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Whispering is a natural, unphonated, secondary, aspect of speech communications for most people. However
it is the primary mechanism of communications for some speakers who have impaired voice production
mechanisms, such as partial laryngectomees. Similarly for those prescribed voice rest, which often follows
surgery or damage to the larynx. Unlike most people, who choose when to whisper and when not to, these
speakers may have little choice but to rely upon whispers for much of their daily vocal interaction.

Even though most speakers will whisper at times, and some speakers can only whisper, the majority of
today’s computational speech technology systems assume or require phonated speech. This paper considers
conversion of whispers into natural-sounding phonated speech as a non-invasive prosthetic aid for people
with voice impairments who can only whisper. As a by-product, the technique is also useful for unimpaired
speakers who choose to whisper.

Speech reconstruction systems can be classified into those requiring training and those which do not.
Among the latter, a recent parametric reconstruction framework is explored, then enhanced through a re-
fined estimation of plausible pitch from weighted formant differences. The improved reconstruction frame-
work, with proposed formant-derived artificial pitch modulation, is validated through subjective and objec-
tive comparison tests alongside state-of-the-art alternatives.

Categories and Subject Descriptors: H.5.2 [INFORMATION INTERFACES AND PRESENTATION]:
User Interfaces

General Terms: Algorithms, Design, Performance
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1. INTRODUCTION

Whispers play a significant role in everyday speech [Tartter 1989; McLoughlin 2009]
yet are less common in current telecommunications or ASR research scenarios, includ-
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39:2 I. V. McLoughlin et al.

ing in the published performance evaluations of such systems. For unimpaired speak-
ers, whispers are used when communicating sensitive or private information, or when
speaking in locations such as libraries, during lectures and meetings, in which normal
speech may be deprecated. For those exhibiting speech impairments, dysphonia (voice
disorders), dysarthria (motor speech disorders) or physical damage to the vocal tract
(VT), whispers or a whispery voice may well be the most natural spoken output that
they can generate [Sharifzadeh et al. 2009b; Hajime 1986; Netsell and Daniel 1979]. It
will thus be their primary communications mechanism, as it is for the more numerous
cases of people who are prescribed a regime of voice rest [Behrman and Sulica 2003],
which is common for those who have larynx damage.

Current ASR systems, speech communications devices, voice authentication devices
and speech input technologies tend to be either incapable of handling whispers, or
capable of only degraded operation with whispers [Beigi 2012], despite whispers being
a natural and integral part of face-to-face communications between humans.

Apart from the medical requirements for speech systems which support whispers,
it would not be unreasonable to expect that future spoken interaction with computers
and speech communications systems should support whispers. Consider the case of
wearable or ‘ubiquitous’ computing in which the main human-to-computer interface
is vocal. If a user wishes to convey sensitive information without being overheard,
some form of subvocalised or whispered speech input would be required. The same is
true of a number of nascent speech input devices and technologies. If computational
speech systems such as ASR or communications devices are to handle whispers, two
alternative approaches are possible in general. The first is to develop a recognition
engine or codec that operates directly with whisper input. The second is to convert
whispers into a more speech-like form using a pre-processor, and then handling it as if
it were speech. This latter approach is termed ‘reconstruction’.

Reconstruction may be preferred for communications systems such as mobile phones
because there is generally no benefit to the other party in a call to hear whispers. This
is true of pathological voice cases who can only whisper, as well as for unimpaired
speakers who choose to whisper (since this would be due to conditions pertaining to
the location of that user – perhaps in a meeting – but unlikely to also be true of the
other party). Instead it would be preferable for the other party to hear fully phonated
speech. Reconstruction is also a more generic approach: once whispers can reliably be
reconstructed into speech, it is possible that speech-only devices and systems could
then work with whispers without requiring modification. Reconstruction approaches
are clearly also preferred for medically-related whispers.

Voice loss or impairment can result from various surgical procedures or medical
conditions. Partial laryngectomy – surgical removal of part of the larynx – often results
in a disabled glottis, but allows people to breathe, and whisper, without impairment
[Sharifzadeh 2011]. Voice rest regimes, in which people are required to whisper instead
of speak, are often mandated after damage to, or disease of, the vocal cords. Both voice
rest and voice loss are common causes of medically-related whispers.

This paper is concerned with the reconstruction of speech from whispers. Several
methods of converting whispers into speech do exist, and these will be discussed fur-
ther in Section 2. Similarly, alternative methods of treating medically-related whis-
pers, such as speech prostheses, already exist, and will be considered in Section 3.

A new method was recently proposed to convert whispers into speech, based on sine
wave formant regeneration and artificial pitch modulation [McLoughlin et al. 2013].
The method relies upon a harmonic relationship between formant frequencies and
pitch period to derive an artificial, but plausible, pitch excitation which is used to
modulate sine wave formants. It does not require any a priori or speaker-dependent
information, is of low computational complexity and suits real-time operation. This
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Reconstruction of phonated speech from whispers... 39:3

paper proposes an improvement to the method of estimating pitch excitation frequency
within the reconstruction technique. The original and improved algorithms are then
evaluated here in a number of ways against alternatives1.

The remainder of this paper is structured as follows: Section 2 will overview the
state of the art in whisper-to-speech reconstruction, Section 3 will separately exam-
ine the issue of reconstruction of medically-related whispers and whisper-like speech,
while Section 4 considers the source-filter analysis of whispers. In Section 5, the rele-
vant characteristics and attributes of whispered speech will be examined before Sec-
tion 6 introduces the processing framework and methodology of the sine wave speech
based system, before describing the proposed improvements. Section 7 evaluates per-
formance under a number of experimental conditions, discussed and examined further
in Section 8, before Section 9 concludes the paper.

2. EXISTING SPEECH RECONSTRUCTION METHODS

The most cited whisper-to-speech conversion approach is the pioneering mixed excita-
tion linear prediction (MELP) based system of Morris et al. [Morris and Clements
2002] which is still popular a decade after its invention [Huang et al. 2012]. The
method requires parallel same-speaker training (i.e., both normal and whispered
recordings) for a jump Markov linear system which then estimates pitch and voic-
ing parameters. The technique reportedly works well, however its main weaknesses
are that it cannot be used for speakers whose original voice has already been lost, and
that the technique is not well suited for real-time operation [Sharifzadeh et al. 2009a].
In order to overcome these limitations, a code-excited linear predictor (CELP) based
alternative was subsequently proposed [Sharifzadeh et al. 2010a]. This derives pitch
excitation from a selection of fixed pitch models instead of training individual models
for each speaker. Being similar to a CELP decoder (i.e., CELP without the codebook
search loop), it was potentially suitable for real-time operation in terms of complexity.
Both the MELP and CELP methods were shown to work well for phonemes, diphones
and single-words, but neither claimed to work or were fully evaluated for continuous
whisper-to-speech reconstruction.

