic spline is about 0.40cm. The results were from reconstructions with 80 iterations.

assumes that g(x) agrees with f(x) for the first four terms of the Taylor series expansion.

The 1-D continuous interpolation kernel function is written as:

u(x) =







4
3 |x|3 − 7

3 |x|2 + 1 0 ≤ |x| < 1

− 7
12 |x|3 + 3|x|2 − 59

12 |x| + 5
2 1 ≤ |x| < 2

1
12 |x|3 − 2

3 |x|2 + 7
4 |x| − 3

2 2 ≤ |x| < 3

0 3 ≤ |x|

(2.9)

This function is shown in Figure 2.3. If the sampling interval h = 1/2, the vector form of

u(x) is u = {1/96, 0,−3/32, 0, 7/32, 1, 7/32, 0,−3/32, 0, 1/96}.

The comparison of the frequency response of the cubic convolution interpolator and

the cubic splines interpolator is shown in Figure 2.4. The high-frequency response of the

cubic convolution interpolation is higher than that of the cubic splines interpolation. This

helps explain why the former one gives less blurred results.
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For the reconstruction of SS-PARSE, we use 2-D interpolation. The continuous 2-

D interpolation function is shown in Figure 2.5. For 2-D interpolation, we first apply
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Figure 2.5: 2-D cubic convolution interpolation function

interpolation for all rows in a 2-D matrix. Then we apply the same procedure to the columns

of the interpolated matrix. This process can be written with matrix multiplications:

z = ATCA (2.10)

where C is the coefficient matrix formatted as an image array, z is an NM × NM matrix,

M is an integer not less than 2, and A is an N ×NM sparse matrix constructed from u(x).

The element amn in A is computed by

amn = u

(

1 +
n − 1

M
− m

)

(2.11)

for the interpolation kernel in (2.9).

The key step to compute cost function (2.5) is the evaluation of (2.4). For the inter-

polation method, this step is straightforward. First, we compute z using (2.10). Then we

compute the cost function. The computation of gradient matrix ∂J/∂C includes two parts.
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One is the computation of ∂J/∂z, and the other is the computation of ∂z/∂C:

∇CJ = ∇zJ · ∂z

∂C
= ∇zJ ·

(
ATA

)

= ∇zJ ∗
(
uTu

)
(2.12)

where u = [u(−3 + h) u(−3 + 2h) · · · u(3 − h)]. Since uTu is a small matrix, we directly

compute this convolution.

2.4 Fast Algorithm

We implemented the previously discussed algorithm with MATLAB on a Linux work-

station. The non-interpolation version took about 160 seconds to reach a given accuracy

with 64×64 resolution. The interpolation method was also tested. The interpolation factor

is 2, so the computational complexity of the interpolation is more than four times that

of the non-interpolation algorithm, taking about 900 seconds. The approximation of the

line search described below has already been incorporated into the algorithm. So further

speedups are highly desired. We propose an efficient line search approximation and then

an acceleration based on FFT-based approximation.

2.4.1 Line Search

Line search is critical to the speed and accuracy of the CG algorithm; an efficient

method is suggested to address this problem.

To invert a non-quadratic function using the CG algorithm, line search is used to

compute α, the adjustable step length. The line search is computationally intensive for

this reconstruction algorithm because each line search evaluates (2.4) several times. We

numerically analyzed the function of J(α) and found that the quadratic approximation can

be used to reduce the computational complexity of the line search [31]. The method of
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quadratic approximation is described as follows.

J (z + α ∧ z) ≈ J ′′(0)α2 + J ′(0)α + J (z) (2.13)

αmin = − J ′(0)

2J ′′(0)
(2.14)

where

J ′(0) ≈ J (z + δ ∧ z) − J (z− δ ∧ z)

2δ
(2.15)

J ′ (±δ/2) ≈ J (z± δ ∧ z) − J (z)

±δ
(2.16)

J ′′(0) ≈ J ′(δ/2) − J ′(−δ/2)

δ
(2.17)

where δ is a small positive scalar. Since J(z) has been computed in the previous iteration,

one only needs to evaluate J (z + δ∇J) and J (z − δ∇J) to minimize J (z + α∇J) with

respect to α. From Figure 2.6, we can see J(α) is consistently very close to a quadratic

function over the range of interest. As a fail-safe, the value of J (z + αmin∇J) can be

compared to J (z). If the value of J (z + αmin∇J) > J (z), this indicates a nonquadratic

cost in the current step. In those unusual cases, a full line search can then be performed to

find the minimizer. If that happens, the conjugate direction needs to be reinitialized to the

negative gradient, since this indicates a nonquadratic region.

2.4.2 Approximations for Exponential Time Function

Conventional MRI samples the frequency domain of an image assumed to be static,

so FFTs can be directly used to reconstruct the image. Because of the exponential time

function enW, SS-PARSE samples the frequency domains of different images that are related

by the exponential discrete time function. In order to use FFTs, we must separate the time

variable n from local decay and frequency W.

Frequency and time segmentations were proposed in [22] to address the problematic

exponential time function so that FFTs can be used to accelerate the reconstruction process.
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Figure 2.6: Quadratic approximation of line search

However, this method is inconvenient for simultaneous estimation of magnitude, decay and

frequency. We use a polynomial approximation of the exponential time function to reduce

computation time [31].

According to [22], all of the known approximations are special cases of the following

general form:

enW ≈
L−1∑

l=0

al(n)Cl (W) n = 1, · · · , N (2.18)

where Cl denotes basis functions, and al denotes coefficients. The authors of [22] suggested

the approximations of time segmentation and frequency segmentation. Both segmentations

are efficient in the absence of decay (Re{W} = 0), and the coefficients are only determined

by the histogram of Im{W}. Unfortunately, neither requirement is satisfied in SS-PARSE

reconstruction. Coefficients of an efficient approximation should not be changed, since

updating the coefficients requires intensive computations. Assuming Re{W} = 0 and

22



the values of W are histogrammed into K bins, the computation of al with LS time-

segmentation approach is O(LK(N + L) + L3N) [22] in addition to the histogramming

computation. Since Re{W} 6= 0 in SS-PARSE, the computation is more complicated.

A reasonable assumption is that R and ω are bounded within a known range. Based

on this assumption, one can approximate the exponential time function with polynomials

whose coefficients will not be changed through the estimation process. Using the polynomial

approximation, (2.18) is written as:

enW ≈
L−1∑

l=0

aln
lWl

n = 1, · · · , N (2.19)

The advantage of polynomial functions is that the functions of n used to separate n from

W are analytically defined and easily evaluated. Experiments show that the minimum value

of L necessary for a good approximation is determined by N |ω|max∆t, since local decays are

relatively small compared to frequencies. Because of this feature, the maximum frequency

range dominates the error and should be made as small as possible. Thus, polynomial

approximations can be defined to cover half of the range of frequency. Let:

ω0 =
1

2
(ωmax + ωmin) ∆t (2.20)

Z(l) =







al (W − ıω0)
l , Im {W − ıω0) ≥ 0

a∗l (W + ıω0)
l , Im {W − ıω0) < 0

(2.21)

(2.19) can then be rewritten as:

enW ≈ eınω0

L−1∑

l=0

nlZ(l) (2.22)

The direct choice of the coefficients al of this approximation is a Taylor series, but

the convergence speed of the Taylor expansion is too slow. We used an LS method to

choose al. This optimization process can be written in matrix form. x is an M × 1 vector
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with Im{x} ∈ [0, N |ω|max∆t] and Re{x} less than some real number; a is an L × 1 vector

composed of al; X is an M × L matrix whose ith column is xi−1. We consider the real

and imaginary parts of x to be uniformly likely over their assumed range and choose X

to represent this uniform weighting. As long as the number of samples (rows of X) is

relatively large compared to the polynomial order, the exact sample spacing and density

have negligible impact on the solution. a is solved by:

argmin
a

1

2
‖ex − Xa‖2

2 (2.23)

