
Reconstruction of Punctured

Convolutional Codes

Mathieu Cluzeau

ENSTA

Matthieu Finiasz

ENSTA

Abstract—We present here a new technique to reconstruct
punctured convolutional codes from a noisy intercepted bit-
stream. Compared to existing techniques our algorithm has two
major advantages: it can tolerate much higher noise levels in the
bitstream and it is able to recover the best possible decoder (in
terms of decoding complexity). This is achieved by identifying
the exact puncturing pattern that was used and recovering the
parent convolutional code.

Index Terms—convolutional codes, puncturing, reconstruction

Most digital communications are both encoded and en-

crypted. For this reason, in order to be able to perform a crypt-

analysis, it is necessary to decode intercepted data. Usually

this data is encoded using a standardized algorithm and it is

thus assumed that the attacker can decode as efficiently as the

legitimate recipient. However, it can happen that non-standard

techniques are used. In this case, the code reconstruction

problem needs to be addressed. In this article, we only focus

on communications encoded with convolutional codes.

Before the generalization of turbo codes use, concatenated

codes were present in most digital communication standards

as they offered the best error correction capability. This is

for example the case for digital TV (DVB-T) where a Reed-

Solomon code is concatenated to a convolutional code. Re-

verse engineering such codes thus requires to first reconstruct

convolutional codes and in particular punctured convolutional

codes as these are the most widely used for concatenation.

This article is not the first to deal with reconstruction of

convolutional codes. The first to investigate this problem were

B. Rice and E. Filiol [7], [8], [12]. More recently J. Barbier

also look at this problem [1], [2] and the work by M. Côte and

N. Sendrier [5] gives a complete analysis of these techniques.

We will give more details about these works in Section II-A

and Section III. Concerning puncturing, the technique we

present is however the first one to recover the parent code

and the puncturing pattern that was used.

This article is composed of three main sections. The first

section gives the main definitions and notations about convo-

lutional codes and punctured convolutional codes that are used

in the rest of the article. In the second part, we present a new

technique for reconstructing a convolutional code from a noisy

intercepted bitstream, even for high noise levels. Eventually,

we present a technique to recover the original convolutional

1This work was supported by the French DGA in the context of the
AINTERCOM contract.

code hidden behind a punctured convolutional code. This new

technique allows to recover the optimal decoder for this code.

I. CONVOLUTIONAL CODES AND PUNCTURING

In this section we give the base definitions and notations

we use in the rest of this article.

A. Convolutional Codes

An (n, k) convolutional code is defined by a k×n matrix G
of polynomials Gi,j in F2[D]. Thus, an (n, k) convolutional

code has an information rate of k
n . An important parame-

ter of convolutional codes is their constraint length which

corresponds to the total size of their internal memory. If

di = maxj∈[0,n−1] deg(Gi,j) then the constraint length of

the convolutional code is m =
∑k−1

j=0 di. This parameter is

important as the complexity of the Viterbi decoding algorith-

mis proportional to 2m+k which means that higher constraint

length codes are much more costly to decode.

B. Puncturing

Puncturing a convolutional code consists in transmitting

only part of the output of the code, following a regular

puncturing pattern. This technique is used to easily build

(N, K) codes starting from a simple (n, 1) convolutional code.

The puncturing pattern is usually presented under the form of

a binary matrix of size n × K. Considering K input bits, the

orignal code outputs K times n bits which correspond to the

K columns of the puncturing matrix: a 1 in the matrix means

to transmit the bit, a 0 to remove it. This pattern is repeated

for each block of K input bits resulting in an information rate

of K
N where N is the Hamming weight (the number of 1s) of

the puncturing matrix. This puncturing operation will give an

output equivalent to an (N, K) convolutional code.

1) Blocked Code: even without any puncturing, an (n, 1)
convolutional code can be viewed as an (nK, K) code, for any