Statistical voice conversion (SVC) approaches for reconstruction have emerged more
recently. Most notable are the systems developed by Toda et al. [Toda and Shikano
2005; Toda et al. 2012] which make use of Gaussian-mixture models (GMM) to inde-
pendently model pitch contours and spectral parameters from parallel whisper/speech
training data. In fact, Toda et al. began by converting non-audible murmur (NAM)
signals into realistic sounding speech, and then extended the system to convert whis-
pers. These methods are capable of transforming whisper acoustic features into those
more resembling natural speech after being suitably trained with parallel utterance
data (i.e., speech and whisper recordings of the same speech by the same speaker). In
general, three GMMs are used: one converts source spectral features into target spec-
tral features, another converts the same source spectral features into a pitch (or f0)
feature. The final GMM generates target aperiodic components, which are useful for
preserving naturalness. Highly overlapped whisper input frames are analysed, with
speech parameters being generated from the GMM.

Although the quality of reconstructed speech is high, these methods suffer from over-
smoothing which tends to remove or muffle detailed characteristics in the resulting
spectra. At times, there may also be an unnatural prosody due to the difficulty of esti-

1MATLAB/Octave source code for the reconstruction system is available online, along with reconstructed
speech samples, at http://www.lintech.org/Reconstruction. This is to enable other authors to benchmark
future approaches against the techniques proposed here as well as evaluation the reconstructed quality for
themselves.
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Fig. 1. Block diagram of sine wave speech based reconstruction mechanism.

mating f0 from whisper spectral features [Li et al. 2014]. However, among all current
methods, SVC systems probably yield the highest quality of reconstructed speech from
whisper input. Unfortunately they suffer from two major disadvantages. The first is
that, similar to the MELP method of Morris et al., significant amounts of clean speech
and corresponding whisper utterances are required a priori to train the system, and
then the resulting trained models are specific to one speaker only. The second disad-
vantage is that the entire process of reconstruction involves quite significant compu-
tational overheads given that multiple GMMs (or restricted Boltzmann machines [Li
et al. 2014]) are required, synthesis requires additional software packages, and the
entire process requires highly overlapped analysis frames (typically 20 ms in size, ad-
vancing at 5 ms each iteration).

Considering methods that do not require user-specific a priori information, a new
approach was introduced recently by the authors which involves very low computa-
tional complexity [McLoughlin et al. 2013]. The method, shown diagrammatically in
Fig. 1, defines a harmonic relationship between pitch and formants to synthesise a
pseudo-f0. This pitch contour may sometimes bear little relationship to how a ‘true’ f0
contour would look but is harmonically related to F1 and appears as a plausible pitch
excitation to the ear/brain of a listener. The derived pitch contour is used to directly
modulate sine wave speech, i.e. pure sine waves synthesised with formant frequencies
and powers (which aim to represent voiced phonemes), mixed with the scaled original
whisper input. Importantly, there is no voiced/unvoiced (V/UV) or formant switching
employed in the system, since determining V/UV status from whispers2 proves to be a
difficult and error-prone task. For example Tran et al. report 11% V/UV error rate on
clean whisper input [Tran et al. 2010], while two of the current authors achieve below
9% using machine learning techniques [Li et al. 2014]. General experience is that even
minor noise corruption will further impact this decision in a significant way.

The method described above improves reconstruction quality, but not necessarily in-
telligibility, over original whispers. It does not require training, and does not require
the availably of parallel speech/whisper input data. When evaluated using spoken
TIMIT sentences that have been whisperised (see Appendix), the method was shown
to transform the input into a more speech-like signal which also yields improved ob-
jective speech quality scores [McLoughlin et al. 2013]. To date, the sine wave speech-

2Since all true whispers are evidently UV, when this paper refers to V in relation to whispers, it is shorthand
for identifying the whisper input that would have been V if it were spoken normally.
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based reconstruction system has not been evaluated on real whispers in the research
literature, and also has not been directly evaluated against alternative approaches.

This paper describes an improved method of deriving the pitch contour for a
sinewave-speech based reconstruction system built on the framework mentioned
above. The new approach makes use of higher formant information (when present),
specifically the inter-formant harmonic relationship, rather than constraining f0 to be
a fixed integer sub-multiple of F1 as in the original system [McLoughlin et al. 2013].
Both the original f0-modulated sine wave speech method, as well as the refined pitch
contour method, will be evaluated against real whispers, electrolarynx speech and the
CELP-based method of Sharifzadeh et al. [Sharifzadeh et al. 2010a], using a number
of performance measures for a corpus of recordings by multiple speakers in Section 7.

3. MEDICAL WHISPERS

In the case of post-laryngectomised speech, significant research has been undertaken
on speech reconstruction [Sharifzadeh et al. 2010c]. However there are several ap-
proaches aiming to return the ability to speak to this population apart from whisper-
to-speech conversion [Sharifzadeh et al. 2009a]. The most common prosthetic device
for laryngectomees is the electrolarynx (EL): a handheld electric shaver-sized vibrating
device held against the side or base of the neck (or fed into the mouth cavity through
a tube) to introduce a pitch-like excitation into the VT in place of glottal excitation.
The EL can yield quite intelligible speech, and is useful for those having undergone
either full or partial laryngectomy, however it suffers from a ‘robotised’ sound. Other
disadvantages are that in the standard configuration it is not a hands-free device, is
not suitable for use with a mobile phone and is relatively large and bulky. The con-
stant pitch excitation can become annoying, although some modern devices have the
capability to adjust pitch manually.

A common surgical alternative is the tracheo-oesopeagal puncture (TEP) which in-
volves a small valve being inserted between the trachea and oesophagus, allowing air
from the lungs to bypass a surgically removed glottal area (i.e., a full laryngectomy).
Exhaled air enters the back of the throat via the oesophagus, within which glottal-like
vibrations are induced to act as a pitch source. Similarly, the non-surgical technique
of oesophageal speech, although difficult to master, relies upon air from a partially
resonating oesophagus acting as a pitch source.

