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Abstract Dynamics and function of neuronal networks are

determined by their synaptic connectivity. Current experi-
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mental methods to analyze synaptic network structure on

the cellular level, however, cover only small fractions of

functional neuronal circuits, typically without a simultane-

ous record of neuronal spiking activity. Here we present a

method for the reconstruction of large recurrent neuronal

networks from thousands of parallel spike train recordings.

We employ maximum likelihood estimation of a gener-

alized linear model of the spiking activity in continuous

time. For this model the point process likelihood is con-

cave, such that a global optimum of the parameters can be

obtained by gradient ascent. Previous methods, including

those of the same class, did not allow recurrent networks

of that order of magnitude to be reconstructed due to pro-

hibitive computational cost and numerical instabilities. We

describe a minimal model that is optimized for large net-

works and an efficient scheme for its parallelized numerical

optimization on generic computing clusters. For a simu-

lated balanced random network of 1000 neurons, synaptic

connectivity is recovered with a misclassification error rate

of less than 1 % under ideal conditions. We show that the

error rate remains low in a series of example cases under

progressively less ideal conditions. Finally, we successfully

reconstruct the connectivity of a hidden synfire chain that

is embedded in a random network, which requires cluster-

ing of the network connectivity to reveal the synfire groups.

Our results demonstrate how synaptic connectivity could

potentially be inferred from large-scale parallel spike train

recordings.

Keywords Spike trains · Network topology · Connectome

identification · Inverse problem · Synaptic connectivity ·

Connectivity inference · Generalized linear model ·

Maximum likelihood estimation · Penalized likelihood ·

Sparsity · Point process
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1 Introduction

The synaptic organization of neuronal networks is key to

understanding the dynamics of brain circuits, and, eventu-

ally, to link them to higher level cognitive functions. A large

body of work aims to address this challenge by developing

experimental techniques which enable the reconstruction of

the connections between neurons on the basis of anatomical

or physiological evidence. Anatomically, synaptic connec-

tions may be identified using optical imaging or electron

microscopy (Briggman et al. 2011; Bock et al. 2011), while

physiological approaches rely on simultaneous recordings

of individual neurons and the mutual influence of the spikes

of one neuron on the membrane potential of the other (Perin

et al. 2011; Boucsein et al. 2011). Substantial progress has

been made in recent decades to increase the size of networks

accessible by experimental methods, including the new

promising macroscale and mesoscale connectivity mapping

techniques (Chung et al. 2013; Oh et al. 2014). However,

on the microscale of individual neurons, the practical limi-

tations of these techniques mean that reliable reconstruction

is currently only possible for neural circuits of up to dozens

of cells.

Alternatively, the connectivity of neuronal networks can

be inferred from parallel recordings of their spiking activ-

ity. Potentially, this enables the recovery of the connections

in circuits of hundreds and thousands of cells. Recent

technical achievements in conducting large-scale parallel

recordings of neuronal dynamics, such as multi-electrode

array technology for in vivo implantation (Hatsopoulos

and Donoghue 2009; Ghane-Motlagh and Sawan 2013),

micro-electrode dishes for recording the in vitro activity

of acute brain slices and dissociated cell cultures (Nam

and Wheeler 2011; Spira and Hai 2013), and optical imag-

ing techniques (Grewe and Helmchen 2009; Lütcke et al.

2013; Ahrens et al. 2013), make this path even more

compelling.

The main difficulty in the analysis of parallel recordings,

though, lies in the interpretation of the results (Gerstein

and Perkel 1969; Aertsen et al. 1989). On one hand, sim-

ple reduced models of network interactions are often unable

to resolve ambiguous scenarios: a classic example of such

ambiguity is a group of neurons that receives common input

versus a mutually connected group of cells, which cannot

be distinguished using pairwise cross-correlation analysis

(Stevenson et al. 2008). On the other hand, obtaining reli-

able fits of complex large-scale models to the data presents

both a methodological and computational challenge in itself

(Chen et al. 2011; Song et al. 2013). At the same time, there

are often considerable difficulties in directly relating the

reconstructed connectivity matrices to measurable experi-

mental quantities or model parameters. The resulting sets of

connections are then regarded as “functional” or “effective”

connectivity, terms lacking strict and universally accepted

definitions, and not necessarily matching real anatomical

connectivity, but still hoped to provide useful insights with

respect to the interaction of the network elements (Horwitz

2003).

The desire to strike the balance between explanatory

power, and analytical as well as numerical tractability,

has fueled an ever growing interest in methods that go

beyond simple linear regression analysis, but still remain

highly efficient. Previous works show that generalized lin-

ear models (GLM) (McCullagh and Nelder 1989) of net-

work spiking activity can indeed be efficiently estimated

from experimental data (Truccolo et al. 2005; Okatan et al.

2005; Pillow et al. 2008; Stevenson et al. 2009; Gerwinn

et al. 2010) (dealing with recordings of up to 20, 33, 27,

75 + 108 and 7 neurons respectively), and make it possible

to recover the actual synaptic connectivity of small neu-

ronal circuits (N = 3) (Gerhard et al. 2013). Scaling these

approaches directly up to substantially larger networks of

thousands of units, however, seemed not to be feasible due

to the vast computational resources such a reconstruction

would require.

In this work, we present a method to reconstruct the

parameters of large-scale recurrent neuronal network mod-

els of N ≥ 1000 elements, based on parameter estimation

of a stochastic point process GLM using only observations

of the spiking activity of the neurons. Provided with the

knowledge of the probability p(X|θ) of a specific stochas-

tic model yielding the observations X given the parameters

θ , we maximize the likelihood function L(θ) = p(X|θ) in

order to identify a set of parameters θ resulting in an opti-

mal agreement of the selected model with the observations

X. This is a widespread technique known as maximum like-

lihood estimation (MLE) (Paninski 2004). If the underlying

model is sufficiently detailed and is indeed appropriate to

describe the observations, then not only can the parameters

θ be related to the actual measurable features of the neu-

ronal network that generated the data, but they also define a

dynamic model of the neuronal network activity (also called

a generative model). Such a model can be used to derive

testable predictions, or conduct virtual experiments (sim-

ulations), which might otherwise have been impossible or

impractical.

Due to the large number of parameters necessary to

describe a network of N ≥ 1000 neurons, the optimiza-

tion of the likelihood L(θ) can only be performed efficiently

for some of the possible GLMs of neuronal networks. In

Section 2, we describe our optimized model, including a

particular choice of nonlinearity and interaction kernels,

which enables us to obtain closed forms and recurrence for-

mulae which go beyond more general techniques previously

reported in the literature. We additionally supply details

about the numerical methods employed. In Section 3, we
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demonstrate the proposed technique on simulations of ran-

dom balanced neuronal networks, and present reconstruc-

tions of the connectivity matrix consisting of 106 possible

synapses in sparsely connected recurrent networks of N =

1000 spiking neurons. Finally, we apply our method to a

structured network. We recover a synfire chain embedded in

a balanced network from recordings of spiking activity, in

which no activations of the synfire chain were present, and

demonstrate that the inferred model of this network supports

the transmission of synfire activity when stimulated.

In the present study we focus on reconstructions of

networks for which all spiking activity can be recorded.

Whereas in experimental settings undersampling is to be

expected – and we performed a basic assessment of how it

would affect our reconstructions, see Appendix C – a thor-

ough investigation of the consequences of undersampling

for the classification performance of our techniques is out

of scope. Similarly, when presenting these techniques we

are initially concerned with activity which we can assume

to be a sample of a multi-dimensional point process with

constant parameters (i.e. neuronal excitability and synaptic

interactions). In Section 4 we examine these limitations and

propose how they could be relaxed in future studies.

2 Methods

This section provides detailed information on the method

of network reconstruction we employ, including original

amendments and adaptations. In Section 2.1 we introduce

the likelihood of our network model to reproduce a given

dataset of neuronal spike trains. This likelihood is the

quantity which is subject to optimization. The specific for-

mulation of the likelihood relies on a model of the spiking

activity of the neurons, which is introduced in Section 2.2.

To evaluate the likelihood and its gradient under that model

efficiently, recursive formulae and closed form expressions

are derived in Section 2.3. The subsequent sections describe

how we handle synaptic transmission delays (Section 2.4)

and how, in some cases, we employ regularization of the

optimization problem (Section 2.5). Finally, Section 2.6

gives further details regarding the practical aspects of our

highly parallelized implementation of the method.

2.1 Point process likelihood of generalized linear models

A statistical model that describes the activity of a network

of N neurons can be defined as an expression for the con-

ditional probability p(S|�x) of observing an N-dimensional

spike train (spike raster) S for a given input signal �x, which

may include external stimulation and/or previous activity

of the network itself. Given all the inputs of a neuron, we

assume that its probability of spiking is independent of the

other neurons (conditional independence). This allows us to

factorize p(S|�x) =
∏N

i=1 pi(Si |�x), where pi(Si |�x) is the

probability that the i-th neuron, within the recording time

[T0, T1], produces a spike train Si conditioned on the input

�x. Therefore, in what follows we focus on the probability

pi(Si |�x) of a single neuron.

The activity of the individual nerve cells can be char-

acterized by a stochastic GLM that postulates that two

consecutive operations are performed by the neuron on

its input. First, the dimensionality of the observable sig-

nal �x is reduced by means of a linear transformation Ki .