Figure 2.7 shows the precision of the real parts of the polynomial approximation for

a specific pair of R and ω. The normalized root mean square error (NRMSE) ε of this
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Figure 2.7: Polynomial approximations of exponential time function for a pair of R and ω

approximation is defined as:

ε =

√

A + B

C
(2.24)
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where

A =

∫ ymax

0

∫ xmax

0

∣
∣
∣
∣
∣
e−x−ıy −

L−1∑

l=0

al(x + ıy)l

∣
∣
∣
∣
∣

2

dxdy

B =

∫ 0

ymin

∫ xmax

0

∣
∣
∣
∣
∣
e−x−ıy −

L−1∑

l=0

a∗l (x + ıy)l

∣
∣
∣
∣
∣

2

dxdy

C =

∫ ymax

ymin

∫ xmax

0

∣
∣e−x−ıy

∣
∣2 dxdy

The NRMSE is shown in Figure 2.8.
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Figure 2.8: Approximations of exponential time function.

2.4.3 Implementation

Polynomial approximation allows us to separate the time variables from the variables

of local decay and frequency in the exponential time function. Inserting (2.22) into (2.4)
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leads to:

ŝn ≈ eınω0

L−1∑

l=0

nl
K∑

i=1

M0iZi(l)e
ıkn·x(i) (2.25)

By discretizing kn into an integer grid, we can compute the inside summation of (2.25) with

an FFT, and s is approximated with a linear combination of a relatively small number of

FFTs.

There are two ways to compute ∇zJ . One is to compute the derivatives and then

apply an approximation. The other one is to apply an approximation and then compute

the derivatives. Both methods lead to identical formulas in this case.

∂J

∂M0
≈

L−1∑

l=0

Z(l)
N∑

n=1

fneınω0nleıkn·x (2.26)

∂J

∂W
≈ M0

L∑

l=1

Z(l)
N∑

n=1

fneınω0nleıkn·x (2.27)

where fn = (ŝn − sn)∗ and N denotes the length of s(n). The inside summations of (2.26)

and (2.27) can also be evaluated by FFTs.

If the sizes of reconstructed M0 and W are all K × K, direct evaluations of (2.4),

(2.6) and (2.7) require O(NK2) arithmetic operations. If kn is discretized into a grid of

mK × mK, it requires O(Lm2K2 log2 m2K2) arithmetic operations.

Even a small deviation in the approximated gradient relative to the actual gradient

could theoretically have a huge impact on the final results. It is hard to analytically char-

acterize this effect. We numerically analyzed this deviation in Section 2.6.1 and the results

show that the errors in the final results caused by approximations have a negligible impact

on the estimation results.
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2.5 Analysis of Accuracy of the Fast Algorithm

There are two sources of errors introduced by our algorithm. One is the approximation

of the time function; the other is the k-space gridding, rounding the non-equispaced tra-

jectory into an equispaced grid. We use normalized root mean square (NRMS ) to describe

the accuracy. If x̂ is the estimation of a row vector x, the NRMS is defined as:

NRMS =

[
(x̂− x)(x̂ − x)′

xx′

]1/2

(2.28)

2.5.1 Reconstruction Error Introduced by the Approximation of Time Func-

tion

Another error in the fast algorithm is from the approximation of the exponential time

function. In order to find the error caused only by polynomial approximation, we do not

round the non-equally spaced k-space trajectory into an integer grid. We compare the

results of polynomial approximation with the results of the non-approximation method

using the standard conjugate gradient algorithm. Figure 2.10 shows the NRMS error of

the FID. In the NRMS computations, x is the estimated FID from the non-approximated

algorithm, and x̂ is the estimated FID form the polynomial approximation method. We also

computed the NRMS errors of reconstructed images. In the computations, x is the image

reconstructed by the non-approximated method, and the x̂ is the image reconstructed from

the polynomial approximation.

2.5.2 Reconstruction Error Introduced by k-Space Gridding

In order to use FFTs, one approach is to round the non-equally spaced k-space tra-

jectory to an equally spaced grid. This will cause errors in reconstruction. We first study

the error in (2.4). We compare the results by mapping the k-space trajectory into equally

spaced grids with that of directly computing (2.4). The result is shown in Figure 2.11. The

reconstruction used 64 × 64 resolution. If the FFT factor is m, the k-space trajectory is
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Figure 2.10: Errors in reconstructed images by approximation of time function

mapped into a 64m × 64m equally spaced grid. The errors in the reconstructed images are

shown in Figure 2.12.
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Figure 2.12: Errors in reconstructed images by FFTs rounding

Because the error caused by k-space gridding is the dominant part of the approximation

error, we propose to use the nonuniform FFT (NUFFT) instead of k-space gridding. The

NUFFT will be detailed in the next chapter.
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2.6 Experiments

In this section, we validated the fast approach and the cubic convolution reconstruction

algorithm using synthetic data. A rosette trajectory was used to synthesize data. The

readout time was 66.7ms, and the FOV was 12.8cm. The sampling interval was 5.56µs, so

the length of s(n) in (2.4) was 12,000 samples. To simulate a continuous spatial domain,

the data was synthesized from images with resolution 1024 × 1024. We used analytical

functions of M0(x), R∗
0(x) and ω(x) to generate the 1024 × 1024 images that were used

to approximate a continuous spatial domain. All the reconstructed images in this paper

have 64 × 64 or 128 × 128 resolution. In order to compare the reconstructed images with

the “true” images, we used the same analytical functions to generate “true” images with

64 × 64 or 128 × 128 images.

According to [32], the rosette trajectories can be modeled by:

k(t) = kmax cos(ω1t)e
ıω2t (2.29)

where k(t) = kx(t) + jky(t). A rosette trajectory with kmax = 2.819, ω1 = 5171.4s−1 and

ω2 = −3334.8s−1 is shown in Figure 2.13.

2.6.1 Validation of Fast Approach

The SS-PARSE reconstruction was implemented in MATLAB on a Dell Optiplex 745

equipped with a 2.66GHz Core 2 CPU and 3GB RAM, and Windows XP. We compared two

cases: 1) 64×64 resolution and 2) 64×64 interpolation coefficients with 2× cubic convolution

interpolation (computational complexity roughly equivalent to 128 × 128 resolution). For

each case, the length of s(t) was 12, 000. The computation times per iteration are given in

Table 2.1.

We have shown that polynomial expansion of the time function along with the NUFFT

can greatly speed up the reconstruction. Since this approach involves approximations, we

need to demonstrate that the reconstructions from the fast approach have no significant
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Figure 2.13: A rosette trajectory

Table 2.1: Computer Times (in seconds per iteration)

Fast

Reso. NO YES

64 5.37 0.64

2x 20.56 1.18

differences from that of the unaccelerated method. We used noiseless free induction decay

(FID) signals to compare the results. Three cases were studied: 1) a 64 × 64 resolution

reconstruction, 2) a 128 × 128 resolution reconstruction, and 3) 2× interpolation. These

three methods are referred to as 64, 128 and 2× in Table 2.2. We ran 200 iterations of the

CG reconstruction algorithm for each case.
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Table 2.2: NRMSE (%) Difference between Unaccelerated and Fast Approach

Reso. M0 R∗
2 ω

64 0.8 0.4 0.5

128 1.4 0.3 0.3

2x 0.5 0.5 0.3

Table 2.3: NRMSE (%) of Noiseless Reconstruction

Fast Unaccelerated
Reso. M0 R∗

2 ω M0 R∗
2 ω

64 21.3 20.5 20.4 21.1 20.4 20.3

128 44.3 23.6 23.9 44.4 23.6 24.0

2x 15.3 15.4 16.3 15.3 15.4 16.3

These results indicate that the error introduced by the approximations in the fast

approach is quite small — quite a bit smaller than the typical error one would expect due

to noise in the signal.