Each of these mechanisms operate by physically introducing a pitch excitation into
the VT. Given that the pitch glottal component, and the vocal tract component of the
normal speech are often represented as a combined linear time invariant (LTI) sys-
tem, in which the various components are assumed to be mutually independent in a
source-filter model [McLoughlin 2009] (discussed further in Section 4), the system is
commutative in nature. Thus the sequence of pitch excitation, VT filtering and gain
is unimportant in the production of speech. In fact the principle can be extended fur-
ther – if it were assumed for a moment that whispers (see Section 5) are equivalent
to pitch-less speech, then whispers would be transformable into speech solely by the
application of a pitch synthesis filter.

Voice rest is a whisper regime, often prescribed following larynx-related surgery,
disease or damage to the vocal tract [Behrman and Sulica 2003]. The aim is to prevent
further damage and promote rapid healing. Due to the temporary duration of the voice
rest regime, prosthetic use is uncommon for these users.

4. LINEAR TIME INVARIANCE

Unfortunately, whispers are not exactly pitch-less speech [Tartter 1989; Sharifzadeh
et al. 2012]. However the basic approach of computationally introducing pitch to whis-
pers to create speech, has been attempted by several authors (for example, see [Passos
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2011]). Decomposing whispers into primary orthogonal components of VT response,
gain and pitch, and then reconstructing speech with replaced (or enhanced) pitch in-
formation, is probably the predominant approach to computational whisper-to-speech
conversion. This includes both the MELP and CELP approaches discussed earlier
[Morris and Clements 2002; Sharifzadeh et al. 2010a]. The idea being that whispers
are similar to pitch-less speech, and can be decomposed by a source-filter model in a
similar way to fully phonated speech.

In fact, it has been known for many years that pitch excitation is not independent
of VT response in whispers, unvoiced or fricative sounds, although it generally is for
fully phonated speech [Rothenberg 1983]. In whispers, where any VT excitation con-
sists of a turbulent aperiodic airflow generated by lung exhalation through an open
(or missing) glottis, the glottal or pitch filter is not completely independent of the ex-
citation source [Sharifzadeh 2011]. Despite this, the VT shape can still be represented
as an LTI system as long as any nonlinearity is subsumed as part of the excitation
source [Sharifzadeh 2011]. The same assumption is required for source filter models to
represent normal speech (i.e. including fricative and unvoiced phonemes). Given that
speech and whispers are already conveyed in this way without obvious difficulty in cur-
rent communication systems, it is reasonable and pragmatic to extend the assumption
to whispers per. se. This assumption is implicit in the work of [Morris and Clements
2002], [Sharifzadeh et al. 2010a], and [Toda et al. 2012], as well as in the author’s pre-
vious method [McLoughlin et al. 2013]. It will also be assumed for the modified method
introduced in this paper.

5. WHISPERS AS SPEECH

5.1. Whisper Characteristics

Normal speech results from air being expelled by the lungs, flowing past a taut glottis
which resonates to generate a pitch oscillation. The fundamental frequency and tim-
bre (quality) of the pitch are related to the geometry and tautness of the glottis. Its
tautness is naturally and unconsciously adjusted during speech as part of the com-
plex speech generation mechanism. The isolated pitch excitation, similar to an audi-
ble buzzing sound, fills the vocal tract (VT) and nasal cavity where it excites reso-
nances and emerges primarily through the mouth, modulated into speech phonemes
[McLoughlin 2009]. Resonances of the pitch fundamental, and their harmonics, are
controlled, also largely unconsciously, by the action of vocal tract modulators. These
include the velum, tongue, and lips which are adjusted to change the resonances. The
resonances, in turn, yield the formants of phonated speech. Unphonated speech, by
contrast, lacks a distinct glottal source of pitch, instead being driven by a broadband
excitation of turbulent exhaled air from the lungs [Thomas 1969].

Whispering does not involve phonation, although there are some variants of ‘whis-
pers’ which are semi-phonated. One of these is “stage whispers”, which is a deliberate
attempt to produce voiced and intelligible speech, which shares some of the audible
characteristics of whispers.

Impaired speech, and post-surgery cases in particular, tend to be atypical in nature.
In fact, it is probable that both classes of impaired and unimpaired speakers include
instances which lie anywhere between the extremes of fully phonated and fully un-
phonated speech. However “true whispers” are completely unphonated and are typi-
cal, shared between voice rest cases, opportunistic whispering by unimpaired speakers,
and certain classes of impaired speakers.

Post-partial-laryngectomees, speaking without prosthesis, are often said to produce
a ‘whispery voice’. Since this is unphonated, it lies within the class of true whispers. In
such speakers, the other elements of the speech production mechanism, apart from the

ACM Transactions on Accessible Computing, Vol. 9, No. 4, Article 39, Publication date: February 2014.



Reconstruction of phonated speech from whispers... 39:7

glottis, remain functional and potentially unchanged. Conceptually, their voice is thus
a whisper – however these whispers may be atypical in other ways. The exact degree of
similarity between pre- and post-laryngectomised whispers obviously depends to some
extent upon the nature of their surgery and will vary from case to case. In the best
case, highly typical whispers are produced, whereas in the worst case, the whispers
are strongly atypical.

In this paper we confine analysis and processing to true whispers, where no signifi-
cant vocal cord vibration occurs and vocal cords remain open. Reconstruction is there-
fore necessary for all voiced phonemes. This paper thus applies to voice rest cases,
for the reconstruction of whispers from unimpaired speakers, and to voice impaired
speakers who can only produce a whisper-like voice.

In general, whispers are produced when vocal cords are open (or have been removed),
which leads to the presence of some characteristic spectral features. One is that spec-
tral peaks3 for normally voiced phonemes have lower energy than their spoken coun-
terparts. These lower energy spectral peaks more closely resemble Gaussian noise in
shape, both aspects of which lead to the reduced intelligibility of whispers. Whisper
formants are also frequency-shifted compared to voiced ones. In fact such shifts are
relatively predictable, and have been investigated in the literature [Swerdlin et al.
2010; Sharifzadeh et al. 2012]. During speech reconstruction, both the energy and
shift of spectral peaks must be accounted for.

5.2. Processing of Whispers

A significant disadvantage shared by all whisper-input systems is that whispers tend
to have much lower acoustic power compared to speech [McLoughlin 2009]. Their spec-
trum is also relatively flat and noise-like. These facts combine to make whispers highly
susceptible to interference from acoustic background noise. Consequently, any system
which analyses whispers to obtain either time- or frequency-domain information will
tend to be less accurate than an equivalent speech-input system. Whisper systems
should preferably therefore be designed with more robustness to error than an equiv-
alent speech-input system.