This transformation models synaptic and dendritic filter-

ing, input summation and leaky integration in the soma.

The result Ki �x is a one-dimensional quantity that is anal-

ogous to the membrane potential of a point neuron model.

Second, this transformed one-dimensional signal is fed into

a nonlinear probabilistic spiking mechanism, which works

by sampling from an inhomogeneous Poisson process with

an instantaneous rate (conditional intensity function) given

by λi(t |�x) = fi(Ki �x). Here, fi(·) is a function that cap-

tures the nonlinear properties of the neuron. Both the linear

filter Ki and the nonlinearity fi are specified by θi , a

set of parameters that describes the characteristics of the

i-th neuron. The schematic of this model is shown in

Fig. 1.

Based on these definitions, we may now introduce the

natural logarithm L of the likelihood L(θ |S) and expand it

as

L = log L(θ |S) = log

[
N∏

i=1

pi(Si |�x)

]

=

N∑

i=1

log pi(Si |�x) =

N∑

i=1

Li , (1)

Fig. 1 Schematic of the point process generalized linear model (PP
GLM) of a recurrent spiking neuronal network. In this model, the spike
trains �x from the neurons in the network, after incurring transmis-
sion delays dij , pass through a linear filtering stage Ki . The resulting
(pseudo) membrane potential Ui(t) is fed into a nonlinear link func-
tion fi(·) = exp(·), which transforms it into the conditional intensity
function λi(t). The latter drives the probabilistic spiking mechanism
that generates an output spike train Si for the i-th neuron. Note that this
spike train is then also fed back as an input to the neuron itself via a
“self-connection” in order to model its refractory, post-spike properties
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where the observation (previously called X) is the spike

raster S. In the last step of Eq. (1) we have introduced the

single neuron log-likelihood Li = log pi(Si |�x).

Let us now compute the probability that an inhomoge-

neous Poisson process with intensity λi(t) produces the

spike train Si = {ti,k}, 1 ≤ k ≤ qi , where T0 ≤ ti,k ≤ T1

and qi is the number of spikes of the i-th neuron. This

probability is (Brillinger 1988)

pi(Si |�x) = e
−

∫ T1
ti,qi

λi (t)dt
qi∏

k=1

e
−

∫ ti,k
ti,k−1

λi (t)dt
λ(ti,k)

= e
−

∫ T1
T0

λi (t)dt
qi∏

k=1

λ(ti,k)

with ti,0 = T0. Here, for each spike time ti,k , we multiply

the (survival) probabilities e
−

∫ ti,k
ti,k−1

λi (t)dt
of not producing a

spike in (ti,k−1, ti,k) with the intensity λi(ti,k) at ti,k . Finally,

we factor in the probability e
−

∫ T1
ti,qi

λi (t)dt
of not producing

a spike in the recording time (ti,qi
, T1], which remains after

the last spike. The function Li(θi |Si) = pi(Si |�x) is known

as the point process likelihood (Snyder and Miller 1991).

Taking the logarithm yields the log-likelihood function

Li(θi) =

qi∑

k=1

log λi(ti,k) −

∫ T1

T0

λi(t)dt , (2)

where the sum runs over all spikes 1 ≤ k ≤ qi of the i-th

neuron. The first term of this expression rewards high inten-

sity at times ti,k when the spikes of the i-th neuron have been

emitted, and the second term penalizes high intensity when

no spikes have been observed. Different numbers of spikes

qi render the absolute values of Li difficult to compare

among different neurons, but play no role when maximizing

Li with respect to θi .

2.2 Conditional intensity model for a recurrent neural

network

In order to investigate the recurrent aspects of the dynam-

ics of the system, we define the observable input signal �x

for each neuron as the history of spikes recorded in the net-

work up to a given point in time, including the spikes of the

i-th neuron itself (which are used to model the refractory

properties of the neuron). It is possible to include exter-

nal inputs in this formulation, however this is not an option

that we have pursued in the current work. Below follows a

detailed discussion of the different components of the model

as presented in Fig. 1.

For simplicity, we assume that the effect of each incom-

ing spike can be modeled as an instantaneous current

injection. The spike train Sj of the j -th neuron as a func-

tion of time is expressed as sj (t) =
∑qj

k=1δ(t − tj,k),

where tj,k is the k-th spike of the j -th neuron. Each spike

then elicits an exponential post-synaptic response in the

neuron, due to the filtering properties of the membrane,

hi(t) = H(t) exp {−t/τi}, where t is the time since spike

arrival, τi is the membrane time constant of the neuron, and

H(x) = {1 if x ≥ 0, else 0} is the Heaviside function,

which ensures the causal relationship between the stimula-

tion and the response. Note that while the propagation of

spikes is assumed to happen instantaneously in the formula-

tion above, the incorporation of delays will be discussed in

detail later in Section 2.4.

We may now define the linear dimensionality-reducing

transformation Ui(t) = Ki �x(t) as

Ui(t) = Ji0 +

N∑

j=1

Jij (hi ∗ sj )(t) , (3)

where ∗ denotes the convolution operation,

(hi ∗ sj )(t) =

∫ ∞

−∞
hi(t − u)sj (u)du .

The baseline potential Ji0 will be used later to set a base

level of activity of the unit in the absence of inputs.

Differentiation of Eq. (3) yields the first-order ordinary

differential equation of the leaky integrator

d

dt
Ui(t) = −

1

τi

(Ui(t) − Ji0) +

N∑

j=1

Jij sj (t) . (4)

Hence Ui(t) can be interpreted as the membrane poten-

tial of the i-th neuron, while J is the synaptic connectivity

matrix and each of its elements Jij denotes the strength

(synaptic weight) of the connection from the j -th to the

i-th neuron. Due to its simplicity, Eq. (4) leads to highly

efficient algorithms (discussed in Section 2.3 and 2.6) to

evaluate the membrane potential and the conditional inten-

sity function of the neurons, beyond previously reported

more general parallelization techniques (Chu et al. 2006).

The membrane potential and the intensity are, in turn,

needed to compute the values of the likelihood function and

its gradient.

In Eqs. (3) and (4), positive and negative values of Jij

correspond to excitatory and inhibitory connections respec-

tively, and zero values denote the lack of a connection

between two cells. Note that as formulated, this model does

not ensure compliance with Dale’s law (according to which

each neuron can form synapses of only one type). However,

we will show that this is an essentially negligible source of

errors in the reconstructions presented below.

Further, we choose a specific type of the nonlinearity

f (u) = exp {u}, such that

λi(t) = exp {Ui(t)/δu} . (5)
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In this expression, the scalar δu > 0 can be considered

as the inverse “gain” of the nonlinearity. In the derivations

that follow we will assume δu = 1 in order to simplify the

expressions without loss of the generality, as different gains

can be accommodated by rescaling the synapse weights Jij

and the baseline potential Ji0 accordingly. In the absence of

input spikes, Ui = Ji0, which leads to the base rate

ci = exp{Ji0/δu} . (6)

It is worth mentioning that the base rate can effectively con-

stitute a “sink” for spiking activity that cannot be explained

by the recurrent network dynamics, such as external stim-

ulation that has not been included in the present model, or

missing inputs from unobserved neurons due to incomplete

observations of the network (undersampling).

The model as formulated above is similar to the widely

used cascade LNP model (Simoncelli et al. 2004), but in

addition to the activity of the other cells in the ensem-

ble, it also incorporates the spiking history of the neuron

itself through its self-connection Jii . An intuitive biologi-

cal interpretation of this class of models, also known as the

spike-response model with escape noise, in relation to the

conventional integrate-and-fire model is given in Brillinger

(1988) and Gerstner et al. (2014). Here, in contrast to the

approaches taken in previous studies (Song et al. 2013;

Citi et al. 2014; Ramirez and Paninski 2014), we drasti-

cally simplify both the conditional intensity model for a

single neuron and the interaction kernels. This makes the

numerics in our method amenable to a highly efficient

implementation as discussed in Section 2.6.

Given that fi(·) is both a convex and log-concave func-

tion of Ui = Ki �x, and the space of possible {Ki} is convex,

it can be shown that the log-likelihood function of such

problems is concave and does not have any non-global local

extrema (Paninski 2004). Thus the log-likelihood function

Li of the model as formulated above is concave in θi ⊂

{Jij }0≤j≤N (note, however, that τi is not included in θi ; the

recovery of the time constants will be addressed separately).

A proof of the concavity of Li for our specific choice of

kernels and link function is given in Appendix A. Since the

sum of concave functions is again concave, the full log-

likelihood L =
∑N

i=1Li is concave as well. Consequently,

there exists a unique set of parameters θ that characterize

the network model that is most likely to exhibit a given

recorded activity. These parameters θ can be efficiently

identified via gradient ascent based nonlinear optimization

methods applied to L. Moreover, due to the separability of

L (1), in order to recover θ = {θi}, one can maximize

the individual log-likelihood functions Li for each recorded

unit, instead of maximizing the complete log-likelihood

function L.

Since the experimental techniques to obtain simultaneous

recordings of thousands of units are becoming increasingly

accessible, in this work we are targeting N ≥ 1000. How-

ever, even if the number of variables is reduced from the

∼ O(N2 = 106) required for the complete log-likelihood

function to the ∼ O(N = 103) required for the log-

likelihood function of an individual neuron, this is still a

high-dimensional convex optimization problem. It can only

be solved in practice using gradient based methods, for

which the analytical closed form expressions for the log-

likelihood function and its gradient are both available, and

amenable to efficient evaluation. In the following we derive

these expressions for the postulated model.