2.6.2 Noiseless Experiments

We evaluated the performance of the reconstruction algorithm for a noiseless signal.

The true images used to synthesize the FID and the reconstructed images are shown in

Figure 2.14 and 2.15. We also computed the NRMS of these three methods compared to

the true images in Table 2.3. After 76 iterations, the reduction rate of the cost function is

less than 1% for cubic convolution reconstruction. For direct 64 × 64 reconstruction, this

number is 118.

Because the simulation signal was generated from 1024 × 1024 images and the recon-

struction algorithms are based on 64 × 64 or 128 × 128 resolution, this mismatching leads

the reconstruction algorithm to converge to a solution that is not perfectly accurate.

The results of this experiment indicate that the approximation error due to the poly-

nomial model leading to algorithm acceleration is far less than the discrete modeling error

caused by the limited spatial resolution of the parameter maps.
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Figure 2.14: True and Reconstructed Images from Noiseless Experiments. All images are
displayed with 128 × 128 resolution. We only reconstructed the pixels within the inscribed
circle of the square. (a)(c)(e) are true images; (b)(d)(f) are from 64 × 64 reconstruction
without interpolation, then interpolated to 128 × 128 images for display.

33



 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) |M0|

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) |M0|

 

 

0

5

10

15

20

25

30

(c) R
∗

2(sec
−1)

 

 

0

5

10

15

20

25

30

(d) R
∗

2(sec
−1)

 

 

−50

−40

−30

−20

−10

0

10

20

30

40

50

(e) ω(Hz)

 

 

−50

−40

−30

−20

−10

0

10

20

30

40

50

(f) ω(Hz)

Figure 2.15: Reconstructed images from noiseless experiments. All images are displayed
with 128 × 128 resolution. (a)(c)(e) are from 128 × 128 reconstruction without interpola-
tion, (b)(d)(f) are images reconstructed from 2× cubic convolution interpolation, so the
interpolation coefficients are 64 × 64.
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2.6.3 Noisy Experiment

We added white Gaussian noise to the synthesized signal and reconstructed the images

from the noisy signal. The SNR is defined by:

SNR =
‖s‖2

Nσ2
(2.30)

where σ2 is the noise variance.

The images reconstructed from a noisy signal with 40 dB SNR are shown in Figure

2.16. The NRMSE of the reconstructed images at different SNRs is listed in Table 2.4.

Table 2.4: NRMSE (%) of Noisy Reconstruction

Reso. M0 R∗
2 ω

64 30.4 31.1 31.1
30dB 128 82.3 36.9 35.5

2x 28.0 29.7 27.4

64 23.1 22.6 23.0
40dB 128 48.5 25.8 26.2

2x 17.2 18.9 18.0

64 23.1 21.0 21.7
50dB 128 45.1 24.3 24.7

2x 15.4 16.7 16.6

We observe that the noise even for 30 dB is on the same order as the error due to

the spatial-domain modeling error. Furthermore, the estimates degrade gracefully with

decreasing SNR.

2.6.4 Phantom and Animal Experiment

We applied this method to data collected from two phantom experiments using a 4.7T

60cm-vertical-bore Varian primate MRI system along with a stripline resonator quadrature

head coil. We used transverse cross-sectional rosette trajectories with a slice thickness of
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Figure 2.16: Images reconstructed from noisy signals. SNR is 40dB. All images have
128 × 128 resolution. (a)-(c) are from 64 × 64 reconstruction without interpolation, then
interpolated to 128×128 images for display; (d)-(f) are from 128×128 reconstruction with-
out interpolation, (g)-(i) are images reconstructed from 2× cubic convolution interpolation,
so the interpolation coefficients are 64 × 64.
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2mm. The phantom was constructed from an 8cm-diameter beaker containing four 1.6cm-

diameter tubes. The tubes were filled with agarose gel and various concentrations of either

CuSO4 or Sephadex beads to obtain different R∗
2 values.

The results of the first experiment are compared in Figure 2.17. The interpolation

method yields both sharper edges and smoother regions inside the circles. For the R∗
2

parameter map in which fMRI is interested, the interpolation method gives better results.

In (e), the small circles are clearer than in (b), especially the two circles in the lower part.

The artifacts are also less visible in (e).

We also did an experiment with a much larger frequency offset using the same type of

phantom. The object was deliberately deshimmed to show the robustness of the interpolated

method. The results are shown in Figure 2.18. We can see more obvious improvements in

the reconstruction of R∗
2.

The results of a monkey experiment are shown in Figure 2.19. Image data of a macaque

monkey brain were obtained using the Varian system with a rosette trajectory. The sampling

interval was 4.59µs, and the acquisition duration was 55.0ms. Images were reconstructed

using the proposed algorithm. In the interpolated image, the anatomic features are clearly

visible. The frequency tends to be more homogeneous inside the brain and has rises or dips

near the edges as is often the case. The cerebral ventricles, which have a butterfly-like shape

in this slice, can be seen in the frequency map. The interpolated image shows more high-

frequency detail than the non-interpolated 64 × 64 image even though it does not require

the estimation of more free parameters.

In all experiments, the images of M0 are normalized to 1.

2.7 Conclusion

This paper presents a new method to reconstruct local magnitude, decay and frequency

at higher resolution from limited data of a single-shot MRI signal. Using interpolation, the

reconstruction algorithm is well constrained since it allows us to avoid overparameterizing

the solution. Simulated data shows that the interpolation method also gives a numerically
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Figure 2.17: Images reconstructed from phantom experiment. All images have 128×128 res-
olution and are masked to remove exterior artifactual features. (a)(c)(e) are from 64 × 64
reconstruction without interpolation, then interpolated to 128 × 128 images for display;
(b)(d)(f) are images reconstructed from 2× cubic convolution interpolation, so the interpo-
lation coefficients are 64 × 64.
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Figure 2.18: Images reconstructed from phantom experiment with larger frequency offset.
All images have 128 × 128 resolution. (a)(c)(e) are from 64 × 64 reconstruction without
interpolation, then interpolated to 128 × 128 images for display; (b)(d)(f) are images re-
constructed from 2× cubic convolution interpolation, so the interpolation coefficients are
64 × 64. Only the frequency map of the imaged object is shown in (e) and (f). The delib-
erately added frequency map is removed from these two figures. The artifactual features
between the reconstruction mask (the inscribed circle of the square) and the imaged object
remain, but they are not of interest.
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Figure 2.19: Images reconstructed from monkey experiment. All images have 128 × 128
resolution. (a)(c)(e) are from 64×64 reconstruction without interpolation, then interpolated
to 128×128 images for display; (b)(d)(f) are images reconstructed from 2× cubic convolution
interpolation, so the interpolation coefficients are 64 × 64. The R∗

2 map in (c) was plotted
with saturation of the values to maintain the same scale as (d) and so that the details of
(d) would be visible.
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better result in reconstructing magnitude, decay and frequency. From our experimental

data, we can also observe the visual improvement due to the interpolation method. We

applied a polynomial approximation of the time exponential function to this method to

reduce computational complexity. Computer simulation shows that there is no significant

difference between the accelerated and the unaccelerated methods.
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Chapter 3

Nonuniform Fast Fourier Transform (NUFFT)

Unlike classical MRI sampling methods that uniformly sample the spatial frequency

domain, SS-PARSE nonuniformly samples k-space. One approach that allows FFTs to be

used in the reconstruction algorithm is to round a non-equally spaced frequency-domain

trajectory onto an equally spaced grid. Oversampling can be used to reduce the error

introduced by this rounding. By analyzing the reconstruction errors of the fast algorithm,

we know that the primary source of the errors is the trajectory gridding. A grid with

higher resolution can reduce the errors, but it could make the reconstruction process much

slower while also requiring a great deal more memory. An algorithm that can accurately and

quickly evaluate Fourier samples is desirable. In this chapter, we discuss the implementation

of the fast algorithms for evaluating Fourier transforms (FTs). We focus on 1-D FTs. 1-D

FTs can be easily extended to multidimensional Fourier samples because of the separability

of Fourier kernels.