In the MELP/CELP based methods [Morris and Clements 2002; Sharifzadeh et al.
2010a], robustness is typically required for voicing onset or mode detection (which
includes voice activity detection (VAD), V/UV switching or phoneme class detection)
as well as for formant frequency determination. The probability mass function (PMF)
has been shown to perform well for formant detection. However the observation is
that analysis of whispers is inherently prone to error [Sharifzadeh et al. 2010b]. In the
case of hard V/UV switching, the consequences of an incorrect detection may lead to
significant quality degradation in the reconstructed speech, hence the motivation to
avoid hard switching if possible.

6. PROPOSED SYSTEM

The proposed system aims to perform no hard-decision mode switching based on whis-
per input, and instead provides for continuous time-domain reconstruction. Since the
spectral information in whispers – excluding pitch – can closely resemble that of
speech, the proposed system makes use of as much information derived directly from
the whispers as possible, aiming to confine the reconstruction to simple and continuous
formant frequency modification and pitch insertion.

In particular, the aim of the proposed method is to perform reconstruction without
requiring any user-specific a-priori information or training, so that it is suitable for in-

3Spectral peaks in whispers are termed ‘formants’ here, although they may differ in several respects from
their voiced counterparts.
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Fig. 2. Block diagram of enhanced reconstruction system.

stantaneous use by multiple users even when recordings of their original voice are not
available. Given this restriction, the only information available for pitch reconstruc-
tion is either a common pitch excitation for all users and speech (which is essentially
what the EL does), or to make use of the spectral information in the whispers, which
is primarily formant frequencies, bandwidths and energy. The method thus takes the
latter approach.

6.1. Formant information

An L-order representation of a pseudo-static VT configuration, with current LPC pa-
rameter set aL, is commonly described as:

F (z) =

L
∑

k=1

akz
−k (1)

and this would typically be derived frame-by-frame on a sequence of overlapping
Hamming-windowed segments of continuous speech [McLoughlin 2009]. Numerically
determining roots from the aL vector for each analysis frame is trivial, and during
strong voicing, roots would tend to correspond to formant frequencies. However for
whispers, the frequency location of the roots exhibits much greater positional uncer-
tainty, and of course lower energy than for speech. This is why estimates of formant
locations from LPC roots obtained from whispers are known to be inaccurate [Shar-
ifzadeh et al. 2010b]. Averaging over several frames (or more advanced techniques
such as the probability mass function) needs to be performed to obtain higher quality
formant information. In the proposed system, candidate formants are determined for
overlapped analysis frames and time-domain Blackman filtering is used to ‘smooth’ the
frame-to-frame transitions and variations caused by the inevitable peak frequency in-
accuracies. Formant energy variations are largely captured by ensuring that the mean
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frame-by-frame energy of the pitchless regenerated formants matches the smoothed
frame energy of the whisper input.

6.2. Refinement of formant frequencies

Smoothed resonant frequencies and magnitudes F and M are assigned to formants
confined to relatively wide predefined ranges bounded by λFXlow to λFXhigh such that
FX ∈ [λFXlow, λFXhigh] (for formants X = 1, 2, 3 . . . Ns).

After the formant assignment process, Ns formant positions and magnitudes will
have been obtained. Not every analysis frame from recorded whispers will contain
meaningful formants especially non-speech periods between words, therefore a judge-
ment must be made as to whether a particular formant candidate is genuine. In fact,
a robust judgement can be made by comparing the instantaneous average to the long-
term average magnitude M̄X for each formant candidate X = 1, 2..Ns:

F ′

X(n) =

{

FX(n) when MX(n) ≥ ηXM̄X

0 when MX(n) < ηXM̄X
(2)

This mechanism allows formants with significantly lower power to be removed, and
in practice ηX = 2(X−5) works reasonably well by quadratically decreasing the ability
of formants to survive based upon their frequency band. This accounts for the much
reduced energy of higher formants (and hence their lower SNR when corrupted by flat
noise). An absent formant is represented by a zero value.

Formant frequency locations are also refined by translating the extracted formant
arrays in frequency to match the frequency shift that occurs between whisper reso-
nances and the resonances for equivalent spoken phonemes. Thus F ′′

X(n) = F ′

X(n)−ǫ(n)
where ǫ is derived from the mean vowel formant shift found experimentally in [Shar-
ifzadeh et al. 2012] to be approximately {200,150,0,0}Hz for the first four formants.
Although in reality the precise shift does vary with the gender and identity of the
speaker, as well as with the phoneme being spoken, in a parametric reconstruction
system having no a-priori information a fixed shift becomes necessary. Thus the prag-
matic approximation as described.

In fact, the shift in formant positions may result from the fact that LPC analysis
yields the average formant resonance between two cases of open and closed glottis
(i.e., normally LPC analysis is performed for voiced speech in which the glottis opens
and closes rapidly [McLoughlin 2009]). For whispers, the glottis is always open, and
thus the influence of closed-glottis resonances (which means an overall shorter VT)
are removed from the analysis, especially for the lower formants whose resonances
make use of greater VT length. This relationship between open/closed glottis and LPC
analysis has been briefly investigated previously [Sharifzadeh et al. 2010a].

6.3. Reconstruction methodology

The reconstruction framework, shown in Fig. 2 is based upon the original proposal
which used synthesised sinewave speech and artificial pitch modulation fixed to an
integer factor of the smoothed F1 track [McLoughlin et al. 2013]. In fact, reconstruc-
tion exploits the LTI nature of the VT, beginning by synthesising standalone formants
before then modulating this signal with an artificial glottal response. This is an un-
usual approach, since it reverses the usual sequence of the human speech production
mechanism, which starts with a pitch excitation that is subsequently shaped by the
VT. In fact, most prosthetic reconstruction methods including EL and TEP, as well as
the CELP and MELP-based techniques operate in the forward direction.
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39:10 I. V. McLoughlin et al.