value of K. The resulting (nK, K) code is called the K times

blocked code and the original (n, 1) code is called the parent

code. Starting from a code of matrix G = (G0, ..., Gn−1) the

blocked code has a matrix G′ defined by nK polynomials

Pi,j such that: Gi =
∑K−1

j=0 DjPi,j(D
K). Each of the n

polynomials defining G is split in K different polynomials

corresponding to terms of degree j mod K of Gi. Then, the

matrix G′ is defined by:
{

G′
i,j = Pj mod n,⌊ j

n
⌋−i if n × i ≤ j

G′
i,j = D × Pj mod n,⌊ j

n
⌋−i+K if n × i > j

P0,0

P0,1

P0,2

P1,0

P1,1

P1,2P0,0 P1,0

DP0,1 DP1,1

P0,0 P1,0

P0,1 P1,1

DP0,2 DP1,2

DP0,2 DP1,2

Figure 1. Matrix of a (2, 1) code blocked 3 times to obtain an equivalent
(6, 3) convolutional code. If G0 = 1 + D + D3 + D4 and G1 = 1 + D2 +
D3+D5 we obtain P0,0 = 1+D, P0,1 = 1+D, P0,2 = 0, P1,0 = 1+D,
P1,1 = 0, and P1,2 = 1 + D.

P0,0

P0,1

P0,2P0,0 P1,0

DP0,1 DP1,1

P1,0

P1,1

DP1,2

DP0,2 DP1,2

Figure 2. Matrix of a (2, 1) code punctured using a the puncturing matrix
“

1

1

0

1

1

0

”

resulting in a (4, 3) equivalent convolutional code.

Matrix G′ will have a form similar to that of Figure 1.

Puncturing then simply consists in selecting N columns out

of the nK columns of the blocked matrix G′ and removing

the other ones so as to obtain an (N, K) code (see Figure 2).

Note that it is also possible to puncture generic (n, k) codes

in a similar manner but we will not consider this case in this

article and only focus on punctured (n, 1) codes which are the

most widely used.

II. RECONSTRUCTION OF CONVOLUTIONAL CODES

Reconstructing a convolutional code can have different

meanings. A complete reconstruction consists in recovering

the matrix G that was used for encoding, but this is not

always possible. In practice, one can recover the vector space

G generated by G over F2(D), but then, any polynomial basis

of G is a possible encoder. However knowing any basis of G
is enough to correct errors, so we first recover the space G
and then try to deduce the correct matrix G.

A. Existing Technique

In 1995, B. Rice was the first to deal with the problem

of reconstructing a convolutional code and proposed an algo-

rithm [12] to solve this problem for (n, 1) convolutional codes

when there are no errors. Later, E. Filiol also investigated this

problem and designed algorithms [7], [9] to solve this problem

for any convolutional code. Moreover, these algorithms could

be adapted to handle noisy bitstreams. All of these algorithms

are based on the Berlekamp-Massey algorithm [3], [11] and

consist in finding a long enough sequence of noise-free output

bits. Recently, Barbier et al. have further improved these

techniques [1], [2] by using algorithms based on randomized

Gaussian elimination, making it possible to deal with noise

more efficiently.

These algorithms perform very well in the absence of noise:

they have a much better complexity than the algorithm we

propose here and are much more straightforward. However,

when introducing noise in the intercepted bitstream, looking

for a noise-free sequence can become very difficult, if not

impractical. In this case our technique will outperform the

previous ones as it will still run in a few seconds on any

standard computer, and this, as long as the noise level remains

reasonable.

Using completely different techniques based on the Expec-

tation Maximization algorithm, J. Dingel and J. Hagenauer [6]

were also able to reconstruct convolutional codes in the

presence of noise. However, for the moment, their technique

can only be applied to some convolutional codes.

B. Using Valembois’ Algorithm

Valembois’ algorithm [13] is based on the Canteaut-

Chabaud information set decoding algorithm [4] and makes

it possible to efficiently find words in the dual of a linear

code from a set of noisy code words.

In the case of convolutional codes a similar notion of dual

exists: any polynomial vector of degree d orthogonal to the

generator matrix G of a convolutional code can be converted

to a binary “dualword” of length n × (d + 1). This dualword

is orthogonal to any shift by a multiple of n bits of the output

bitstream of the code. This means that if the intercepted noisy

bitstream is split in blocks of length n×(d+1) and each block

is seen as a noisy code word, Valembois’ algorithm should be

able to recover the binary dualword and thus the orthogonal

polynomial vector.

1) The Reconstruction Algorithm: the technique we use

is quite simple: we know that for block lengths which are

sufficiently large multiples of n, Valembois’ algorithm should

recover some dualwords. We can thus test if a given length

ν is a sufficiently large multiple of n or not by splitting

the intercepted bitstream in blocks of ν bits and applying

Valembois’ algorithm.

Our algorithm tests all values of ν incrementally, starting

from 1: if dualwords are found, then ν is probably a multiple

of n. Once a first value ν0 giving dualwords has been found

we continue incrementing ν until a second value ν1 also giving

dualwords is found. The value of n is most probably ν1 − ν0.