3.1 Theory of NUFFT

3.1.1 Problem Statement

Let x = {x−N/2, · · · , xN/2−1} be a finite sequence of complex numbers. The discrete

Fourier transform (DFT) is defined by the formula:

Xk =

N/2−1
∑

n=−N/2

xneı 2π

N
kn (3.1)
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where N is a positive even integer, k = −N/2, · · · , N/2 − 1. The frequency components

2πk/N are equally spaced, so (3.1) can be evaluated by an FFT, which requires O(N log N)

operations.

Now, we extend this definition to nonuniformly spaced frequency components. ω =

{ω0, · · · , ωK−1} is a finite sequence of real numbers, and ωk ∈ [−π, π] for k = 0, · · · ,K − 1.

The Fourier transform of the finite sequence x evaluated at the frequencies of ω is given by:

Xk =

N/2−1
∑

n=−N/2

xneınωk (3.2)

The direct evaluation of (3.2) requires O(NK) operations. Our goal is to design an

algorithm that only needs computational complexity proportional to the FFT and meets a

required accuracy.

3.1.2 Basic Concepts

[33] proved that any function of the form eıcx can be accurately represented on any

finite interval on the real line using a small number of terms of the form ebx2 · eıkx, and this

number of terms is independent of the value of c.

Theorem 1 [33] Let b > 1
2 , c, d > 0 be real numbers, and let m ≥ 2, q ≥ 4bπ be integers.

Then, for any x ∈ [−d, d],

∣
∣
∣
∣
∣
∣

eıcx − eb(xπ/md)2 ·
[cmd/π]+q/2

∑

k=[cmd/π]−q/2

ρke
ıkxπ/md

∣
∣
∣
∣
∣
∣

< e−bπ2(1−1/m2) · (4b + 9) (3.3)

where

ρk =
1

2
√

bπ
e−(c−k)2/4b (3.4)
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This theorem can be written in a general form that is consistent with (3.2):

En,k =

∣
∣
∣
∣
∣
∣

eıωkn − s−1
n

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(ωk)e
ı2π(vk+l)n/mN

∣
∣
∣
∣
∣
∣

< ε (3.5)

where s−1
n is a function of n, gl(ωk) is a function ωk, vk = [ωkmN/2π], integer J ≪ K and

ε is a nonnegative real number.

With this approximation, one can evaluate (3.2) by an FFT and interpolation in the

transform domain with two steps:

1. Compute an mN -point FFT of the weighted xn.

Yk =

N/2−1
∑

n=−N/2

s−1
n xneı 2π

mN
kn (3.6)

2. Approximate each Xm by a linear combination of Yk’s.

Xk ≈ X̂k =

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(ωk)Yvk+l (3.7)

The computational complexity of this algorithm is O(mN log mN + JK). If we choose

constant scaling factor s = {s−N/2, · · · , sN/2−1} and J = K, this method exactly com-

putes Xm, but there is no computational gain. The performance of this approximation is

determined by s and the weighting coefficients g(ωk).

[34–36] proposed different methods to compute s and g based on different criteria.

All of the methods first optimize g, then compute s using the optimized g. We present an

algorithm that simultaneously optimizes s and g by least-squares approximation.

If the Fourier transform of a set of certain frequencies is only evaluated once, it not

worth using the NUFFT scheme because of the computational complexity of optimizing

the scaling factor and weighting coefficients. In some applications, such as iterative recon-

struction of MRI, the same set of frequencies is used for each iteration. The same k-space

trajectory (spatial frequencies) could also be used for different MRI experiments. In both
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scenarios, the additional computational cost of precomputations of NUFFT can be afforded.

Because of the periodicity of gl(ωk), gl only needs to be precomputed for several ωk in one

period. The precomputed gl are then used to interpolate the gl for the new set of frequencies.

The linear interpolation of K frequencies requires 2JK operations.

3.2 Least-Squares Optimization

For a given sequence xn, the NUFFT approximation error at is expressed by:

∣
∣
∣Xk − X̂k

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

N/2−1
∑

n=−N/2

xneınωk −
⌈(J−1)/2⌉

∑

l=−⌊(J−1)/2⌋

gl(ωk)

N/2−1
∑

n=−N/2

s−1
n xneı 2π

mN
kn

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

N/2−1
∑

n=−N/2

xn



eınωk − s−1
n

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(ωk)e
ı 2π

mN
kn





∣
∣
∣
∣
∣
∣

(3.8)

By Cauchy-Schwarz inequality [34], we have:

∣
∣
∣Xk − X̂k

∣
∣
∣

2
≤

N/2−1
∑

n=−N/2

|xn|2
N/2−1
∑

n=−N/2

∣
∣
∣
∣
∣
∣

eınωk − s−1
n

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(ωk)e
ı 2π

mN
kn

∣
∣
∣
∣
∣
∣

2

(3.9)

For all possible sequences xn with norm 1, the maximum error is:

N/2−1
∑

n=−N/2

E2
n,k (3.10)

where En,k is defined in (3.5). The total error for all ωk is:

ε =

K−1∑

k=0

N/2−1
∑

n=−N/2

E2
n,k (3.11)
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Our goal is to minimize ε with respect to sn and gl(ωk). This minimization problem can be

formulated in a matrix form:

argmin
S,G

∥
∥B− S−1AG

∥
∥

2

2
(3.12)

where A is an N × J matrix, G is a J × K matrix vector, S is an N × N diagonal matrix,

and B is an N × K matrix. These are defined by:

Anl = eı2πnl/mN

Snn = sn

Bn = eıωn · e−ı2π(v−q/2)n/mN

where n = −N/2, · · · , N/2 − 1, l = 0, · · · , J − 1, and K is the length of ω.

(3.12) is a nonlinear problem. It can be approximated by a linear minimization problem:

argmin
S,G

‖SB −AG‖2
2 (3.13)

Obviously, S = 0, G = 0 is a solution to this problem. We can use s0 = 1 to avoid this

solution. With this constraint, it can be shown that (3.13) is equivalent to the standard

linear minimization problem.

We write G as a column vector g with Gm,n = g(n−1)J+m. Let bi denote the ith column

of B. dbi is a diagonal matrix with the elements of bi on its diagonal. We define a sparse

matrix as:

F =












−db1 A 0

−db2 A

... 0
. . .