As mentioned, reconstruction begins with sinewave speech, S′, constructed from the
refined formant locations and magnitudes F ′′

X and MX derived previously:

S′ =

{

Ns
∑

X=1

MXcos(F ′′

X) + γUW

}

.P (3)

P represents a glottal pitch modulation, defined below, with γU being a scalar multi-
plier that allows the inclusion of wide band excitation present in the original whispers,
W to be carried forward to the reconstructed speech. Some sibilant sounds, without
well defined formants, would not be evident in the reconstructed output without this.
It is important to note that γU is constant – there is no switching or V/UV mode change
which would be susceptible to erroneous switching at times. Glottal modulation, P is
synthesised from a cosine waveform:

P = max {M1β, 1} .max {ζ− | cos(f0) |, 0 }
2 (4)

β relates the depth of pitch modulation frequency f0 to formant energy, in such a way
that less obvious formant presence, i.e. reduced voicing, results in reduced modulation
depth.

6.4. Pitch frequency

Although clean whispers are rich in spectral information, pitch is essentially lacking
and must be artificially synthesised during the reconstruction process. GMM-based
systems such as those of Toda et al. [Toda et al. 2012], train a pitch model using paral-
lel data – original speech and corresponding whispers. In operation, this estimates the
correct pitch by examining spectral information, and is obviously user-specific. Sys-
tems that do not require a priori information either excite with constant pitch (EL), or
with a predefined pitch contour (CELP-based system).

The original sinewave speech resynthesis system [McLoughlin et al. 2013] took a
different approach. It was to derive a plausible f0 rather than attempt to derive an
accurate f0, based upon an observation that, in voiced speech, changes in F1 and f0
trajectory tend to occur together (e.g., at phoneme transitions). Hence f0 was syn-
thesised at an integer sub-multiple of smoothed F1 derived as discussed above. The
approach was evaluated in [McLoughlin et al. 2013] in terms of reconstruction of ar-
tificial whispers, and will be further evaluated in Section 7 for reconstruction of real
whispers.

Although the integer relationship between f0 and smoothed F1 will be shown to
yield reconstructed speech that is more speech-like than the original whispers, a fur-
ther refinement is proposed in this paper. It must also be reiterated that the derived
f0 does not aim to be identical to that which would be present in speech, but instead
to have a plausibly natural frequency variation. There is no evidence that a fixed rela-
tionship exists between f0 and F1 (or indeed between f0 and other formants) in normal
speech. However, interestingly, it has been observed for singing voices [Sundberg 1975;
Joliveau et al. 2004].

The refinement in this work is that f0 is derived from the smoothed frame-by-frame
formant differences, defined for the first three formants, as follows:

f0 = ξ | F3 − F2 | +α | F2 − F1 | (5)

where α and ξ are constants which are empirically determined to yield a mean pitch
frequency within a suitable range (a value of 20 for both will be used later in Section
7). The motivation for this approach is to derive a plausibly varying pitch frequency.
In fact, the resulting pitch contour changes slowly when formants are smooth, but
exhibits much more rapid changes at phoneme boundaries. This means that the pitch
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varies in a way that is related in some way to the underlying speech content (unlike the
EL which has fixed pitch). Remember that the competing untrained techniques that
have been published use either a completely flat pitch frequency (EL), or a fixed linear
or curvilinear pitch [Sharifzadeh et al. 2010a], neither of which follow the underlying
speech signal in any way. The situation in real speech is, of course, different since
formants are not simple harmonics of the pitch frequency and pitch is not a pure tone.
However both pitch and formants do vary in time with speech content – and it is this
variation which we are attempting to replicate.

An additional refinement of the present technique is that pitch frequencies exceed-
ing 220 Hz or below 50 Hz are divided or multiplied respectively by the smallest power
of two that ensures they are within the specified range, before being used to modu-
late the sinewave speech (i.e. a value 244 Hz would be halved, and 22 Hz would be
multiplied by four before being used). This avoids the pitch doubling problem which
commonly exists when a low pitch harmonic is inadvertently interpreted as the pitch
fundamental [McLoughlin 2009].

During reconstruction, formants begin as a summation of pure cosines with frequen-
cies specified by the extracted formant frequencies (up to Ns formants per frame). The
cosines have amplitude determined by the detected formant energy levels. These are
augmented by the addition of the scaled whisper signal to impart high frequency wide-
band resonances that are difficult to model with cosines. It is important to note that
no decision process is made between V/UV frames: γU does not vary because hard de-
cisions derived from whispers do not tend to work well in practice – they are often
incorrect due to the presence of corrupting acoustic noise. The resultant combined sig-
nal is modulated by a clipped, raised cosine glottal ‘excitation’ which is harmonically
related to F1, and with depth of modulation reduced during low energy frames. The
degree of clipping, ζ, affects overall pitch energy. This artificial glottal modulation is
shaped similarly to the excitation in legacy vocoders [Gold 1963], however it does not
use a glottal flow model since this would only be appropriate as the excitation source
(i.e., input to the VT) not as a modulation acting upon the output of the VT.

7. EVALUATION

Whispers and four reconstruction techniques that do not rely upon a priori information
are evaluated using common criteria. The four reconstruction techniques are the EL,
the CELP-based system (‘Sharifzadeh’), the original SWS-based system (‘SWSrecon’)
and the enhanced pitch contour method proposed in this paper (‘New SWS’).

7.1. Previous evaluations

The original SWS-based system [McLoughlin et al. 2013] was previously evaluated in
terms of its reconstruction ability, measured as the degree of similarity between origi-
nal speech, reconstructed speech and artificial whispers used as input (i.e., speech ar-
tificially converted to whispers, see Appendix). Random TIMIT sentences were spoken
by eight male and eight female speakers, and converted to artificial whispers before
being processed by the SWS-based system to yield reconstructed speech. The recon-
structed speech was found to be more similar to the original speech than were the
artificial whispers that formed the input to the system. The results, shown in Table
I, clearly indicate that for each of the evaluation methods reported, the reconstructed
speech S′ resembles the original speech better than the artificial whisper input W
does. In addition, P.563 scored the reconstructed speech at a MOS of 3.39, which lies
between whispers (2.86) and original speech (3.62). Thus the ‘SWSrecon’ system de-
scribed in [McLoughlin et al. 2013] could successfully convert artificial whisper input
into reconstructed speech that more closely resembled real (voiced) speech.

ACM Transactions on Accessible Computing, Vol. 9, No. 4, Article 39, Publication date: February 2014.



39:12 I. V. McLoughlin et al.

Table I. Mean evaluation scores for the original ‘SWSrecon’
system between speech S, whispers W and reconstructed
speech S′.