This can be further checked by running the algorithm for other

multiples of ν1 − ν0.

Once n has been found and checked, it is possible to go

on with the reconstruction. We just need some dualwords and

we already should have plenty: any dualword found for ν0,

ν1 or any other verification length can be used. For each of

these dualwords, a polynomial vector orthogonal to G can be

derived. Let us denote by H the vector space generated by

these polynomial vectors.

If enough dualwords have been found, the space H should

be of dimension n−k so that G = H⊥. In practice, Valembois’

algorithm outputs dozens of dualwords in a second: during our

tests, even with the highest noise levels and the largest codes,

we were always able to generate the whole orthogonal space

G⊥. This means that we can already determine the value of

k and that G has been found. We simply select a polynomial

basis G′ of G and can use it to correct errors.

2) Canonical Reduction of the Reconstructed Matrix: any

polynomial basis of the space G gives a matrix equivalent to

G, that is, a matrix producing the same code and enabling

the same error correction. However, depending on the matrix,

decoding can be more costly than with the original matrix

G. Our method can output any matrix G′, but we want the

best possible matrix, the matrix with the smallest possible

constraint length, as it will give the fastest decoder.

Luckily for us, algorithms computing such a matrix already

exist. For any space G such as ours, a canonical basis is a basis

with, among other properties, the smallest possible external

degree. The external degree of a basis is the sum of the degrees

of the k elements of this basis and thus exactly correspond to

the constraint length of the code. We thus simply need to build

a canonical basis G′′ from the basis G′ we computed. This is

done in two steps:

• first make the basis G′ basic by computing its Smith form

(cf. [10] p. 39),

• then reduce this basic basis to decrease the degrees of the

elements while keeping the basis basic (cf. [10] p. 58).

Once these two steps have been performed the basis G′′ we

obtain is canonical. This gives us the best possible decoder for

the convolutional code. However, we still cannot be sure that

G′′ = G: many canonical bases of a same space G can exist.

The only thing we know is that G′′ can correct noise at least

as efficiently as G.

C. Practical Experiments

The technique we proposed makes it possible to recover

an equivalent matrix G′′ for any (n, k) convolutional code of

matrix G. The only input required is a noisy output bitstream

from the code. We ran a variety of experiments considering a

binary symmetric channel with different crossover probabili-

ties. Table I contains some examples of the noise levels our

algorithm can handle.

We compared our results to those obtained using the method

of J. Barbier, G. Sicot and S. Houcke [2]. In particular, we

used the same (4, 3) code of constraint length 8 as in [1]

and were able to reconstruct it with a crossover probability

of 0.02. Their algorithm was successful only up to 0.01. We

could not find any figures for their algorithm with crossover

probability higher than 0.02, so comparison for parameters

where our algorithm can handle noises of 0.1 was impossible.

The results obtained by J. Dingel and J. Hagenauer in [6]

through a completely different method are quite hard to

compare to ours. They mostly focus on the number of iteration

their algorithm requires to converge and thus correctly recon-

struct the code. The example they give is for a (4, 1) code with

constraint length 5 and a crossover probability of 0.1. For the

same code we were able to reconstruct it up to a crossover

probability of 0.15. We thus believe that our algorithm has

performances similar to their algorithm. However, it appears

that, depending on the code, their algorithm does not always

perform so well. This is not the case for our algorithm which,

as we verified experimentally, behaves very homogeneously

for codes of identical rates and constraint length.

Table I
HIGHEST ERROR RATES τ FOR WHICH OUR ALGORITHM COULD

RECONSTRUCT AN EQUIVALENT CODE MATRIX G′′ IN A FEW SECONDS.

(n, k) constraint length τ

(2, 1) 2 0.15
(2, 1) 6 0.1
(3, 1) 6 0.12
(4, 1) 3 0.2
(4, 1) 5 0.15
(4, 1) 6 0.1
(4, 3) 8 0.02
(5, 2) 14 0.03

III. RECONSTRUCTION OF PUNCTURED CONVOLUTIONAL

CODES

Some previous works on convolutional code reconstruc-

tion [1], [8] already deal with the problem of punctured codes.

What they state is that reconstructing a punctured convo-

lutional code simply requires to reconstruct the equivalent

(N, K) code (see Section I-B for notations) and use this code

for noise correction. This is perfectly true and the algorithm

we presented in previous section can serve the same purpose.