−dbK A












(3.14)
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We define column vector s that is composed of sn. Now we have:

SB− AG = F






s

g




 (3.15)

Let s0 = 1, and −y be the (N/2 + 1)th column of F. We remove −y from the matrix

F to form a new matrix A. Column vector x is a stack of s and g without s1. Now, (3.13)

is converted to a standard linear minimization problem:

argmin
x

‖Ax− y‖2
2 (3.16)

In Figures 3.1 and 3.2, we compare the performance of this “direct” solving method

with min-max, the best available method. The maximum error is defined as:

εmax = max
k





∑N/2−1
n=−N/2 E2

n,k

N





1/2

(3.17)

We can further improve the NUFFT accuracy. We initialize s with the results of direct

solving, Kaiser-Bessel window, or Gaussian function, then we solve G by:

G =
(
AHA

)−1
AHSB (3.18)

We use G to optimize s:

s =
(
CHC

)−1
CHZ (3.19)

where Z is an NK × 1 column vector from AG, and C = [db1, · · · ,dbK ]T .

If necessary, we can use the updated s to find the optimal G. This method is efficient

in reducing the maximum error. The maximum error of this method is compared with that

of min-max in Figure 3.3
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Figure 3.1: Maximum Error

3.3 Interpolations

In 3.2, we developed the approximation for a set of specific frequencies. This approx-

imation gives higher accuracy than other methods. In some applications, one can use the

precomputed gl(ωk) to find the gl for given frequencies by interpolations. In this section,

we analyze the errors for two kinds of interpolations, linear and cubic convolution.

Let f be a real number with |f | ≤ 1/m, and ω = 2πf/N .

eı2πnf/N ≈ s−1
n

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(f)eı2πnl/mN (3.20)
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Figure 3.2: NRMS Error

It can be shown that gl(f) is a periodic function with period 1/m:

eı2πn(f+k/m)/N ≈ s−1
n eı2πnk/mN

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(f)eı2πnl/mN

= s−1
n

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(f)eı2πn(l+k)/mN (3.21)

where k is an integer. With this property, we only need to study the NUFFT within one

period.

We use the precomputed gl(fk) for a set of frequencies fk to compute gl(x) of any other

frequency x by interpolation:

gl(x) =
∑

k

gl(fk)u(
x

h
− k) (3.22)
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Figure 3.3: Maximum Error

where u(x) is the interpolation kernel.

There are several candidates for the interpolation kernel. We use the linear spline and

cubic convolution as examples. The linear kernel (3.23) and cubic kernel (3.24) are plotted

in Figures 3.4 and 3.5, respectively.

u(x) =







1 − |x|, |x| < 1

0, otherwise

(3.23)
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u(x) =







3
2 |x|3 − 5

2 |x|2 + 1, 0 ≤ |x| < 1

−1
2 |x|3 + 5

2 |x|2 − 4|x| + 1, 1 ≤ |x| < 2

0 2 ≤ |x|

(3.24)

−1 −0.5 0 0.5 1

0

0.2

0.4
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1

x

u
(x

)

Figure 3.4: Linear Interpolation Kernel

Let K be a positive integer, J be an odd number, and h = 1/mK. We choose the

following frequency set:

f =

{

fk = − 1

2m
+ kh, k = −1, 0, · · · ,K + 1

}

so there are K + 3 elements in f . We compute the interpolator coefficients G(f) and the

corresponding cubic convolution coefficients cl(k). For any frequency x ∈ [−1/2m, 1/2m],

we use cubic convolution interpolation to compute gl(x).
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Figure 3.5: Cubic Convolution Interpolation Kernel

For even J , we choose a different f to make gl(x) continuous:

f = {fk = kh, k = −1, 0, · · · ,K + 1}

In both cases, we set vk = 0 for all k.

For linear interpolation, we choose a slightly different f :

f =

{

fk = − 1

2m
+ kh, k = 0, · · · ,K

}

for odd J , and

f = {fk = kh, k = 0, · · · ,K}

for even J .
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3.4 Error Analysis of the Interpolation

For odd J , the normalized root mean square error (NRMSE) is computed by:

ε2 =
m

N

N/2−1
∑

n=−N/2

∫

x

∣
∣
∣
∣
∣
∣

eı2πnx/N − s−1
n

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(x)eı2πnl/mN

∣
∣
∣
∣
∣
∣

2

dx

=
m

N

N/2−1
∑

n=−N/2

∑

k

∫ fk+1

fk

∣
∣
∣
∣
∣
∣

eı2πnx/N − s−1
n

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(x)eı2πnl/mN

∣
∣
∣
∣
∣
∣

2

dx (3.25)

For odd J , the integral interval x is [−1/2m, 1/2m]; for even J , x is [0, 1/m].

The error performance of linear and cubic convolution interpolations are illustrated in

Figures 3.6, 3.7, 3.8 and 3.9 with m = 2. Figure 3.10 compares the performance of linear

and cubic convolution interpolations.

For J ≥ 8, the linear interpolation can not approach the accuracy of the LS optimization

because the performance is dominated by the accuracy of the linear interpolator. For cubic

convolution interpolation, the error of the LS optimization plays the major role, so the

performance can approach the possible limit with more precomputed frequencies.

3.5 Inverse Fourier Transform

We use inverse to represent the Fourier transforms with uniform inputs and nonuniform

outputs. The inverse FT is defined as:

xn =

K−1∑

k=0

Xke
ınωk (3.26)
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Figure 3.6: NRMSE for different J and the number of precomputed frequencies for linear
interpolation. In this figure, NRMSEs are plotted as the functions of J ’s for different
numbers of the precomputed frequencies. The “Exact” is the NRMSE for the precomputed
frequencies. The “Exact” is the accuracy limit of the method stated in this chapter.

An inverse FT can be approximated by

xn ≈
K−1∑

k=0

Xks
−1
n

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(ωk)e
ı2πn(vk+l)/mN

= s−1
n

K−1∑

k=0

Xk

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(ωk)e
ı2πnl/mN

︸ ︷︷ ︸

Ak

eı2πnvk/mN (3.27)

The procedure of the inverse NUFFT is summarized as following:

1. Compute Ak. This requires JK operations.

Ak =

⌈(J−1)/2⌉
∑

l=−⌊(J−1)/2⌋

gl(ωk)e
ı2πnl/mN
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Figure 3.7: NRMSE for different J and the number of precomputed frequencies for linear
interpolation. In this figure, NRMSEs are plotted as the functions of the numbers of the
precomputed frequencies for different J ’s.

2. Weight Xk by Ak.

Bk−N/2 = Xvk
Avk

, k = 0, · · · ,K − 1

3. Compute an mN -point FFT.

yn =

N/2−1
∑

k=−N/2

Bke
ı2πnk/mN

4. Weight yn by s−1
n

xn = s−1
n yn
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Figure 3.8: NRMSE for different J and the number of precomputed frequencies for cubic
convolution interpolation. In this figure, NRMSEs are plotted as the functions of J ’s for
different numbers of the precomputed frequencies. The “Exact” is the NRMSE for the
precomputed frequencies. The “Exact” is the accuracy limit of the method stated in this
chapter.

3.6 Discussion

For a given set of K frequencies, it requires 2JNM operations are required to compute

gl and sn for an N -point FFT. So it is not economical to do this for a set of frequencies that

are repeatedly used. Once we have gl and sn, the Fourier transform requires O(mN log mN+

JM) operations.

With precomputed gl and sn, one can use linear or cubic interpolation to evaluate gl for

the given K frequencies. Linear interpolation requires 2JM operations to compute gl for

the given frequencies. The total computational complexity is O(mN log mN) + 2JM . This

method requires less computations than cubic interpolation. The disadvantage of linear

interpolation is that its NRMSE reaches the lower limit of about 10−7 due to interpolation

error. For hardware implementation, the storage of the precomputed data of a larger set
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Figure 3.9: NRMSE for different J and the number of precomputed frequencies for cubic
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Figure 3.10: Comparison of the performance of linear and cubic convolution interpolations.
The “Exact” is the accuracy limit of the method stated in this chapter.
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of frequencies is also a possible problem. Its advantage is for J ≤ 5, since about 100

precomputed frequencies can reach the best possible performance.