Test LLR SSNR IS MOS-P.862-LQO

S → S′ 0.79 25.6 10.4 0.68 0.65
S → W 0.83 26.9 12.7 1.23 0.56
W → S′ 0.70 23.7 3.1 0.96 0.59

The CELP-based system [Sharifzadeh et al. 2010a] was also evaluated previously
[Sharifzadeh 2011] using both subjective and objective criteria to determine qualita-
tive results. Results were generally good, showing improvements over whispers. How-
ever quantitative testing was only performed for 12 isolated vowels and dipthongs. To
date, the CELP-based method has not been evaluated in terms of performance over
continuous sentences or even full words.

7.2. Assessing performance

In general, a whisper-to-speech reconstruction system aims to convert whisper input
into something that is either (i) as close to the equivalent speech as possible, (ii) as
normal-sounding or (iii) as intelligible as possible. The former is convenient to measure
using objective criteria, whereas the latter two naturally imply the use of subjective
criteria.

In objective evaluation, a reference signal with which to compare the regenerated
speech is normally required. Although single-ended evaluation algorithms exist which
require no reference [Malfait et al. 2006; Narwaria et al. 2012], these methods are
designed for assessing degraded natural speech, and are not mandated for use with
reconstructed speech, abnormal speech or highly degraded speech signals.

Clearly, objective evaluation between a reference and a test signal provides the most
accurate measurements. If the test signal is reconstructed speech, then the reference
should naturally be real speech. In practice this arrangement would require recording
of parallel data from each test subject: the same material whispered and then spoken.
However speakers tend to stress words differently when whispering, and will also ex-
tend the duration of many whispered syllables, leading to a slower syllabic rate for
whispers than for speech. One consequence is that time alignment between parallel
recordings of whispered and spoken material is imprecise, ruling out time-domain dis-
tance measures like segmental signal-to-noise ratio (SSNR).

In the present paper, mainly frequency-domain measures are applied on a test
database of individual words, between whispers, speech reconstructed from those whis-
pers, and real speech. Scores from two short-time-windowed measures are also derived,
using manual time-alignment at word boundaries. However since the alignment is im-
precise and subjective, those evaluation scores should be considered less trustworthy
than frequency-domain objective methods.

Finally, the sentence-level testing as used in [McLoughlin et al. 2013] is repeated to
demonstrate that the new SWS-based method proposed in this paper is able to out-
perform the original technique. A simple subjective evaluation is also made.

7.3. Testing database

The test database was obtained from seven volunteers (four female, three male), aged
between 22 and 36, and who have no known speaking impairments. 16-bit 48 kHz
recordings were made in an anechoic chamber with a Zoom H4n recorder (Zoom Corp.,
Tokyo, Japan), using the built-in microphones. Each speaker recited a sequence of
12 framing words that each contain a different vowel, namely HaD, HaweD, HeaD,
HearD, HeeD, HeyD, HiDe, HoD, HoeD, HooD, HoweD, HoyD. Separate spoken, whis-
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Fig. 3. Speech (S), Whispers (W) and electrolarynx (EL) recordings are used to assess speech reconstructed
from the VR systems under test (S’) with various performance measures. Previously published systems made
use of whisperised speech (W’) for reconstruction evaluation.

pered and electrolarynx (EL) recitations were made. For the latter, the EL (Servox
Digital, Servona GmbH, Troisdorf, Germany) was placed at the neck and set to 120 Hz
excitation. All volunteers were trained and familiarised with the use of the EL prior
to the recording session. Each session was repeated and recorded three times to allow
a manual selection of the highest quality recordings. By using single framing words,
it is much easier to achieve time alignment between matching features from different
recordings. In practice, this was automated using energy-based start- and end-point
detection.

7.4. Performance measures

In total, six common objective scores were used for assessing performance, namely
Cep, W-Cep, I-S, LLR, MFCC and SSNR (the first four scores are from [Loizou 2013]).
For each performance measure, a single score is obtained for each comparison type as
shown in Fig. 3, for each recording of a single word/sentence, for each speaker.

Given original speech S, real whisper W and reconstructed speech S′, we first use
autoregressive modelling to determine corresponding LPCs for time-aligned segments
of each signal, aS , aW and aS′ respectively, each with order P = 10. In previous works
[McLoughlin et al. 2013] artificial whispers W ′ were generated from S and then trans-
formed to aW ′ , however these are not used in the current evaluations.

7.4.1. Log-likelihood ratio. LLR is computed from RS , the speech autocorrelation matrix
as follows [Hu and Loizou 2008]:

dLLR = log

{

aS′RSa
T
S′

aSRSa
T
S

}

(6)

In this case, there is no hard limit applied to the LLR range, and the final result is the
mean of scores for each analysis window.

7.4.2. Itakura-Saito distance measure. Similarly, the I-S measure is computed from the
same raw input data as follows:

dIS =
σ2
S

σ2
S′

{

aS′RSa
T
S′

aSRSa
T
S

}

+ log

{

σ2
S

σ2
S′

}

− 1 (7)

where σ2
S and σ2

S′ denote order 10 LPC gains from the original and reconstructed
speech, respectively, obtained from 1/F (ejωT ) where ωT = 2πk/Nr for k = 0, 1, . . . (Nr−
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1), for a frequency resolution of Fs/2Nr Hz at sample frequency Fs computed over an
Nr sample segment. The final result is the mean over all analysis windows. The I-S
measure is not symmetrical, i.e. dIS(a, b) 6= dIS(b, a) thus it is necessary to determine
which signal is the reference and which is the degraded signal when obtaining an I-S
score. When comparing actual S with S′, it is clear that the original speech S should be
the reference signal. However, when comparing W against S′ there is no clear justifi-
cation for considering any of these to be a reference signal. Therefore, in such cases we
report average scores found from both directions, i.e. d′IS(a, b) = {dIS(a, b)+dIS(b, a)}/2.

7.4.3. Cep. The LPC cepstral distance [Kitawaki et al. 1988], designed to compute a
spectrally relevant comparison measure, is defined as:

dCEP = 10/log10

√

√

√

√2

P
∑

i=1

{Cx(i)− Cy(i)}
2 (8)

where Cx(m) and Cy(m) are the LPC cepstrum coefficients of the signals being com-
pared, which may be recursively found from their respective LPC coeffients, a [Hu and
Loizou 2008]:

C(m) = am +

m−1
∑

k=1

k

m
{C(k)am−k} for 1 ≤ m ≤ P (9)

In practice, only the lower 128 cepstral coefficients (excluding the DC value) are used
to compute the distance.

7.4.4. W-Cep. Computed as described above for Cep, but applying an upwards ramp
weighting on the cepstral coefficients, C ′(m) = m.C(m), before computing the distance.