However, decoding with the (N, K) code is not efficient.

For standard punctured codes, the (N, K) code has the same

constraint length m as the parent (n, 1) code2. However, the

cost of the Viterbi decoding algorithm does not only depend

on m: for an (n, k) code, the cost is proportional to 2m+k.

This means that decoding with the (N, K) code instead of the

parent (n, 1) code costs 2K−1 times more. This additional cost

is usually not a problem as small values of K are generally

used, however, being able to recover the (n, 1) code would

have a real added value. Unfortunately, recovering this parent

code is not an easy task. Even if the puncturing pattern is

known, no efficient algorithm exists to recover the (n, 1)
parent code. The algorithm we present now is the first to

achieve this in polynomial time.

A. Description of the Problem

In order to recover the parent (n, 1) code from the recon-

structed (N, K) code it is necessary to recover a matrix of

the blocked (nK, K) code with the exact same structure as

depicted in Figure 1. This requires two things:

• find the puncturing pattern,

• find a matrix with the suitable structure (matching poly-

nomials at the correct positions).

Concerning the puncturing pattern we could not find any

technique to guess it efficiently. Almost all patterns correspond

to a possible (n, 1) parent code but most of them are of large

constraint length. We therefore propose to test all the possible

patterns and, as we will see later, select the pattern giving the

best results. First we have to guess n and then tests all the
(

nK
N

)

possible puncturing patterns. Most of the times n will

be small, so we start with 2 and test all puncturing patterns,

2Puncturing can sometimes decrease the constraint length of a code, but
such a puncturing will necessarily affect the correction capabilities of the code.
Therefore, all standard punctured codes preserve their constraint length.

Z =

0 1 0
0 0 1
D 0 0

 , M =

P0,2 P1,2

P0,1 P1,1

P0,0 P1,0

and G =
(

Z2 × M
∣

∣

∣
Z × M

∣

∣

∣
M

)

Figure 3. Mathematical structure of a blocked code matrix G. Here, K = 3.

then test n = 3 and all corresponding patterns and so on until

a satisfying solution is found.

For each pattern we test, we now need to find all the possible

matrices (with the correct blocked structure) corresponding to

the matrix we reconstructed. Luckily for us, the structure cor-

responding to a blocked code matrix can be put in equations.

Property 1: Let Z be the K × K matrix consisting of an

upper diagonal of 1, a D in the bottom left corner and 0

elsewhere (see Figure 3), then, for any blocked code matrix G
on F2[D], there exists a K ×n matrix M on F2[D] such that

G is the block matrix (ZK−1×M |ZK−2×M | · · · |Z×M |M).
Property 2: Let Gi denote the i-th column of matrix G,

then any matrix verifying ∀i ∈ [0, N −n−1], Gi = Z×Gi+n

has the structure of a blocked matrix.

Thanks to Property 2, we know how to detect a blocked

matrix. We now need to be able to enumerate all possible

matrices of a given code, that is, all polynomial bases of a

vectorial subspace G ⊂ F2(D)N of dimension K. Starting

from a basis G of G, any other basis G′ can be obtained as

G′ = P × G for a given K × K transition matrix P on the

field of rational fractions F2(D). Our algorithm will thus start

from the reconstructed matrix and find all possible transitions

matrices P on F2(D) that could transform it into a matrix

with the structure of a blocked code.

B. Building an Equation System and Solving it

A given puncturing pattern is associated to a function φ :
[0, N −1] → [0, nK −1] which maps the index i of a column

of the punctured matrix to its position φ(i) in the original

matrix. Starting from a reconstructed K×N matrix G′′ it can

be expanded to a matrix G′ such that G′
φ(i) = G′′

i and G′
j is

unknown for any j /∈ {φ(i), i ∈ [0, N − 1]}.

What we are looking for is the set of all possible transition

matrices P on F2(D) such that P × G′ has the structure

of a blocked code matrix. However, G′ has some unknown

columns: this means that these columns (which have been

punctured) do not add any constraints on P , the only con-

straints on P come from columns of G′ which have the same

index modulo n. We get the set of equations:

∀i, j such that φ(i) = φ(j) mod n,

Z(φ(j)−φ(i))/n × P × G′′
φ(j) = P × G′′

φ(i) (1)

These equations are the only constraints on P : once all

equations of the form (1) are satisfied for a matrix P , P ×G′′

expands in a matrix P ×G′ which has the form of a blocked

code matrix (minus the punctured columns).