The cubic convolution interpolation requires more computations. The interpolation

needs 4JM operations, so the total number is O(mN log mN)+4JM . The cubic algorithm

can provide much higher accuracy than the linear algorithm. It also requires much less

storage because fewer precomputed points are required for the same accuracy. This feature

is useful for some hardware implementations. This is also possibly useful for some software

applications even if there is enough memory because memory access could be the bottleneck.
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Chapter 4

Reconstruction of Parallel MRI

4.1 Introduction

The concept of parallel MRI was first suggested by Carlson [37], but his work was

unknown until 2004 [38]. The introduction of simultaneous acquisition of spatial harmonics

(SMASH) [39] started the age of parallel MRI.

The conventional Fourier MRI is modeled by

y(t) =

∫

M(x)eık(t)·xdx

There is more than one RF coil in a parallel MRI system. Each coil has a different

receiving property that is called localized sensitivity. Let Ck(x) be the localized sensitivity

of the kth coil, k = 1, · · · ,K. The received signal at the kth coil can be modeled by

yk(t) =

∫

Ck(x)M(x)eık(t)·xdx + εk(t) (4.1)

where εk(t) is additive white Gaussian noise with zero mean and σ2
ε variance.

[40] summarized the advantages of parallel imaging:

• faster imaging.

• higher spatial resolution.

• improved image quality of single-shot or turbo-spin-echo or echo-planar by shortening the

echo train whenever it is severely affected by signal decay and field inhomogeneities.

• complement for the increased SNR and compensation for the growing specific absorption

rate and increasing geometric distortions for high and ultra-high field MRI.
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The SNR (signal-to-noise ratio) can be increased with array coils in the same imaging

time. The array coils can also be used for partially parallel acquisition (PPA) [41]. In this

chapter, we extend the parallel MRI model (4.1) with the concept of SS-PARSE.

In current reconstruction algorithms, the coil sensitivities Ck(x) are found by putting

an known object in a parallel MRI system and measuring the spatial sensitivities directly.

This method is convenient, but it is inaccurate because different objects may have different

coil sensitivities due to the fact that each object has its own properties that interact with

the coil responses. We can bring the concept of SS-PARSE into parallel MRI. We call this

extension single-shot parallel PARSE (SS-pPARSE). The received signal in the kth coil is

modeled by:

yk(t) =

∫

Ck(x)M0(x)e[R
∗

2(x)+ıω(x)]teık(t)·xdx + εk(t) (4.2)

The goal of PSSPARSE is to reconstruct Ck(x), M0(x), R∗
2(x) and ω(x) from the observed

signals yk(t) for all k = 1, · · · ,K.

4.2 Reconstruction

4.2.1 Extension of SS-PARSE

By discretizing (4.2) on the spatial (x, y) grid indexed by i, we have

yk(n) =
∑

i

Ck,iM0ie
nWieıkn·xi

︸ ︷︷ ︸

ŷk

+εk(n) (4.3)

where n = 1, · · · , N , Wi = − [R∗
2i + ıωi]∆t, kn = k(n∆t), and ∆t is the sampling interval.

We use the method discussed in Chapter 2 to simultaneously solve Ck, M0 and W . We

use iterative conjugate-gradient algorithm to minimize the cost function:

J(z) =
K∑

k=1

‖yk − ŷk(z)‖2 (4.4)
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with respect to z, where z = {Ck,M0,W, k = 1, · · · ,K}.

The gradient ∇zJ computations include three parts:

∂J

∂M0
=

K∑

k=1

Ck

N∑

n=1

fk(n)enWeıkn·x (4.5)

∂J

∂W
= M0

K∑

k=1

Ck

N∑

n=1

nfk(n)enWeıkn·x (4.6)

∂J

∂Ck
= M0

N∑

n=1

fk(n)enWeıkn·x (4.7)

where fk(n) = [ŷl(n) − yk(n)]∗.

We apply the polynomial approximation of the exponential time function in Chapter

2 to compute the cost function and gradient for parallel MRI.

yk(n) ≈ ejnω0

L−1∑

l=0

nl
K∑

i=1

Ck,iM0iZi(l)e
ıkn·x(i) (4.8)

∂J

∂M0
≈

K∑

k=1

Ck

L−1∑

l=0

Z(l)

N∑

n=1

fk(n)eınω0nleıkn·x (4.9)

∂J

∂W
≈ M0

K∑

k=1

Ck

L∑

l=1

Z(l)
N∑

n=1

fk(n)eınω0nleıkn·x (4.10)

∂J

∂Ck
≈

L−1∑

l=0

Z(l)

N∑

n=1

fk(n)eınω0nleıkn·x (4.11)

Z and ω0 are defined in chapter 2.

The reconstruction algorithm based on cubic interpolation can also be applied to the

reconstruction in parallel MRI.

4.2.2 Initialization

The first step in the reconstruction of PSSPARSE is to find the initial values of Ck(x),

M0(x), R∗
2(x) and ω(x) for the conjugate-gradients algorithms described above. We use a

different mathematical model to find the initial values. We assume that there are K different
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M0 maps — M1, · · · ,MK — the magnitude. Based on this assumption, yk is modeled by:

yk(n) =
∑

i

Mk,ie
nWieıkn·xi

︸ ︷︷ ︸

ŷk

+εk(n) (4.12)

In the cost function (4.4), the unknown z is defined as z = {Mk,W, k = 1, · · · ,K}.

The gradients are computed by:

∂J

∂Mk
=

N∑

n=1

fk(n)enWeıkn·x (4.13)

∂J

∂W
=

K∑

k=1

Mk

N∑

n=1

nfk(n)enWeıkn·x (4.14)

With polynomial approximation, the estimated signals and and gradients are evaluated

by:

yk(n) ≈ ejnω0

L−1∑

l=0

nl
K∑

i=1

Mk,iZi(l)e
ıkn·x(i) (4.15)

∂J

∂Mk
≈

L−1∑

l=0

Z(l)

N∑

n=1

fk(n)eınω0nleıkn·x (4.16)

∂J

∂W
≈

K∑

k=1

Mk

L∑

l=1

Z(l)

N∑

n=1

fk(n)eınω0nleıkn·x (4.17)

After finding Mk, we use the root mean square of Mk as the initial values of M0:

M0 =

√
∑K

k=1 |Mk|2
K

(4.18)

and the coil sensitivities are computed by:

Ck =
Mk

M0
, k = 1, · · · ,K (4.19)
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We also apply the interpolation method to compute the initial conditions. Because of

the use of interpolation, the algorithm stated in 4.2.1 is initialized with the interpolation

coefficients other than Ck, Mk and W. We use the interpolation coefficients that are

associated with the reconstructed Mk, Ck and W to initialize the reconstruction algorithm

4.2.3 Regularization

We use regularization to improve the reconstruction performance. The regularization

operation is defined as:

R(x) = H ∗ x ∗HT (4.20)

where ∗ denotes a convolution operation. The regularization kernel H is:

H =









0 0 0

−1 2 −1

0 0 0









(4.21)

With regularization terms, the cost function (4.4) is given by:

J(z) =
K∑

k=1

‖yk − ŷk(z)‖2

+ α ‖R(M0)‖2 + β

K∑

k=1

‖R(Ck)‖2 + γR ‖R(R∗
2)‖2 + γI ‖R(ω)‖2 (4.22)

where α, β, γR and γI are all nonnegative real numbers.