7.4.5. MFCC. Given M MFCC coefficients Cal(m) and Cbl(m), log energy Eal and Ebl
for L analysis frames, l, each of size Nm, the MFCC distance measure is defined as:

dMFCC =
1

L

M
∑

m=1

∣

∣

∣

∣

∣

L
∑

l=1

EalCal(m)−

L
∑

l=1

EblCbl(m)

∣

∣

∣

∣

∣

(10)

For the current paper, this is computed over 24 MFCC coefficients with a 64ms analysis
window.

7.4.6. SSNR. Segmental signal-to-noise ratio is simply computed from the mean
squared sample-by-sample difference between signals Sx and Sy over an analysis win-
dow of size L:

dSSNR = 10log10

{

L
∑

l=1

(Sxl − Syl)
2

}

(11)

In practice, this is computed frame-by-frame over the entire length of the files being
compared, then averaged to yield the final score.

7.4.7. Performance measure configuration. Each of the above distance measures are ap-
plied between original speech S and each of W , S′ and EL, as shown in Fig. 3.

All recordings were 16-bit, and resampled to Fs = 8kHz (using MATLAB polyphase
resampling filter with default Kaiser windowing) prior to evaluation. Unless otherwise
specified, the LPC order was 10, 24 MFCC coefficients were computed and frame size
Nr = 512 samples. Unlike in [Hu and Loizou 2008], no outlier results were removed
during the performance analysis.
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Table II. Several mean objective measures between original speech and that recon-
structed using various methods. The best score is shown in bold in each case.

Measure EL Sharifzadeh Whisper SWSrecon New SWS

Cep. 0.377 0.470 0.414 0.359 0.334

W-Cep. 24.435 27.67 31.90 23.91 20.34

MFCC 71.03 67.37 62.96 58.36 56.59

I-S 14.39 66.98 109.60 2.34 2.11

LLR 1.25 1.47 1.68 1.16 1.06

7.5. Reconstruction system configuration

The previous SWS-based VR system ‘SWSrecon’ was set up as described in [McLough-
lin et al. 2013] to track and reconstruct up to Ns = 4 formant candidates per analysis
window. Regenerated f0 was simply fixed to 0.1F1. The 128 sample analysis windows
were highly overlapped by 87.5%, formant extraction LPC analysis order was 8, and
sample rate set to 8kHz.

The modified system, ‘New SWS’ proposed in this paper used the same sample rate,
window size, overlap, number of formants and analysis order as the previous method.
However in this case, artificial f0 was derived as shown in Eq. 5 with α = ξ = 20 (note
that setting α = ξ effectively means that f0 is independent of F2, but is dependent on
the difference between F1 and F3). For regeneration, γU = 4 in Eq. 3, β = 20 and ζ = 0.4
in Eq. 4. The parameters were not fully optimised: some performance improvement
could therefore be reasonably expected by performing such an optimisation in future.

8. RESULTS

8.1. Comparison with previously published results using whisperised speech

Although this paper aims to investigate the performance of reconstruction from real
whispers, the older published systems were evaluated primarily using artificial whis-
pers (see Appendix). It is therefore important to evaluate the newly proposed system
using the same criteria. Thus, exactly following the evaluation methods of [McLough-
lin et al. 2013], the ‘New SWS’ system was found to slightly outperform the original
‘SWSrecon’ system in terms of I-S (means of 8.30 to 8.96 on TIMIT data) and SSNR
(means of 25.74 to 25.77) but perform fractionally worse in terms of mean LLR (0.79
to 0.75 respectively). Full experimental results are available on the website1.

The outcome of the tests reported in this section are simply to validate the new
method against the previously published system, using the evaluation method of the
previous system. The following section now evaluates performance of both systems
with real whispers, which we consider to be a far more useful test of actual perfor-
mance.

8.2. Extended analysis

Both ‘New SWS’ and ‘SWSrecon’ were evaluated in terms of reconstruction ability from
real whispers, and compared to the EL, original whispers and CELP-based method
(‘Sharifzadeh’) [Sharifzadeh 2011]. Results are shown in Fig. 4, which plots histograms
for the five methods using four objective distance scores for each of 12 word types (as
detailed in Section 7.3, individual words were used instead of sentences due to the
inability of the ‘Sharfzadeh’ system to regenerate complete sentences).

In general, it can be seen very clearly that ‘New SWS’ outperforms the other meth-
ods, significantly so in many cases. Detailed mean performance results are listed in
Table II. The best score for each distance measure is shown in bold text.

Again, ‘New SWS’ outperforms all of the other tested methods. To ensure that the
results are statistically valid, a one-way analysis of variance (ANOVA) was performed,
based on the hypothesis that the reconstruction method means are distinct. Results
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Fig. 4. Cepstral, MFCC, Itakura-Saito and Log-likelihood ratio distance measures between original speech
and 5 potential whisper-based representations for each of 12 words.

Table III. One-way analysis of variance scores.

Measure F value significance

Cep. 13.87 0.0000
W-Cep. 26.72 0.0000
MFCC 51.60 0.0000

I-S 3.48 0.0022
log10(LLR) 2.09 0.0520

shown in Table III indicate that the result population means of Table II are very sig-
nificantly distinct, apart from the LLR score (which may not be completely distinct
between the ‘New SWS’ and ‘SWSrecon’ results).
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Fig. 5. Waveform and spectrogram plots of the same sentence showing (top) spoken, (middle) whispered
and (bottom) reconstructed speech. All are amplitude normalised prior to plotting.

Fig. 6. Normalised pitch contours for four reconstruction methods over a 0.8s slice of the whispered input,
with LTP lag (and hence fundamental) for the corresponding speech input.

8.3. Subjective analysis

Waveforms and spectrograms are plotted for S, W and S′ in Fig. 5 for the sentence
“Should giraffes be kept in small zoos?”. The reconstructed spectrogram shows wider
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Table IV. Overall MOS for each method over 16 individuals (top), and (below) t-test p-values,
with hypothesis rejection at the 0.05 significance level shown in bold.

Sharifzadeh Electrolarynx SWSrecon New SWS

MOS mean 2.11 1.77 2.05 2.19

Sharifzadeh, p-val X 0.025 0.812 0.770
Electrolarynx, p-val 0.025 X 0.224 0.060

SWSrecon, p-val 0.812 0.224 X 0.443
New SWS, p-val 0.770 0.060 0.443 X

and more prominent formant bands (for example, compare the /a/ between 2.1 and 2.4
seconds in the bottom two spectrograms with the corresponding phoneme from the top
spectrogram, located between 1.8 and 2.1 seconds).