1) Solving the System: we write down all equations derived

from (1) in a large system and now need to solve it. In

fact, each equation of the form (1) is an equality between

two vectors of size K and thus yields K equations linking

coefficients of P : these equations are linear equations over

the field F2(D). Also, if three indexes φ(i), φ(j) and φ(l)
are equal modulo n, three equations of the form (1) can be

written, but only two of them are independent. In general, if ℓ
indexes are equal modulo n, ℓ− 1 independent equations can

be written, yielding (ℓ − 1)K equations in our linear system.

In order to write the whole system we thus split the N
indexes φ(i) in n classes modulo n and write all independent

equations for each of these classes. We end up with a linear

system in K2 unknowns (the coefficients of P) with a number

of equations that will depend on the puncturing pattern.

This linear system can easily be solved and the solution

space S is a vector space on the field F2(D): each element of

this space is a valid transition matrix P . Thus, for any P ∈ S
the matrix P ×G′′ can be expanded in P ×G′ which has the

correct blocked structure.

2) Recovering the Parent Code: for a given transition

matrix P on F2[D], from the n last columns of the expanded

matrix P × G′ we can deduce the n polynomials of the

equivalent (n, 1) convolutional code: some of these columns

might have been punctured but can easily be deduced from

other columns of P × G′ by multiplication by a power of

Z−1. Let us denote by Ψ the function which transforms a

transition matrix P into the n×1 matrix of the deduced (n, 1)
convolutional code. For any P ∈ S, Ψ(P) gives a decoder for

the convolutional code with the selected puncturing φ. Once

again, we want to find the fastest possible decoder for a given

puncturing pattern, that is, the matrix P yielding the smallest

degree Ψ(P).
Theorem 1: The image Ψ(S) of S by Ψ is a vector space

over the field F2(D) (even though Ψ is not really an homo-

morphism) and any polynomial basis of S is transformed by

Ψ into a generating set of Ψ(S).
Proof: The solution space S and the function Ψ have the

following, easy to verify, properties:

• ∀q ∈ F2(D), if P ∈ S then qP ∈ S,

• ∀q ∈ F2(D), Ψ(qP) = qKΨ(P),
• if P ∈ S and P ′ ∈ S then P + P ′ ∈ S,

• Ψ(P + P ′) = Ψ(P) + Ψ(P ′),
• for any integer i (positive or negative), if P ∈ S then

Zi × P ∈ S (this can be seen in equation (1)),

• Ψ(Zi × P) = Di Ψ(P),
• Ψ is invertible.

These properties are enough to prove Theorem 1.

Theorem 1 tells us that, after solving our system, we simply

need to select a polynomial basis B = {P0, ..., Pb} of S.

Then for each element Pi compute its image Ψ(Pi) and select

the polynomial vector of smallest degree in the vector space

generated by the Ψ(Pi) vectors. This last step can be done by

using our basis reduction algorithms from Section II-B: if we

input the generating set {Ψ(Pi)} and put it in canonical form

it will output a canonical basis of Ψ(S), which is exactly what

we are looking for. We simply select the lowest degree vector

of this basis (which will usually contain a single vector): this is

the best possible decoder for the puncturing φ we are testing.

In order to recover the effective puncturing pattern that was

used on our intercepted bitstream we simply test all possible

puncturing patterns and for each of them build a system, solve

it to obtain a basis B and transform it with Ψ, then use

a canonical reduction algorithm to get the best decoder for

this pattern. We then simply need to select among all tested

puncturing patterns the one giving the most efficient decoder,

that is, the lowest degree (n, 1) parent code.

C. Complexity Analysis and Practical Results

The algorithm we propose works in three steps:

• build a linear system in K2 unknowns and find a basis

of its solution space with a Gaussian elimination,

• transform each element of this basis using function Ψ,

• put the obtained matrix in canonical form.

The linear system in K2 unknowns contains between K×(N−
n) and K × (N − 1) equations (depending on the puncturing

pattern). As N is always of the same order as K the Gaus-

sian elimination will require O(K6) polynomial operations.

However, the degree of the polynomials can increase with K
and thus make the complexity even higher. This is not the

case in practice: we compute GCDs during the elimination to

keep degrees low and this seems to be sufficient to maintain

a complexity in O(K6) for this step. We were able to verify

this quite accurately during our experimentations.