2.3 Closed form expressions

Let us consider the log-likelihood Li for an individual neu-

ron; recall that the variable part of Eq. (2) consists of two

terms:

Li =

qi∑

k=1

log λi(ti,k)

︸ ︷︷ ︸
L�

i

−

∫ T1

T0

λi(t)dt

︸ ︷︷ ︸
L

∫

i

. (7)

Observe that given a closed form for Ui(t), computing L�
i

is a matter of a simple algebraic substitution, while the effi-

ciency of computing L

∫

i depends on whether it is possible

to find this primitive analytically.

2.3.1 Recurrence formula for the membrane potential

By design, our particular choice of Ki (exponential post-

synaptic potential plus baseline potential) allows us to

obtain the required closed form for Ui(t) because it obeys

the leaky integrator dynamics (4). The solution of Eq. (4)

from tk to t in the absence of input spikes sj (t) is Ui(t) =

(Ui(tk) − Ji0) exp
{
− t−tk

τi

}
+ Ji0. This expression is valid

at any time t between two consecutive observed spikes

tk, tk+1 ∈ S, where S = {tk} is the (ordered) set of all

recorded spikes of the network. At the borders of each of

those intervals, the value of Ui(tk+1) is increased by the

contribution of the corresponding incoming spike:

Ui(tk+1) = (Ui(tk) − Ji0)e
−

tk+1−tk
τi + Ji0 + Jij , (8)

where the index j refers to the neuron that emitted a spike

at time tk+1; if spikes from multiple neurons j1,2,3,... arrive

at time tk+1, the contributions Jij1,2,3,... have to be added.

We will refer to Eq. (8) as the key recurrence formula in the

following.

The formula (8) for Ui(tk+1) makes it possible to find the

value of the membrane potential of the neuron at the spike

time tk+1 given the previous value at time tk by computing

only one exponential function. It is substantially more effi-

cient in terms of computation than naively summing up the
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contributions from all spikes that happened at t < tk for

each point in time tk . In particular, for kernels with infinite

memory like the exponential kernels hi(t) employed here,

the recurrence formula (8) is crucial to avoid an explosion of

the computational costs when evaluating the log-likelihood

on large datasets in continuous time.

2.3.2 Evaluating the likelihood

Taking these considerations into account, the integral over

the duration of the recording L

∫

i in Eq. (7) can be broken

down into a sum of integrals from tk to tk+1:

L

∫

i =

q+1∑

k=0

∫ tk+1

tk

λi(t)dt

= ci

q+1∑

k=0

∫ tk+1

tk

exp

{
(Ui(tk) − Ji0)e

−
t−tk
τi

}
dt , (9)

where q =
∑N

i=1qi is the total number of recorded spikes,

t1, . . . , tq are the spike times, and t0 = T0 and tq+1 = T1

are the start and end of the recording. The integral contained

here has a known closed form, so

L

∫

i = −ciτi

q+1∑

k=0

Ei

(
(Ui(tk) − Ji0)e

−
t−tk
τi

)∣∣∣∣
tk+1

tk

, (10)

where Ei(x) is a special function (exponential integral)

defined as Ei(x) = −
∫ ∞
−x

e−t

t
dt for real nonzero values of

x. For a proof of the equivalence of Eqs. (9) and (10) see

Appendix B; the numerical computation of this function is

discussed below in Section 2.6.1. The summands of Eq. (10)

are independent, and therefore the evaluation of L

∫

i lends

itself to trivial parallelization.

2.3.3 Evaluating the gradient

It now remains to find an efficient way to compute the gra-

dient of the log-likelihood function. The performance at this

point is likewise important, or even more so for large N ,

since Li has O(N) partial derivatives that all need to be

evaluated at each step of the optimization. The parameters

of Li are θi = (Ji0, . . . JiN ). For convenience, let us first

introduce the terms

νij (t) =
∂

∂Jij

Ui(t) =

{
j ≥ 1 : (hi ∗ sj )(t)

j = 0 : 1
, (11)

which, for j ≥ 1, can be interpreted as the putative response

of the i-th neuron to the input spikes from the j -th neuron,

that is going to be scaled by Jij , cf. (3). The derivatives of

Li (7) with respect to Jij can then be expressed as

∂

∂Jij

Li =

qi∑

k=1

νij (ti,k)

︸ ︷︷ ︸
∂�
ij

−

∫ T1

T0

λi(t)νij (t)dt

︸ ︷︷ ︸
∂

∫

ij

. (12)

Here, qi is the number of spikes of the i-th neuron, and

{ti,k} = Si are the points in time when the i-th neuron emit-

ted a spike. For j = 0, Eq. (12) becomes ∂
∂Ji0

Li = qi −L

∫

i .

This means that at a maximum of Li , the baseline potential

Ji0 (and so the base rate ci (6)) is set such that the num-

ber of spikes qi equals the expected total number of spikes

of the GLM, L

∫

i . Further, in order to evaluate (12) for the

cases when j ≥ 1, we have defined the symbols ∂�
ij and ∂

∫

ij

analogous to Eq. (7).

The values νij (ti,k) for j ≥ 1 can be obtained using

a recurrence formula just like for the membrane poten-

tial Ui(tk) (8); in fact, νij (t) = ∂
∂Jij

Ui(t), cf. (11).

Hence, νij (t) obeys leaky integrator dynamics like Ui(t),

which can be obtained by differentiating Eq. (4) by Jij

and reinserting Eq. (11). Accordingly, νij (t) decays expo-

nentially in between spikes νij (tj,k < t < tj,k+1) =

νij (tk) exp
{
−

t−tj,k
τi

}
, and we find the recurrence formula

νij (tj,k+1) = νij (tj,k)e
−

tj,k+1−tj,k
τi + 1 . (13)

Individual values within these intervals can be computed

in parallel independently from each other. Summing up all

νij (ti,k) then yields ∂�
ij .

It is also important to mention that νij (t) (11) and, con-

sequently, ∂�
ij in Eq. (12) do not depend on parameters θi

and therefore need only be computed once at the begin-

ning of the optimization. However, even though we can

use the formula Ui(t) =
∑N

j=0Jijνij (t), for large N it is

more expensive to compute Ui(t) by summing up weighted

contributions of νij (t) than by using Eq. (8) as explained

above.

Making use of the recurrence formulae for Ui(t) (8)

and νij (t) (13), the closed form of ∂

∫

ij in Eq. (12) can be

expressed as follows:

∂

∫

ij = ci

q+1∑

k=0

νij (tk)

∫ tk+1

tk

e
−

t−tk
τi e

(Ui (tk)−Ji0) exp
{
−

t−tk
τi

}

dt

= −ciτi

q+1∑

k=0

νij (tk)

Ui(tk) − Ji0
e
(Ui (tk)−Ji0) exp

{
−

t−tk
τi

}∣∣∣∣
tk+1

tk

,(14)

where, as in Eq. (10), q =
∑N

i=1qi is the total number of

recorded spikes, t1, . . . , tq are the spike times, t0 = T0 and

tq+1 = T1 are the start and end of the recording. Unlike

∂�
ij , this expression needs to be re-evaluated at every opti-

mization step, but as with Eq. (10), the elements of the sum
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are independent from each other and can therefore also be

efficiently parallelized.

2.4 Handling transmission delays

In the discussion above, the communication of spikes

between the neurons was implicitly assumed to happen

instantaneously. Of course, in reality spikes incur trans-

mission delays, which strongly affects the dynamics of the

network.
Fortunately, the effects of combined synaptic and axonal

delays can be easily incorporated into the described model:

thanks to the separability property, we can optimize the

parameters for each neuron independently, and feed every

optimization for different neurons with its own modified

dataset, containing the incoming spike times from other

neurons arriving as the target neuron actually received

them.

Therefore, given an effective delay matrix D, it is only

necessary to shift each spike train Sj in the recorded raster S

by the corresponding delay at the beginning of the optimiza-

tion for the i-th neuron, such that the membrane potential of

this neuron is affected at the point in time when the incom-

ing spikes from the j -th neuron have reached their target,

and not immediately as they were fired (and recorded):

Sj = {tj,k} → Ŝj = {̂tj,k = tj,k + Dij } . (15)

The transformation above has to be applied with one

exception: the elements of the sum in L�
i (and, accordingly,

∂�
ij ) have to be evaluated at time points Si when the i-th neu-

ron actually produced a spike, and not at time points Ŝi =

Si + Dii , when this spike has reached the neuron through

the “self-connection” and provoked a depression of its mem-

brane potential, which models the refractory properties of

the neuron.

In other words, in order to correctly evaluate the expres-

sions Eqs. (7) and (12) while taking into account transmis-

sion delays, one must compute the values of Ûi(t) and ν̂ij (t)

using the modified raster Ŝ, but at time points Si of the orig-

inal raster S, and substitute these values in the elements of

the sums L�
i and ∂�

ij respectively, instead of summing up

the elements taken at times Ŝi . In the following, we omit the

“hats” for notational convenience.