The corresponding gradients ∇J includes terms of ∇R:

1

2
∇‖R(x)‖2 = A ∗ x (4.23)
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where

A =















0 0 1 0 0

0 0 −4 0 0

1 −4 12 −4 1

0 0 −4 0 0

0 0 1 0 0















(4.24)

4.3 Simulation

We synthesized the simulation data from the images in Figure 4.1 and 4.2. Eq. (4.3)

was used to to generate the synthesized data. The image resolution for the synthesis was

1024.

It is assumed that the FOV is 12.8cm. Both x-axis and y-axis are defined on [−6.4, 6.4].

Four receiving coils are placed at the four corners of the FOV. The coil sensitivities are

described by (4.25).

C(x, y) =
[
(x ± x0)

2 + (y ± y0)
2
]−α

(4.25)

In the simulation, x0 = y0 = 6.8 and α = 1/4.

The SNR is defined as:

SNR =

∑K
k=1 ‖ŷk‖2

MNσ2
ε

(4.26)

4.3.1 Interpolation of Coil Sensitivity

In the all of the simulations, 128 × 128 was used as the image resolution. We used 2×

interpolation for the computation of the initial conditions. That is, the coefficients of Mk

and W were 64× 64. In the joint reconstruction of M0, W and Ck, 64× 64 resolution was

also used for the coefficients of M0 and W. Since the Ck’s are very spatially smooth, we use
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Figure 4.1: The magnitude, decay and field map used to synthesize simulation data. All
images are displayed with 256 × 256 resolution. M0 is normalized to 1.
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Figure 4.2: The coil sensitivity ,maps used to synthesize simulation data. All images are
displayed with 256 × 256 resolution. The unconstrained area in which M0 is zero are
displayed with zero. All maps are normalized to 1.
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a lower resolution for the coefficients of Ck’s — a larger interpolation factor. We used the

cubic convolution interpolation for all of the estimated parameters. For I× interpolation,

the sampling interval is h = 1/I. The 1-D interpolation vector of I× interpolation is:

u(±nh), n = 0,±h, · · · ,±(3/h − 1)h (4.27)

where u(x) is defined by (2.9).

We experimentally compared the reconstruction accuracies of different interpolation

factors of the coil sensitivity in Table 4.1. In this comparison, we used signals with 30 dB

SNR.

Table 4.1: NRMSE (%) of Different Coil Sensitivity Interpolations

Interpolation C1 C2 C3 C4 M0 R∗
2 ω

2× 29.2 36.8 36.6 30.3 29.8 14.4 17.9

4× 8.7 8.7 7.5 7.2 28.3 14.4 17.9

8× 6.9 8.3 7.5 6.7 29.5 14.4 17.9

16× 10.7 10.4 6.9 7.2 30.2 14.4 17.9

The reconstructed C1 from the different interpolation factors are illustrated in Figure

4.3.

4.3.2 Regularized Reconstruction

We applied regularization to this reconstruction. Because the field map ω is not spa-

tially smooth enough, the experiments show that the regularization does not improve the

reconstruction accuracy of ω. We empirically selected the regularization parameters α, β

and γR. Table 4.2 compares the reconstruction performance for different combinations of

regularization coefficients. The interpolation factor for the coil sensitivity used here was 8.

The interpolation factors of M0, R∗
2 and ω were all 2. A set of coil sensitivities and images

from regularized reconstruction are displayed in Figure 4.6 and 4.7. Table 4.2 shows that

the selection of the regularization parameter for one set of variables has little impact on the
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Figure 4.3: The coil sensitivity C1 reconstructed from different interpolation factors. All
images are displayed with 128 × 128 resolution. The artifacts in the unconstrained area in
which M0 is zero are removed. All maps are normalized to 1. No regularization is used.
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Figure 4.4: The magnitude, decay and field map reconstructed from signals with 30dB SNR.
All images are displayed with 128× 128 resolution. The artifacts in the unconstrained area
in which M0 is zero are removed. M0 is normalized to 1. No regularization is used.
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Figure 4.5: The coil sensitivity maps reconstructed from signals with 30dB SNR. All images
are displayed with 128 × 128 resolution. The artifacts in the unconstrained area in which
M0 is zero are removed. All maps are normalized to 1. No regularization is used.
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reconstruction accuracy of the other sets of variables. For example, the selection of α, the

regularization parameter of M0, is almost unrelated to the reconstruction accuracy of R∗
2

and ω.

Table 4.2: NRMSE (%) of Different Regularization Coefficients

α γR β C1 C2 C3 C4 M0 R∗
2 ω

0 0 0 7.0 8.3 7.5 6.7 29.5 14.4 17.9

0 0 1.09 × 106 7.7 7.9 6.9 7.6 29.0 14.4 17.9

0 1.75 × 108 0 8.6 6.8 6.7 9.3 28.7 4.6 17.9

0 1.75 × 108 1.09 × 106 10.6 8.9 8.2 8.5 28.8 5.5 17.9

5.5 × 107 0 0 10.8 8.5 6.4 9.6 13.7 14.4 17.9

5.5 × 107 0 1.09 × 106 9.4 8.4 6.4 9.8 13.6 14.4 17.9

5.5 × 107 1.75 × 108 0 11.5 8.9 6.6 9.5 13.7 4.0 17.9

5.5 × 107 1.75 × 108 1.09 × 106 9.5 8.4 6.5 9.5 13.6 3.9 17.9

4.4 Human Experiment

We applied the reconstruction method to human brain data. A Siemens Tim Trio 3T

MRI system was used in this experiment. The system is located at the Department of

Neuroscience of the Brown University. The major parameters of this experiment are listed

in Table 4.3. The rosette trajectory used in the experiment is plotted in Figure. 4.8.

Table 4.3: Experiment Parameters of Human Experiment

Parameter Value Unit

sampling interval (∆t) 5.0 µs

FOV 22.0 cm

readout duration 56.8 ms

magnetic field 3.0 T

trajectory rosette -

In the reconstruction, we used the signals from two coils. Since the simulation exper-

iments show that 4× and 8× interpolation for the coil sensitivities give similar results, we
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Figure 4.6: The magnitude, decay and field map reconstructed from signals with 30dB SNR.
The regularization parameters α = 5.5 × 107, γR = 1.75 × 108 and γI = 0. All images are
displayed with 128 × 128 resolution. The artifacts in the unconstrained area in which M0

is zero are removed. M0 is normalized to 1.
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Figure 4.7: The coil sensitivity maps reconstructed from signals with 30dB SNR. The
regularization parameters α = 1.09×106. All images are displayed with 128×128 resolution.
The artifacts in the unconstrained area in which M0 is zero are removed. All maps are
normalized to 1.
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Figure 4.8: Rosette trajectory used in human experiment. Only the first half of the trajec-
tory is plotted.

applied these two levels of interpolation. For both cases, M0, R∗
2 and ω were reconstructed

with 2× interpolation. The recovered images are shown in Figure 4.9 and 4.10.

We also interpolated coil sensitivity with a cubic spline function. The magnitude,

decay and field map were still interpolated by a cubic convolution function because of its

advantage for the exponential time function demonstrated in Chapter 2. The results are in

Figure 4.11 and 4.12.

The reconstructed images show that the proposed algorithm can produce realistic re-

sults. The artifacts on the edges of the coil sensitivity maps, R∗
2 and ω are caused by the

zero or near zero M0 values at that locations.