The complexity of the second step depends on the dimen-

sion of the solution space S. This dimension is always a

multiple of K as for any solution P , all matrices of the

form Zi × P are also solutions. In practice, this dimension

is between K and (n−1)×K for all puncturing patterns (for

a (2, 1) parent code it is always K). Function Ψ computes

n polynomials from an nK matrix it multiplies by P and

has a complexity of O(nK2). The complexity of this step

is thus O(n2K3) operations on polynomials of small degree.

Note that if some puncturings were incompatible with a given

(N, K) code this dimension would then be 0. This was never

the case during our experimentations, confirming the fact that

for a given code, all puncturing patterns yield a compatible

parent code.

The final step consists in computing the canonical form of

an (n − 1)K × n matrix. This could cost O(n3K2) but costs

much less in practice as the canonical form is of size 1 × n.

The dominating complexity is the first step in O(K6) and

this is also the most costly step in practice. It takes from

50% to 90% of the whole running time depending on the

parameters. Testing one puncturing pattern takes a fraction of

a second but many patterns have to be tested. Our algorithm

runs in a few minutes for a (2, 1) parent code punctured into

a (9, 8) code, which corresponds to
(

16
9

)

= 11 440 patterns

to test, but takes only a few milliseconds for the same (2, 1)
parent code punctured into a (4, 3) code.

Concerning the uniqueness of the solution, usually one

puncturing pattern clearly stands out and offers a much shorter

constraint length than other puncturing patterns, but it can

happen that two (maybe more) patterns give identical results

(parent codes with the same constraint length). In such a case

it is impossible to decide which pattern was used in practice

which leaves an ambiguity on the decoded sequence. This

however does not affect the error correction capability of the

code as both solutions give equivalent decoders.

Our algorithm can probably be adapted to punctured (n, k)
parent codes, but the final canonical reduction certainly has to

be modified. We however did not look further into this problem

as we could not find any real life example of punctured code

not coming from an (n, 1) parent code.

IV. CONCLUSION

We presented two new algorithms for the reconstruction of

convolutional codes from an intercepted noisy bitstream. The

first one applies to generic convolutional codes and enables

reconstruction in the presence of high noise levels with a

relatively short bitstream (a few thousand bits are enough).

This algorithm runs in a fraction of a second. The second

algorithm applies to punctured convolutional codes and is the

first algorithm to recover the (n, 1) parent code thus giving

the best possible decoder. The running time of this algorithm

spans from a few milliseconds to a few minutes (or more in

some extreme cases) depending on the puncturing pattern.

REFERENCES

[1] J. Barbier. Analyse de canaux de communication dans un contexte non

coopératif. Phd thesis, École Polytechnique, November 2007.
[2] J. Barbier, G. Sicot, and S. Houcke. Algebric approach of the recon-

struction of linear and convolutional error correcting codes. In CCIS

2006, 2006.
[3] E.R. Berlekamp. Algebraic coding theory. McGraw-Hill, 1968.
[4] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-

weight words in a linear code: application to primitive narrow-sense
BCH codes of length 511. IEEE Transaction on Information Theory,
44(1):367–378, January 1998.

[5] M. Côte and N. Sendrier. Reconstruction of convolutional codes from
noisy observation. In IEEE Conference, ISIT 09, 2009. To appear.

[6] J. Dingel and J. Hagenauer. Parameter estimation of a convolutional
encoder from noisy observations. In IEEE Conference, ISIT 07, pages
1776–1780, 2007.

[7] É. Filiol. Reconstruction of convolutionnal encoders over GF(q). In
Michael Darnell, editor, Cryptography and Coding ; proceedings of the

6th IMA conference, number 1355 in LNCS, pages 101–109. Springer-
Verlag, 1997.

[8] É. Filiol. Reconstruction of punctured convolutional encoders. In
International Symposium on Information Theory and its Applications

(ISITA’00), 2000.
[9] É. Filiol. Technique de reconstruction en cryptologie et théorie des

codes. Phd thesis, École Polytechnique, March 2001.
[10] R. Johannesson and K. Sh. Zigangirov. Fundamentals of convolutionnal

coding. IEEE Press, 1999.
[11] J.L. Massey. Shift-register synthesis and BCH decoding. IEEE

Transactions on Information Theory, 15:122–127, 1969.
[12] B. Rice. Determining the parameters of a rate 1

n
convolutional encoder

over GF (q). In Third International Conference on Finite Fields and

Applications, Glasgow, 1995.
[13] A. Valembois. Détection Décodage et Reconnaissance des Codes

Linéaires Binaires. Phd thesis, Université de Limoges, October 2000.