2.5 Regularization of the model

Substantial improvements in the quality of the network

reconstruction can be achieved if the model presented above

is subjected to standard regularization techniques. These

techniques enhance the accuracy of the inference procedure

by integrating additional prior knowledge about the system

into the optimization process (Meinshausen and Bühlmann

2006; Ravikumar et al. 2010). For instance, we can impose

box constraints on reasonable values of the synaptic connec-

tion matrix Jij or base rates ci , and complement this with a

choice of more sophisticated methods, such as ℓ1 or ℓ2 regu-

larization, exploiting assumed sparsity or smoothness of the

expected result, respectively (Chen et al. 2011).

In particular, ℓ1 regularization (Tibshirani 1996) has a

straightforward Bayesian interpretation in our setting: by

penalizing the log-likelihood function (2) with the sum of

the absolute values of the synaptic weights Jij , we impose a

sparsity-inducing Laplace prior on the sought-for solution,

thereby performing a maximum a posteriori (MAP) estima-

tion. Here the strength of the penalty α reflects the firmness

of our belief in the sparseness of the network connectivity:

L̃i ∼ L
�
i − L

∫

i − α

N∑

j=1

j �=i

|Jij | . (16)

Possible overfitting due to an inadequate choice of the

regularization parameter α can be prevented by separating

the dataset into two parts to cross-validate the recovered

synaptic weights, and, in the case that the available data is

too scarce, more elaborate techniques such as K-fold cross-

validation and other cross-validation types (Kohavi 1995)

can be employed.

2.6 Practical implementation

The mathematical components described above make it pos-

sible to reproduce our estimation procedure. However, we

found that without employing additional numerical meth-

ods, a naive implementation would be way too slow for

practical use. In the following we outline the techniques that

helped us to boost the optimization speed by many orders

of magnitude, bringing the computational requirements to

perform estimations of the connectivity for the networks of

N ∼ O(103) neurons into a practical range for plausible

amounts of experimental data.

2.6.1 Efficient evaluation

From the computational perspective, a program that per-

forms the parameter estimation would typically consist of

a nonlinear optimization routine, which is provided with

callback procedures that are repeatedly called in order to

evaluate the objective function (2) and its gradient (12) for

any given set of parameters. Hence, the cornerstone guiding

principle to achieve best performance is to carefully con-

sider the CPU time versus memory consumption trade-offs,

and cache as many values for these callbacks as feasible.

As the values of Ui(t) for S = {tk} (all spikes of the net-

work) are needed in order to evaluate both the log-likelihood

function and its gradient, it makes sense to pre-compute
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these values at the beginning of the optimization step. Addi-

tionally, as previously noted, the values of νij (t) do not

depend on the parameters θ , and therefore both νij (t) and

∂�
ij can be pre-computed during the first optimization step,

and re-used in all subsequent steps. Likewise, it is important

to consider the costs of calculating transcendental functions;

whereas they might seem negligible at the first sight, the

time taken to compute some 1010 exponentials every step

is considerable. Therefore, pre-computing the values of all

sub-expressions that do not depend on the parameters, and,

in particular, ξtk = exp {−(tk+1−tk)/τi} is another possibility

to save large amounts of CPU time.

In any case, we recommend using iterative profiling in

order to select the relevant optimization targets to add each

next level of caching, since, as a general rule, the more

caches there are, the more complicated and error-prone it is

to keep them consistent and up to date with respect to the

changes in parameters. Additionally, this avoids the situa-

tions when a sizeable amount of work is invested only to

gain minor improvements in speed, due to runtime actually

being dominated by different code paths than anticipated.

We observed that the optimization algorithms are (unsur-

prisingly) sensitive to the precision of the evaluation of

the objective function and its gradient, and especially to

the consistency between the two. Therefore we rejected

using numerical approximations to the gradient, such as

values computed using the central differences formula,

and employed analytically derived expressions instead. We

have also found that better precision of the objective func-

tion leads to faster convergence. This particularly concerns

the accurate approximation of the exponential integral in

Eq. (10). In general, finding an efficient method to eval-

uate Ei(x), which is a crucial part of Eq. (10), poses a

significant computational challenge. However, high-quality

rational approximations exist in the literature (Cody and

Thacher 1969), which make it as fast as evaluating low-

order polynomials. In our implementation, we rely on the

approximations devised by John Maddock using a custom

Remez code, which are part of the Boost C++ library.1

These approximations are not only highly accurate, but also

the fastest that are available to us.

2.6.2 Parallelization and distribution

As the sweeping growth of the clock speeds in the last

couple of decades seems to have saturated, the focus is

increasingly shifting towards increasing parallelism, and

nowadays multicore CPUs are a de facto standard, rather

than rare marvels. Therefore, suitability for parallelization

is becoming a critical feature to discriminate the algorithms

that are appropriate for large-scale data analysis. In this

1http://www.boost.org

section we discuss the parallelization strategies applicable

to the model described above.

Owing to the separability of the problem, the highest

level approach to parallelize the execution of the optimiza-

tion is to launch several estimations for different neurons

in parallel. This results in a perfect scaling for Nt ≤ N ,

where Nt is the number of simultaneously executed hard-

ware threads. This is clearly a very attractive option due to

the relative simplicity of implementation, however, its prac-

tical applicability is limited by the amount of the available

memory per thread, which quickly becomes a bottleneck for

larger networks and bigger amounts of data.
A slightly lower-level method is to identify independent

elements in the formulae that need to be evaluated at every

step of the optimization, and divide this work among sev-

eral threads within one running process. The summands

of L�
i , L

∫

i , ∂�
ij and ∂

∫

ij as defined in Eqs. (7), (10), (12)

and (14) are all amenable to that kind of processing. This

approach is advantageous to utilize all usable threads from

within one process, but its scalability is limited by both

the amount of the available memory on a single compute

node (as above), and the serial part of the computations,

which cannot be parallelized. In our model, it is mainly

the calculation of the membrane potential Ui(t) (8) and the

membrane responses νij (t), because each value in the recur-

rence formulae depends on the previous one. The membrane

responses νij (t) are less of a problem, since they can be pre-

computed at the beginning of the optimization as explained

above, if one is willing to trade memory consumption for

performance. Alternatively, νij (t) can be computed in par-

allel, which can be faster than fetching the results from

memory for a very high number of threads and low memory

bandwidth.
We have also explored the possibility of distributing the

estimation across several compute nodes, which is not only

necessary in order to utilize larger numbers of threads than

available on one node, but also allows the computation to

make use of the additional memory when the problem gets

too large to fit into one machine’s RAM. The most straight-

forward distribution scheme is to designate one process

(rank) to perform serial computations required for every

optimization step, broadcast the results and parameters to

other ranks, have them do their share of the computations,

and, finally, collect the results. The biggest advantage of this

scheme lies in its ease of implementation: the communica-

tion pattern is very clear, and the code can largely remain

unchanged except for the need of a few additional functions

to distribute and collect the data.
In our implementation, we performed the calculation of

the membrane potential Ui(t), the log-likelihood function

Li and ∂Li/∂Ji0 on Rank 0, and evenly divided the work to

compute ∂Li/∂Jij , j ≥ 1, among all other ranks. This system

scales (almost) linearly up to the point when the amount of

http://www.boost.org
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time needed to perform the computations on Rank 0 exceeds

the amount of time it takes to compute the gradient dis-

tributed to all other ranks. Since it takes several orders of

magnitude more time to calculate Li than ∂Li/∂Jij , we have

found that for N = 1000 we can easily distribute each single

task up to Nr = 10 . . . 20 ranks.

For production estimations, we combined all three

approaches outlined above. The highest level of

parallelization was left up to the batch system: for each

estimation, we generated and submitted the job scripts for

every neuron and let the scheduler optimally backfill the

queue. The code was run with Nt = 8 . . . 16, depending

on the amount of hardware threads available per processor,

and Nr = 10 . . . 20, depending on the amount of available

memory per processor and the requirements of the partic-

ular estimations. For estimations of size N = 1000, this

hybrid approach allowed us to scale almost linearly up to

O(Nt × Nr × N = 105) cores.

In this context, it becomes clear why not only the con-

vexity, but also the separability property of the optimization

problem discussed in Section 2.2 is crucial to our model.

In a typical estimation, as described in Section 3, 1 hour

recording of N = 1000 neurons spiking at ∼ 5 s−1 would

contain ∼ 107 spikes, so the intermediary data to be held in

RAM during the optimization would need around ∼ 1014 =

10 × 107 × (103)2 bytes or 100 TB of storage capacity.

This calculation assumes that the main contribution comes

from the pre-computed matrix of νij (t) vectors of length 107

stored as doubles and disregards all other factors. From our

experience, for some Nr × Nt = 105 threads at ∼ 2 GHz

the optimization would take an order of magnitude of 30

minutes of walltime to converge after about a hundred of

iterations.

Currently, these requirements can be barely satisfied by

booking a complete supercomputer such as JUROPA,2 and

any substantial increase in the number of units, or in the

amount of data to be processed will put the problem beyond

our reach. However, while the number of parameters of the

complete log-likelihood function L in our formulation is

O(θ) ∼ N2, thanks to the above-mentioned separability

property, the number of parameters of Li is linear in the

number of units, O(θi) ∼ N . Not only does this present

major practical advantages such as easier scheduling of

smaller jobs, but it also makes it possible to solve larger

problems at all by proportionally trading the execution time

for the amount of resources allocated to the optimization

process.