4× and 8× coil sensitivity interpolation reconstructed similar M0, R∗
2 and ω, but the

the coil sensitivity maps from 8× interpolation are better. We see some artifacts at the left

upper and lower corners. The artifacts may be caused by the locations of the receiving coils

because the two coils were located at the right upper and lower corners. Two more coils at

the left upper and lower corners may correct this problem. Another possible reason for the
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artifacts is system bias. By tuning the reconstruction parameters, the system bias can be

removed.

4.5 Conclusion

In this chapter, we extended the cubic convolution interpolation, quadratic line search,

polynomial approximation of the exponential time function and nonuniform FFT from

single-coil SS-PARSE to the multiple-coil SS-PARSE.

Because the reconstruction complexity is proportional to the number of receiving coils,

the computational speed improvement of the fast approach stated in Chapter 2 is more

significant in the reconstruction of the multiple-coil system.

The experiments in our simulations show that regularization can improve the recon-

struction performance of some of the parameters. Our simulations show that the frequency

map is insensitive to regularization. The best results were from the reconstruction that

regularized M0, R∗
2 and Ck. Because we lack the gold standard of human brain experiment,

we did not use regularization for the human experiment.

We applied both cubic convolution interpolation and cubic spline interpolation for

the coils sensitivity model. We see similar results for the human experiment. But in our

simulation, the spline model can not reach the minimum error using the quadratic line

search, so we have to resort to golden section search that takes much longer time. Even

though we did not observe this phenomenon in the human experiment, we still believe it is

safer to use cubic convolution.
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Figure 4.9: The magnitude, decay and field map reconstructed from the human brain
experiment. Cubic convolution interpolation was used to model the coil sensitivity. All
images are displayed with 128 × 128 resolution. (a) (c) (e) are from 4× interpolation for
coil sensitivity. (b) (d) (f) are from 8× interpolation for coil sensitivity. M0 is normalized
to 1. Most of the artifacts outside of the head were removed. No regularization was used.
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Figure 4.10: The coil sensitivity maps reconstructed from the human brain experiment.
Cubic convolution interpolation was used to model the coil sensitivity. All images are
displayed with 128 × 128 resolution. (a) (c) are from 4× interpolation. (b) (d) are from
8× interpolation. Most of the artifacts outside of the head are removed. All maps are
normalized to 1. No regularization was used.

77



 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) |M0|
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) |M0|

 

 

0

10

20

30

40

50

60

(c) R
∗

2(sec
−1)

 

 

0

10

20

30

40

50

60

(d) R
∗

2(sec
−1)

 

 

−100

−50

0

50

100

(e) ω(Hz)
 

 

−100

−50

0

50

100

(f) ω(Hz)

Figure 4.11: The magnitude, decay and field map reconstructed from the human brain
experiment. Cubic spline interpolation was used to model the coil sensitivity. All images
are displayed with 128 × 128 resolution. (a) (c) (e) are from 4× interpolation for coil
sensitivity. (b) (d) (f) are from 8× interpolation for coil sensitivity. Most of the artifacts
outside of the head were removed. M0 is normalized to 1. No regularization was used.
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Figure 4.12: The coil sensitivity maps reconstructed from the human brain experiment.
Cubic spline interpolation was used to model the coil sensitivity. All images are displayed
with 128 × 128 resolution. (a) (c) are from 4× interpolation. (b) (d) are from 8× interpo-
lation. Most of the artifacts outside of the head were removed. All maps are normalized to
1. No regularization was used.
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Chapter 5

Conclusion

5.1 Summary of the Contributions of this Thesis

In this thesis, a new approach is suggested for SS-PARSE reconstruction. The major

parts of this approach are:

1. The interpolated reconstruction method is proposed. This method can reconstruct

higher-resolution images that show higher-frequency features while the reconstruction

is still well constrained. A phantom experiment showed that the interpolated recon-

struction is much better than the non-interpolated reconstruction in a larger field inho-

mogeneity environment. This could be also useful for high-field MRI because the field

inhomogeneity of high-field MRI is more serious.

2. The cubic convolution interpolator yields significantly less blurred R∗
2 than the cubic

spline interpolator because of its zero-crossing at neighboring sample locations.

3. The polynomial approximation of the exponential time function was used to linearize

the reconstruction. This approximation is convenient for the dynamic estimation of R∗
2

and field map because the optimized polynomial coefficients need not be changed for

updated R∗
2 and field map. Using this approximation, the reconstruction is converted to

the form of Fourier transforms so that the FFT can be used.

4. The quadratic approximation of the line search was implemented. This method greatly

reduces the computation of the line search.

Motivated by non-Cartesian trajectories used by SS-PARSE, we also improved the

nonuniform FFT (NUFFT). The pre-weight scaling factor and interpolation coefficients are

two critical issues in the NUFFT. The existing methods first optimize the interpolation,

then compute the scaling factor based on the optimized interpolation. We linearized this
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problem so that optimal solutions of the scaling factor and interpolation coefficients are

simultaneously found. This method improved the precision of the NUFFT.

This framework was extended to parallel imaging. We validated this method with

simulated data. We also applied the proposed method to a human brain experiment.

5.2 Future Works

In Chapter 4, we observed that regularization can further improve the reconstruction

performance. We empirically choose the regularization parameter and kernel. We need

a mathematical method to optimize the parameter and kernel. The generalized cross-

validation [42] is a possible candidate for this issue. We tentatively tried this method, but

we did not have satisfactory results. We need to refine this work or choose a different

method.

The proposed methods were mathematically validated by simulated data. Validation

by human and animal experiments is needed. The methods suggested in this dissertation

reconstructed realistic images from these experiments, but we do not have a quantitative

error analysis because of the lack of “gold standard”. With a gold standard from a human

experiment, we would be able to refine some reconstruction parameters.

We tested the cubic convolution and cubic spline interpolations. Other interpolations

may be better suited for this problem. With the interpolation, we have a continuous model

instead of a discrete model. Because of the insurmountable computation obstacle we can

only solve this problem with a higher discrete resolution. A possible future work is to find

a continuous reconstruction algorithm that is within the capability of today’s computing

technology. The core of this algorithm is still how to deal with the problematic exponential

time function.

In the NUFFT, we compute an mN -point FFT. m = 2 is the best comprise. Using

two scaling factors instead of one may give a better approximation. Optimization of the

NUFFT approximation requires the solution of an overdetermined problem. For given set

of K frequencies, we have NK equations, but we only have JK + N variables. With two
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scaling factors, we may have an additional N variables. More degrees of freedoms could

produce a more accurate results.
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Appendix A

Derivation of NRMSE of NUFFT with Linear Interpolation

With linear interpolation, gl(x) on the interval [xk, xk+1] is represented by:

gl(x) =
gl(xk+1) − gl(xk)

h
(x − xk) + gl(xk) (A.1)

where h = xk+1 − xk.

The total error on the interval [xk, xk+1] is:

R(n, k) =

∫ xk+1

xk

∣
∣
∣
∣
∣
∣

eı 2πn

N
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n
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h
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]
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dx
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(A.2)

Let

Ank = eı 2πn

N
xk

Bnk = −s−1
n

⌈(J−1)/2⌉
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l=−⌊(J−1)/2⌋
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then,

R(n, k) =

∫ h

0

∣
∣
∣Anke

ı 2πn

N
x + Bnkx + Cnk

∣
∣
∣

2
dx

= h + I1(n, k) + I2(n, k) + I3(n, k) (A.3)

where

I1(n, k) = 2Re

{

AnkB
∗
nk

∫ h
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xdx

}

I2(n, k) = 2Re
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N
xdx
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I3(n, k) =
1

3
‖B‖2h3 + Re {BnkC

∗
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For α 6= 0,
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eαh − 1
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