The reconstructed speech has a better lower frequency energy distribution, although
it still lacks much of the pitch modulation energy that is present in the original speech.

Recall that the aim of these SWS based VR methods is not necessarily to regenerate
a correct f0 modulation – which may in fact be impossible anyway – but rather to re-
generate a plausible f0. Therefore when viewing both the waveforms and spectrograms
from the reconstructed output, the objective is to consider how speech-like it appears
(compared to the whisper plot). A similar disclaimer is necessary when viewing Fig.
6, which plots the normalised pitch contour used for various methods for a 0.8s slice
of whispers from the data in Fig. 5 (specifically, the section containing “be kept” from
1.0 to 1.8s). The corresponding speech recording was likewise isolated and analysed
using LTP (long term prediction) to obtain fundamental frequency. ‘New SWS’, ‘SWS-
recon’ and the LTP lag from real speech were extracted empirically, whereas the EL
and ‘Sharfzadeh’ pitch is deterministic and theoretical curves were plotted. Although
no conclusion can be drawn from this data concerning correctness, it is noticeable that
more pitch information is conveyed by the ‘NewSWS’ and LTP lag (which represent the
highest quality speech), than by the other methods.

8.4. Subjective listening score

Objective scores have already shown that S′ is more speech-like than W , however nei-
ther objective distance measures, nor a visual examination of waveform or spectrogram
can compensate for the discerning ability of the human ear.

Thus, a mean opinion score (MOS) assessment was made by a group of 16 volun-
teers, aged between 16 and 45, with no known hearing impairments. Each volunteer
was individually asked to rate a randomly selected but balanced set of 6 base words
that were each spoken by 3 female and 3 male speakers. The evaluation was repeated,
in a single sitting, for the EL, ‘Sharifzadeh’, ‘SWSrecon’ and ‘New SWS’ reconstruc-
tion methods. The testing material was extracted from the evaluatation database used
previously for the scores in Fig. 4, and thus used the reconstruction methods and pa-
rameters described above. During the evaluation, listeners were asked to follow a MOS
scale with 5 denoting perfect speech and 1 indicating corrupted speech, with the test
complying with university procedures relating to human testing.

Aggregate results show that 93% of all respondents indicated a MOS of 3.0 or be-
low, while the overall MOS for each condition also did not exceed 3.0. These scores
strongly suggest that the subjective naturalness of all tested reconstruction systems
still requires improvement (since, in general, a MOS of 3 indicates that the speech is
annoying). Final mean scores are listed in Table IV, along with t-test p-values between
each of the different response classes, to show that apart from the EL and ‘Sharifzadeh’
systems, all of the obtained MOS means are significant. In summary, the MOS score
ranking agrees with the objective test results, confirming that the modified SWS sys-
tem proposed in this paper improves upon previous methods.
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Beyond the numerical scores, listeners indicated informally that the EL speech
tended to be robotic and annoying whereas the ‘New SWS’ reconstruction was also
robotic but slightly easier to listen to. Most listeners considered that both methods had
created speech with an obviously artificial sound. Reconstruction software as well as
representative sound samples are available on the website1. Note that the current test
did not include evaluation of speech that contained silence gaps (for example, between
words). The EL pitch excitation does not turn off during silence periods, unlike in the
‘New SWS’ speech. It is thus conceivable that more natural test material containing
periods of silence between words would widen the perceived quality gap between the
approaches.

9. CONCLUSION

This paper has proposed a novel pitch regeneration mechanism aiming to convert whis-
pers to natural-sounding voiced speech. This is used within a framework ‘sinewave
speech’ technique published previously [McLoughlin et al. 2013]: a parametric recon-
structor that does not require training or access to any a priori information. Given
an assumption that whispers are similar to speech but lack pitch excitation, both the
original and new systems aim to regenerate a plausible or realistic f0, rather than
a perfectly correct f0, which may not be achievable anyway. During reconstruction,
the plausible f0 excitation yields more natural sounding speech compared to systems
which use a fixed f0 (e.g., electrolarynx) or a contoured f0 (CELP-based reconstruc-
tion system). The effect of the new pitch reconstruction mechanism proposed in this
paper is evaluated against the original and other published systems using five objec-
tive performance measures for isolated words from multiple speakers as well as using
objective MOS scores obtained from human listener volunteers. Both objective and
subjective evaluations agree that, for the tested isolated words and single sentences
respectively, the new method yields improved quality over other systems: the original
whisper input, electrolarynx speech, the CELP-based ‘Sharifzadeh’ reconstructor and
the previously published ‘sinewave speech’ baseline framework.

Despite improvements in the quality of reconstructed speech in recent years, more
research is still required in this field. Overall, reconstruction quality is still insuffi-
cient, with an average MOS rating of 3. People using these voice reconstruction tech-
niques will have the benefit of a reconstructed voice, but not yet one which has met the
desired target of being natural-sounding. It is hoped that the parametric reconstruc-
tion framework with plausible pitch excitation proposed in this paper will encourage
further research efforts, in particular since the MATLAB reconstruction code is made
freely downloadable4.
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APPENDIX

When comparing speech and corresponding whispers (or speech with reconstructed
speech), it is evident that features and phonemes will not be time-aligned between the
two recordings, and therefore automated degradation evaluations making direct use
of frame-wise comparisons can not be used. This issue is exacerbated by the differing
temporal utterance rates for whispering and speaking. A number of solutions are possi-
ble including dynamic time alignment, use of comparison methods that do not require
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time-aligned features, or making use of single-ended evaluation methods [Narwaria
et al. 2012]. One method used in several papers including [McLoughlin et al. 2013;
Sharifzadeh et al. 2010a; 2009b] is to reconstruct from whisperised speech rather than
whispers. Whisperised speech, derived from normal speech, also known as artificial
whispers, maintains frame-wise time alignment with the original speech, and thus the
reconstructed output can be compared on a frame-by-frame basis.

It should be noted that, apart from a brief comparison in Section 8.1, whisperisation
is not used to generate results in the current paper, and thus comparison results be-
tween regenerated and original speech are performed here only using methods that do
not require a frame-by-frame time alignment.

However certain results have been obtained using whisperised speech in other pa-
pers, and thus results from evaluation with whisperised speech, as used in the related
published papers, along with MATLAB code to perform both the whisperisation and
reconstruction are available for download from the website1.
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