2http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JUROPA/JUROPA node.html

2.6.3 Technical realization

Our model was implemented in Python, an increasingly

popular language in the field of computational neuro-

science. It relies upon the NumPy and SciPy scientific

libraries3 for essential data structures and algorithms. We

used Cython4 in order to bind to the OpenMP-parallelized

computational kernels, that we extracted and re-wrote in

C++ for performance reasons, and in order to access the

mathematical functions from Boost C++ library. The distri-

bution was implemented using the Python bindings to MPI,

mpi4py.5

The optimization was performed via the NLopt6 pack-

age by Steven G. Johnson using the low-storage Broyden-

Fletcher-Goldfarb-Shanno method (Liu and Nocedal 1989)

with support for bound constraints (Byrd et al. 1995) imple-

mented by Ladislav Luksan (L-BFGS-B). We chose to use

BFGS instead of the nonlinear conjugate gradient (CG)

algorithm, because the former approximates the inverse

Hessian matrix of the problem and uses it to steer the

search in the parameter space. This results in improved

convergence at the cost of higher iteration overhead. Since

in our case the computation of the objective function is

substantially more expensive, this trade-off is worthwhile.

As a stopping condition, we used a criterion based on

the fractional tolerance of the objective function value. The

optimization was terminated if η = |
L|/|L|, where 
L

is the decrease in the function value from one iteration to

next, reached the threshold of η̃. The value of η̃ was selected

close to the machine epsilon for the double precision float-

ing point type, as requesting even lower tolerance would

not yield a more accurate solution; the typical choice was

η̃ ≤ 10−15.

It is worth to note that in the case of ℓ1 regularized opti-

mizations, it turned out that all gradient-based algorithms

we tried were very much affected by the non-smoothness

at zero, introduced by the regularization term in Eq. (16).

A thorough review of the existing approaches to address

this issue is presented in (Schmidt et al. 2009); we opted

for implementing a smooth ǫ–ℓ1 approximation, originally

suggested in Lee et al. (2006):

α

N∑

j=1

j �=i

|Jij | = α

N∑

j=1

j �=i

√
J 2

ij + ǫ, for ǫ → 0 . (17)

The derivatives of Li with respect to Jij (12) have to be

adjusted by addition of −αJij/
√

J 2
ij + ǫ respectively. We

3http://www.scipy.org
4http://cython.org
5http://mpi4py.scipy.org
6http://ab-initio.mit.edu/nlopt/

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPA/JUROPA_node.html
http://www.scipy.org
http://cython.org
http://mpi4py.scipy.org
http://ab-initio.mit.edu/nlopt/
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Fig. 2 Schematic representation of the method validation setting. A
test neural network is set up using known ground truth connectiv-
ity matrix (left panel) and its dynamics is numerically simulated. The
emerging spiking activity of the neurons (middle panel) is recorded

and fed into the reconstruction procedure. The resulting connectivity
matrix (right panel) is then compared to the original one to assess the
performance of the proposed technique. Insets show a zoom-in of the
connectivity matrix, as indicated

found that this approximation works well in practice for suf-

ficiently small values of ǫ < 10−7 and enables us to use

the L-BFGS-B algorithm without modifications. Addition-

ally, we imposed bound constraints on the model parameters

as discussed in Section 2.5; typical constraint ranges were

|Jij | < 50 mV for synaptic weights and 0.001 s−1 < ci <

100 s−1 for base rates. The recordings were truncated to the

first and last recorded spikes, T0 = t1 and T1 = tq , where q

is the total number of recorded spikes.

3 Results

We quantified the effectiveness of our suggested method by

performing a series of experiments as illustrated in Fig. 2.

In these experiments we simulated neuronal networks with

known (ground truth) connectivity, and reconstructed the

synaptic weight matrix along with the model parameters of

these networks on the basis of the recorded spike times. In

this way, estimation results could be readily compared to

the original connectivity matrix and model parameters. All

simulations presented in this section were carried out with

the NEural Simulation Tool (NEST) (Gewaltig and Dies-

mann 2007) and reconstructions were performed using the

CPU implementation of the MLE optimizer as described

Table 1 Glossary of abbreviations

EM expectation-maximization

GLM generalized linear model

GMM Gaussian mixture model

KDE kernel density estimation

LIF leaky integrate-and-fire

MER misclassification error rate

MLE maximum likelihood estimation

PDF probability density function

in Section 2. Although the connectivity is sparse in all

experiments considered below, we generally use MLE opti-

mization here; only in Section 3.3, which describes the most

difficult of the experiments, we also use regularization in

order to demonstrate that our computational framework can

handle regularized optimization.

In the following subsections, we present the benchmarks

of the proposed technique against simulations of a widely

used model of a random balanced network (Brunel 2000)

and investigate the effect of choosing different neuron and

synapse models, first with homogeneous and then with

randomly distributed parameters. Finally, we show a suc-

cessful reconstruction of a specific, non-random network, a

“synfire chain” embedded in a balanced random network,

only from “background” network activity (where the chain

was not stimulated). Finally, by stimulating the synfire chain

in a simulation of the estimated model, and comparing

resulting dynamics to the output of the original network,

we highlight the generative aspect of GLM network mod-

els. The abbreviations used in the following sections are

summarized in Table 1.

3.1 Random balanced network of GLM neurons

As an initial testbed for our method, we selected a ran-

dom balanced neural network of excitatory and inhibitory

neurons in the asynchronous irregular (AI) spiking regime

(Brunel 2000). Random networks do not have any particular

structural features that can be exploited by the optimizer in

order to improve the quality of the reconstruction, and hence

in this sense they represent a “worst-case” type of input

that is particularly useful for benchmarking purposes. Such

networks are commonly studied using the leaky integrate-

and-fire (LIF) neuron model. However, in order to be able to

interpret the follow-up experiments, we first chose to assess

the performance of our estimation method under idealized

conditions, in which the simulated and estimated neuron

and synapse models coincide: the GLM neuron model as
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described in Section 2 and simple synapses with exponential

post-synaptic potentials.

As discussed in Section 2.2, given several conditions that

our GLM satisfies, there is a unique maximum likelihood

parameter set for the estimated network model (Paninski

2004). In the limit of an infinite amount of spike data used

for model estimation and arbitrarily precise calculations, our

method is thus bound to recover the true parameters of the

simulated model. Hence, testing the method under idealized

conditions, but for finite datasets, allows us to distinguish

errors that are purely due to the limited length of the obser-

vations and restricted machine precision, from those due to a

mismatch between the dynamics of the neuron and synapse

models used to generate the data, and the dynamics of the

models used to reconstruct the network.

The test network consisted of N = 1000 GLM neurons

with 80 % : 20 % proportion of excitatory to inhibitory neu-

rons (“pp psc delta” model in NEST nomenclature, with a

base rate c = 5 s−1, membrane time constant of τ = 20 ms

and a resting potential of Vr = 0 mV). The nonlinearity

gain of the neurons was set to δu = 4 mV as in Jolivet

et al. (2006), which defines the scaling and units of a single

post-synaptic potential via Eq. (5) (δu = 1 as assumed pre-

viously in Section 2 for the sake of convenience would make

it unitless). Each connection was realized independently

with a connection probability of ǫ = 0.2 (Erdős-Rényi

p-graph). The neurons were connected by synapses with

exponential post-synaptic potentials with a peak amplitude

of Je = 1 mV for excitatory and Ji = −5 mV for inhibitory

synapses, and a transmission delay of d = 1.5 ms. A

strong inhibitory self-connection with Js = −25 mV and

a transmission delay of ds = 
t was used to model post-

spike effects. The simulation progressed in time steps of


t = 0.1 ms (resolution) and the simulation time was

T = 1 hour. The average firing rate of the neurons was

ν = 4.2 s−1. The recorded spike trains were fed to the

estimation method, assuming known values of the time con-

stant τ , the transmission delays d and the delay of the

self-connection ds. The method produced estimates of the

synaptic weight matrix Jij and the base rates {ci} for all neu-

rons. The original and reconstructed synaptic weight matrix

for this experiment are presented in Fig. 2. Throughout

this text we refer to {Jij }1≤i,j≤N, i �=j as the weight matrix;

the self-connections {Jii}1≤i≤N and the baseline potentials

{Ji0}1≤i≤N are treated separately.

In order to evaluate the quality of the reconstruction, we

analyzed the resulting distributions of recovered synaptic

weights and base rates, as shown in Fig. 3. Whereas the

probability density function (PDF) of the original distribu-

tion of synaptic weights can be described as a sum of three

δ-functions (for excitatory, inhibitory and null connections

respectively), the peaks in the reconstructed distribution are

broader due to the finite duration of the recording and lim-

ited machine precision, to the extent that for realistic values

of parameters, there is a degree of overlap between the

components of the distributions that represent excitatory

and null connections. We noted that the amplitude of the

noise that causes the broadening decreases approximately

Fig. 3 Reconstruction of a random balanced network of GLM neu-
rons. The reconstruction was performed for τ = 20 ms, d = 1.5 ms
and ds = 0.1 ms. a Gaussian Mixture Model fit for the probabil-
ity density function of the elements of the reconstructed synaptic
weight matrix J (black solid curve) and individual components con-
tributed by excitatory (red solid curve, 〈Je〉 = 1.004 mV), inhibitory
(blue solid curve, 〈Ji〉 = −5.023 mV) and null (green solid curve,
〈JØ〉 = −0.002 mV) connections. For comparison, we plot as his-
tograms of n = 200 bins the distributions of the reconstructed
synaptic weights, partitioned into three classes and colored according
to whether the corresponding entry in the ground truth connectivity

matrix was JØ = 0 mV (unconnected; green), Je = 1 mV (excitatory;
red) or Ji = −5 mV (inhibitory; blue). A perfect reconstruction would
result in delta peaks at the three synaptic strength values of the original
connectivity matrix, marked with red, blue and green dashed vertical

lines. The scale of the vertical axis is logarithmic, except for the first
decade, which is in linear scale. b, c Distributions of the identified base
rates of the neurons and weights of the self-connections approximated
with histograms and Gaussian KDEs. Black dashed vertical lines mark
the ground truth values which should have been recovered (c = 5 s−1

and Js = −25 mV respectively)
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in inverse proportion to the square root of the duration

of the recording (data not shown), however, we selected

T = 1 hour as a reasonable standard amount of input data

to mimic conditions where the duration of the recording is

limited due to experimental and computational constraints.

This circumstance thus makes it difficult to identify

weak excitatory connections unambiguously, and there-

fore an advanced approach to classification was needed

to obtain optimal network reconstruction. To this end, we

fitted a Gaussian mixture model (GMM) with a fixed num-

ber of components (n = 3) to the reconstructed synaptic

weights, assuming that synaptic connections, in general,

can be either excitatory or inhibitory, or absent. We used

an expectation-maximization (EM) algorithm to obtain a

maximum likelihood estimate (MLE) of the GMM parame-

ters (mixing weights, means and variances of the individual

components), and classified the synaptic weights accord-

ingly. The fitting and classification was performed using

a Python implementation of GMM (sklearn.mixture.GMM)

provided by the scikit-learn toolkit (Pedregosa et al. 2011).

In order to reconstruct the PDFs of the base rates and self-

connections, we used both the histogram function from the

NumPy library and the Gaussian kernel density estimation

(KDE) code from the SciPy library.

The results are illustrated in Fig. 3, which shows that

the means of the distributions were almost perfectly recon-

structed and that GMM is indeed an appropriate model

for this PDF. The recovered base rates and self-connection

weights are also more or less in agreement with the ground

truth values. The detailed classification performance break-

down is presented in Table 2, showing that the classification

of synaptic connections is nearly optimal for this dataset

(assuming that the cost of making a “false positive” error

is equal to the cost of the “false negative” error) and the

number of misclassified connections is less than 1%.

Table 2 Breakdown of classification errors for the GLM random
network

Connection type Errors FP FN ND

Excitatory 7 300 62 % 38 % 15 %

Inhibitory 0

Unconnected 7 300 38 % 62 % —

Total errors 0.73 %

The column “Errors” shows the absolute number of incorrectly classi-
fied connections belonging to each class. The columns “FP” and “FN”
show the percentage of false positives and false negatives of this num-
ber accordingly. The column “ND” is the percentage of misclassified
connections in violation of the Dale’s law (i.e. an inhibitory neuron is
assigned an outgoing excitatory connection, or vice versa), which was
not enforced for this reconstruction. The last row shows the percentage
of erroneously classified connections of the total number of possible
connections (N2 = 106 for N = 1000)

3.2 Random balanced network of LIF neurons

Having established the baseline performance in ideal con-

ditions, we designed our next experiment to gauge the

influence of mismatch between the neuron and synapse

models used to generate the data and those used to recon-

struct the network. To this end, we generated data with

the commonly used, more complex and realistic LIF neu-

ron model with α-shaped post-synaptic currents (PSCs). We

then carried out the reconstruction as before assuming our

simplified GLM neuron model and synapses with exponen-

tial post-synaptic potentials. Another important point is that

whereas in the previous experiment we assumed that the

membrane time constant τ and transmission delays between

the neurons d are known in advance, this is certainly not the

case in the laboratory setting, and hence a principled way of

estimating these parameters is required in order to analyze

real physiological data.

To generate the test data, we wired a network similar

to the one described in the previous section, but using a

LIF instead of a GLM neuron model. As before, we used

N = 1000 neurons with 80 % : 20 % ratio of excita-

tory to inhibitory cells, connection probability of ǫ = 0.2

(each connection was realized independently), transmis-

sion delay of d = 1.5 ms, simulation resolution of 
t =

0.1 ms. Synaptic weights were set to Ĵe/i = Je/i × w,

with Je = 1 mV and Ji = −5 mV. The latter (Je and

Ji) were again interpreted as peak PSP amplitudes, where

w = w(τm, τs, C) was the scaling factor (specific to the

post-synaptic neuron) selected such that an incoming spike

passing through a connection with the synaptic weight of

w would evoke a PSP with the maximum amplitude of

1 mV. The parameters of the LIF model (“iaf psc alpha”

in NEST nomenclature) were chosen as follows: mem-

brane capacitance C = 250 pF, membrane time constant

τm = 20 ms, synaptic time constant τs = 0.5 ms, refrac-

tory time tr = 2 ms, firing threshold θ = 20 mV, resting

potential Vr = 0 mV and reset to Vr after each spike.

This time, additional to the synaptic input from other sim-

ulated neurons, each neuron received independent Poisson

process excitatory inputs at a rate of νe = 1779 s−1 and

inhibitory inputs at νi = 0.2 × νe = 356 s−1. These

external inputs represent the influence of neurons that are

not part of the simulation, and are necessary to achieve

asynchronous and irregular activity as in cortical networks

(Brunel 2000). The simulation time was set to T = 2 hours

and the data was cut into training and validation parts of

Tt = Tv = 1 hour as explained below. The average neuron

firing rate was ν = 4.2 s−1, and so matched the aver-

age neuron firing rate of the network of the GLM neurons

presented above.

In order to recover the GLM parameters τ and d for

this experiment, we applied a cross-validation procedure.
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It is important to note that we are not expecting to obtain

exactly τ = τm = 20 ms and d = 1.5 ms due to mis-

match between the LIF with α-shaped PSCs and GLM with

exponential PSPs models. Instead, we want to recover the

optimal parameters τ and d for the GLM model to produce

most similar dynamics to the recorded spike trains from

the LIF model. We split the available data into a training

and a validation dataset, and performed reconstructions for

a subset of Ns = 75 neurons on the training dataset vary-

ing one parameter, while keeping the other one fixed. The

resulting parameter estimates θi were then used to calcu-

late the log-likelihood function Li on the validation dataset.

Two different datasets (training and validation) were used

in order to ensure that the chosen values of the parameters

generalize, and are not specific to the training sample. The

validation curves are shown in Fig. 4a, c (the curves for

the training dataset look identical); note that they all have

an easily identifiable maximum. Subsequently, we averaged

the locations of the maxima for all trials and performed

another cross-validation run (Fig. 4d, b) for updated values

of the parameters. Repeating this procedure of alternatively

fixing one parameter and performing cross-validation for

another one would lead us to a local extremum in the (τ, d)

parameter space. However, we opted to stop after only a few

iterations because the procedure is computationally expen-

sive, and in order to asses if a sub-optimal choice of τ =

10 ms and d = 1.7 ms would lead to acceptable estimation

results.

After determining τ = 10 ms and d = 1.7 ms through

the cross-validation procedure, we used these values to esti-

mate the connectivity and base rates. The results of the

connectivity reconstruction on the training dataset were pro-

cessed in the same way as in the previous subsection and

are presented in Fig. 5, with further details on the classifi-

cation of synaptic connections in Table 3. We find that the

reconstruction quality as defined by classification into the

groups of excitatory, inhibitory and null connections closely

matches the performance on the ideal dataset analyzed in

the previous section, despite the mismatch in models and

the suboptimal choice of τ and d . Note that in this exper-

iment, the recovered values of synaptic weights in mV

cannot be compared directly to the ones that were used in the

simulation which produced the data due to the differences

between GLM and LIF models, unlike in the first experi-

ment described in Section 3.1. However, this does not matter

for the purposes of classification.

3.3 Random balanced network with distributed

parameters

To make the reconstruction task more challenging and to

create a more realistic benchmark for our method, we

amended the network described in the previous subsection

to have different parameters Je, Ji, d , τm and τs for every

neuron and synaptic connection, sampled from uniform dis-

tributions around each respective mean value (Table 4),

Fig. 4 Cross-validation for the membrane time constant τ and trans-
mission delay d. Log-likelihood L computed on the validation dataset,
using parameters estimated from the training dataset for different
values of parameters τ and d. For each trial, L has been rescaled
according to L ← (L− maxL) × 10−3. The red star marks the aver-
age of the horizontal location of the peaks of all curves in the plot.

Each panel shows Ns = 75 parameter scans for Ne = 60 excitatory
and Ni = 15 inhibitory neurons, randomly selected from the complete
recording of N = 1000 neurons. a, b Cross-validation for τ using
fixed values of d = 1.5 ms (standard deviation σ = 1.14 ms) and
d = 1.7 ms (σ = 1.02 ms). c, d Cross-validation for d using fixed
values of τ = 20 ms (σ = 0.04ms) and τ = 10 ms (σ = 0.01 ms)
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Fig. 5 Reconstruction of a random balanced network of LIF neu-
rons with α-shaped PSCs. The reconstruction was performed for
τ = 10 ms, d = 1.7 ms (obtained through cross-validation) and
ds = 0.1 ms. a GMM fit for the PDF of the reconstructed synaptic
weight matrix (black solid curve) and individual components (colored
solid lines); colored bars under the curves show the distributions of

the reconstructed synaptic weights classified using the ground truth
synaptic connectivity matrix as in Fig. 3, approximated as histograms
of n = 200 bins. The scale of the vertical axis is logarithmic, except for
the first decade, which is in linear scale. b, c Histograms and Gaussian
KDEs approximating the PDFs of the base rates and self-connection
weights

which are the same as in the previous experiment. How-

ever, instead of trying to recover the individual values of

τi for each neuron and di for every connection, we decided

to investigate whether it would be still possible to make

a useful reconstruction assuming identical “mean” values

of τ for all neurons and d for all connections. Additional

motivation for this choice is in that cross-validation is

a computationally expensive procedure: whereas individ-

ual estimation might converge in a matter of minutes, the

amount of resources needed to scan a multidimensional

parameter grid grows quickly and becomes unmanageable.

Therefore, we performed cross-validation on a subset of

neurons as described in the previous subsection, and settled

for τ = 10 ms and d = 1.7 ms again (data not shown).

The estimation results for this dataset are shown in Fig. 6

and Table 5 (left panel and left part of the table respec-

tively). The PDFs of the reconstructed synaptic weights

were approximated using Gaussian KDE. Obviously, the

individual components of the PDF were distorted, because

instead of using optimal values for τi and di, we used rather

arbitrarily chosen fixed values for all neurons and connec-

tions. However, more importantly, as the components of the

Table 3 Breakdown of classification errors for the LIF random net-
work with α-shaped PSCs

Connection type Errors FP FN ND

Excitatory 7 020 58 % 42 % 10 %

Inhibitory 2 100 % 0 % 100 %

Unconnected 7 022 42 % 58 % —

Total errors 0.70 %

The meaning of the abbreviations is the same as in Table 2

original PDF of synaptic weights were broad distributions

rather than δ-functions, the resulting recovered distribution

components are strongly non-Gaussian. Therefore, in this

case the EM procedure for GMM fails to converge to rea-

sonable means and variances, and is no longer a viable

choice to perform the classification of connections.

However, instead of engaging in more elaborate statisti-

cal modeling to overcome this difficulty, we can take a step

back and resort to an unsupervised learning technique called

k-means clustering (which is actually a simplification of

GMM). This method rejects the probabilistic assignment of

data points to components, and instead makes the assump-

tion that each point belongs to one (and only one) cluster, to

the centroid of which it is closest in terms of Euclidean dis-

tance. This simplification leads to sub-optimal classification

Table 4 Distribution of parameter values of a random balanced
network of LIF neurons

Parameter Symbol Range Spread

Excitatory weight Je 0.8 . . . 1.2 mV ±20 %

Inhibitory weight Ji −4 . . . − 6 mV ±20 %

Transmission delay d 1 . . . 2 ms ±33 %

Membrane time constant τm 15 . . . 25 ms ±25 %

Synaptic time constant τs 0.3 . . . 0.7 ms ±40 %

All parameters except for d were sampled from continuous uniform
distributions limited by the values in the table. The transmission delay
d was sampled from a discrete distribution with the step equal to the
simulation resolution 
t = 0.1 ms. Note that the synaptic scaling
factor w depends on τm and τs of the post-synaptic neuron, and, there-
fore, the distributions for Ĵe and Ĵi (“ground truth weights”) were not
uniform
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Fig. 6 Unregularized and ℓ1-regularized reconstruction of a random
balanced network of LIF neurons with α-shaped PSCs and distributed
parameters. The colored solid step lines show PDFs approximated with
histograms of n = 200 bins of the reconstructed synaptic weights cor-
responding to the classification via k-means clustering. Vertical lines

demarking the boundaries between distributions designate the points
that are equidistant from the identified centroids. The colored bars

under the curves represent PDFs estimated by histograms of n = 200
bins, classified using the ground truth connectivity matrix, as in Figs. 3
and 5

when the underlying distributions violate these constraints,

but the resulting algorithm is fast and robust.

The Voronoi diagrams for k-means classification are rep-

resented in Fig. 6 as solid lines: the colors show which of

the three centroids is closest, in blue, green and red for

inhibitory, null and excitatory connections, respectively. By

comparing the solid curves and envelope of the colored

bars it can be seen that in this case there is a significant

overlap between the components contributed by null con-

nections and excitatory connections. Therefore, even the

most advanced classification strategies will lead to a sub-

stantially higher amount of classification errors than in the

previous experiments. The classification data using k-means

is given in Table 5 (left part).

Nevertheless, the situation can still be considerably

improved: here, we exploited the sparsity of the synaptic

connection matrix by regularizing the GLM estimation with

a ℓ1 penalty term as explained in Section 2.5. Imposing such

a prior on the estimation causes shrinking of the distribution

of null connections (Tibshirani 1996) and thus enables bet-

ter separation between the components. However, the choice

of the penalty scaling constant α is arbitrary and so we

again availed ourselves of a cross-validation procedure to

determine the optimal value for our dataset.

The results of the reconstruction for a subset of the

recorded neurons with different values of α on the training

dataset are shown in the left panel of Fig. 7. The right panel

depicts the subsequent evaluation of the log-likelihood func-

tion on the validation dataset. It is important to note that,

for optimal results, this procedure should generally be per-

formed for all neurons, and an individual regularization

coefficient should be selected for each of the cells. Instead,

in order to save computational resources, we only performed

it for a subpopulation of neurons and subsequently selected

the same value of α = 10 for all cells, which is slightly

lower than the average, to prevent excessive connection

pruning in neurons with small optimal α.

We performed a full ℓ1-regularized GLM estimation

using α = 10, still fixing the parameters to τ = 10 ms

and d = 1.7 ms, the results of which are presented in

Fig. 6, right panel and Table 5, right part. The plot shows

that the contribution by null connections indeed shrunk sig-

nificantly, and thus the amount of classification errors was

decreased almost by half. At the same time, for some neu-

rons α = 10 turned out to be too strong of a regularization

factor, and thus the estimator, in an overzealous attempt to

find a sparse solution, set to zero some of the weaker exci-

tatory and inhibitory synapse weights. This can be seen as

Table 5 Breakdown of the classification errors for the unregularized and ℓ1-regularized (α = 10) connectivity estimations of a LIF random
network with distributed parameters

Unregularized Regularized, α = 10

Connection type Errors FP FN ND Errors FP FN ND

Excitatory 57 827 84 % 16 % 17 % 33 706 16 % 84 % 3 %

Inhibitory 2 226 95 % 5 % 79 % 2 673 0 % 100 % 0 %

Unconnected 59 749 16 % 84 % — 36 379 85 % 15 % —

Total errors 5.99 % 3.64 %

The categories of errors are the same as in Table 2
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Fig. 7 Cross-validation for the ℓ1 regularization coefficient α for
fixed values of τ = 10 ms and d = 1.7 ms. Each panel shows Ns = 75
parameter scans for Ne = 60 excitatory and Ni = 15 inhibitory neu-
rons randomly selected from the complete recording of N = 1000
neurons. a The values of the rescaled log-likelihood L as a function of

the ℓ1 regularization coefficient α computed on the training dataset. b

Log-likelihood L as a function of α computed on the validation dataset
using the parameters estimated from the training dataset. The red star

marks the average of the horizontal location of the peaks of all curves

in the plot

a secondary peak of the red distribution at the origin. A

secondary peak of the blue distribution is also present, but

scarcely visible due to scale.

3.4 Synfire chain embedded in a random balanced

network

3.4.1 Construction of the network model

In this experiment, we turned to structured networks in

order to highlight the generative aspects of the proposed

GLM model and demonstrate a potential approach to the

interpretation of the recovered connectivity. One specific

structure of interest, prominent in the context of cortical net-

works, is called a “synfire chain” (Abeles 1982). The synfire

chain, consisting of consecutively linked and synchronously

activated groups of neurons, is a thoroughly studied model

of signal propagation in the cortex (Diesmann et al. 1999;

Goedeke and Diesmann 2008).

We built a simulation of a random balanced network

with an embedded synfire chain, simulated the dynamics

of this network and recorded its spiking activity, which we

then used as input data for the MLE procedure to infer

the parameters of our GLM (no regularization was applied

in this experiment, unlike in the last case presented in

Section 3.3). However, as would be the case with the exper-

imental recordings, we did not assume that we know the

“right” ordering of the neuron identifiers. We therefore sub-

jected the recovered connectivity to a clustering process in

order to reveal the trace of the synfire chain in the con-

nection matrix. After identifying the synfire chain in the

network, we performed a simulation where we stimulated

the discovered first “link” of the chain in the original and

reconstructed networks, and observed identical dynamics in

both cases.

Similarly to the previous experiments, we first con-

structed a random balanced network of LIF neurons (N =

1000) with 80 % : 20 % proportion of excitatory to

inhibitory cells. This time, we used “iaf psc delta canon”

model in NEST nomenclature; this model is different from

the standard “iaf psc delta” and “iaf psc alpha” LIF neu-

rons in that the points in time when it emits spikes are

not tied to the grid defined by the simulation resolution,

but rather are recorded precisely as they occur (Morrison

et al. 2007; Hanuschkin et al. 2010). Correspondingly, for

the external inputs, we employed the continuous time ver-

sion of the Poisson generator “poisson generator ps”. Since

this network model works in continuous time and does

not require discretization or binning of the spike data, we

wanted to examine the implications of feeding the precise

spike times to the MLE of the GLM, as opposed to data

binned to 
t = 0.1 ms simulation resolution as in the

previous experiments. The model parameters were fixed to

τm = 20 ms, τr = 2 ms, θ = 20 mV, and Vr = 0 mV.

Each neuron was set to receive a fixed number of incoming

connections (Me = 80 excitatory and Mi = 20 inhibitory),

where the pre-synaptic neurons were randomly selected

(without replacement) from the excitatory and inhibitory

populations respectively (implemented as “RandomConver-

gentConnect” function in NEST). Synaptic weights were set

to Je = 0.9 mV for excitatory, Ji = −4.5 mV for inhibitory

connections with a transmission delay of d = 1.5 ms. Addi-

tional independent Poisson process excitatory inputs were

supplied at νe = 2222 s−1 and inhibitory inputs at νi =

0.25 × νe = 556 s−1.

On top of this “background” network, we selected Nl =

10 groups (links) of N∝ = 50 neurons each (N∝
e = 40

excitatory and N∝
i = 10 inhibitory cells) and connected all

N∝
e excitatory neurons of every group to each of the N∝

neurons in the next group with J∝
e = 1.4 mV excitatory

synapses (transmission delay d = 1.5 ms). Inhibitory neu-

rons in a link of the chain do not have specific connections to

the next link in the chain (Hayon et al. 2004). No neuron in

the network was part of more than one group of the synfire

chain. This way, we created a “hidden” embedded synfire

chain, which receives inputs from the background random
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network and likewise projects outgoing connections to the

background network. When the first group of this structure

is stimulated in a coordinated fashion, the chain reliably

propagates the excitation from one group to the next until it

reaches the last one, and terminates. In the absence of such

coordinated stimulation, the synfire chain did not activate,

and only “background” activity was observed.

3.4.2 Identification of the synfire chain by connectivity

clustering

The complete network was simulated for T = 2 hours

of biological time and exhibited an average firing rate of

ν = 1.4 s−1. The synfire chain was not stimulated dur-

ing the simulation, so the spike train recordings contained

no instances of propagating synfire activity. The neuron

identifiers were randomly shuffled and the resulting spike

raster was fed into the MLE reconstruction procedure.

We reasoned that one of the most generic differentia-

tors between the neurons that belong to various groups

(inhibitory neurons and excitatory neurons that are, or are

not part of the synfire chain) is the relative strengths of the

synapses (both incoming and outgoing connections can be

considered). Therefore, we can apply a clustering algorithm

to the recovered connectivity matrix to discern between sev-

eral classes of neurons. However, most algorithms (such

as k-means or GMM, employed in the previous sections)

require the desired number of clusters to be set explicitly,

either through prior knowledge, or by applying statistical or

information theory methods to the data to get an estimation.

To circumvent this problem, we carried out an unsuper-

vised learning technique known as hierarchical clustering.

It amounts to iteratively repeating the procedure of looking

at the discovered clusters (which, in the first step, each con-

tain a single element), determining the ones that are most

similar according to a chosen metric, and merging them into

an agglomerate cluster; the process continues until a single

cluster remains. The results are visualized by constructing a

so-called “dendrogram”, which shows the discovered hier-

archy of clusters as a tree structure. Therefore, it is not

necessary to specify the number of clusters in advance, but

rather the most appropriate set of clusters can be selected

by analyzing the dendrogram after performing the cluster-

ing. This approach fits very well to an exploratory setting,

where one might wish to appreciate the entirety of possible

groupings in a compact graphical form and then choose the

one that best highlights the particular aspect of interest of

the data.

We applied hierarchical clustering to the connectivity

matrix using Ward’s minimum variance method (Ward

1963) as a criterion for choosing the pair of clusters to

merge at each step. Ward’s minimum variance criterion

minimizes the total within-cluster variance and enables the

grouping of items into sets such that they are maximally

similar to each other according to some definition of simi-

larity, which is usually expressed in form of a “dissimilarity

matrix”. We used the SciPy hierarchical clustering package

(scipy.cluster.hierarchy) to obtain the linkage and visualize

the results.

Initially, we grouped the neurons by using the outgoing

synaptic weights as the measure of dissimilarity, as shown

for the MLE-reconstructed connectivity in Fig. 8a. This

clustering enabled us to tell excitatory and inhibitory neu-

rons apart (smaller blueish group on the left, and larger

reddish group on the right of the matrix). Additionally, in

this figure, we can see eight big red squares, which represent

the links of the synfire chain. In total, nine squares should be

visible in the connectivity matrix for Nl = 10 links, because

the outgoing connections of the last link are not statistically

different from those of the background neurons.

Fig. 8 Clustering of synaptic weights uncovers the synfire chain in
the reconstructed connectivity matrix. a Connectivity is first clustered
by the outgoing connections (columns), while trying to achieve min-
imal variability inside each group. The dendrogram at the top of the
panel shows the hierarchy of the clusters with the relevant groups high-
lighted in different colors. The green cluster on the left is formed by
the inhibitory neurons. The yellow cluster at the right consists of exci-
tatory neurons that are not part of the synfire chain and so do not

have strong outgoing connections. The clusters in the middle corre-
spond to the links of the synfire chain, which coalesce as red squares

in the matrix. b Clustering by incoming connections (rows) inside the
yellow cluster of neurons reveals the last link of the chain. c Cluster-
ing by incoming connections inside the green cluster helps to identify
the inhibitory neurons that are part of the synfire chain (thin red

rectangles)
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The square missing from Fig. 8a is the last link of the

chain, which by construction cannot be detected via clus-

tering by the outgoing connections. Therefore, we subjected

the neurons that are part of the big yellow cluster (excitatory

neurons, which have not been previously identified as taking

part in any of the synfire chain links) to additional clus-

tering by incoming connections. This operation reveals the

formerly concealed last link of the chain (Fig. 8b). Finally,

we applied the same procedure to the inhibitory neurons in

the big green cluster. This reveals the inhibitory neurons that

are part of the synfire chain. These neurons receive connec-

tions from the previous link in the chain but do not send

outgoing projections to the next links, and so they are also

impossible to detect by clustering only by outgoing connec-

tions. This step completes the clustering procedure and we

arrive at the final result as shown in Fig. 8c.

In Fig. 9, the clustered matrices (middle column) are con-

trasted with the matrices in randomized (left column) and

Fig. 9 Identification of an embedded synfire chain by clustering con-
nectivity estimated from “background” spiking activity. The grouping
by rows delineates the panels produced on the basis of the ground truth
connectivity, connections estimated using the GLM model, and lagged
cross-correlation data. The grouping by columns lays out the panels
presenting the connectivity matrices where the order of the neuron
identifiers have been randomized, recovered by clustering and defined
by the sequence in which the neurons were originally wired up. a, d,

g Ground truth and MLE reconstructed synaptic weights, as well as
lagged cross-correlation coefficient matrices for randomized neuron
identifier order. c, f The red rectangles correspond to the connections
from one chain link to the next. Thin blue bands identify inhibitory
neurons that belong to the synfire chain. The wide blue band cor-
responds to the inhibitory neurons that are not part of the chain. b,

e The interpretation of the bigger red rectangles and the wide blue

band is the same as above, except that all inhibitory neurons are now
grouped together. The thin red rectangles at the bottom correspond to
the groups of inhibitory neurons in the synfire chain receiving incom-
ing connections from all excitatory neurons in the previous link. The
clustering process that produced the reordering and the dendrograms
is illustrated in steps in Fig. 8. g, h, i The lagged cross-correlation
matrix is symmetric by construction. Therefore, the dendrograms at
the top and on the right of panel h are identical (unlike b, e). Diagonal
entries (all 1) were excluded here. h, i The red rectangles correspond
to groups of neurons that exhibit positively correlated firing activity,
while inhibitory neurons display negative correlation, marked by the
blue bands
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original ordering (right column), i.e. the initial indexing of

neurons that we used to define the neuron groups of the

synfire chain network. An identical clustering proce-

dure was applied to the ground truth connectivity matrix

(Fig. 9a–c) and the one obtained from MLE estimation

using the recorded spike trains (Fig. 9d–f). Note that, as

explained at the end of Section 3.2, the reconstructed values

of the synaptic weights in the second row cannot be directly

compared to the original synaptic strengths.

The synfire chain is not apparent in the connectiv-

ity matrix in randomized ordering, neither for the ground

truth matrix (Fig. 9a), nor the MLE-estimated connectivity

(Fig. 9d). However, clustering neurons by the similarity of

incoming and outgoing connection weights reveals the syn-

fire chain substructure (Fig. 9b, e) of both excitatory and

inhibitory neurons. This shows that our clustering proce-

dure successfully recovers the group structure of the synfire

chain network. Note that in the original ordering (Fig. 9f),

the reconstructed matrix also resembles the ground truth

matrix to a great extent (Fig. 9c), as expected based on our

previous reconstruction experiments above.

3.4.3 Comparison to correlation-based connectivity

estimation

In order to compare the results obtained using our GLM

method with a well-established reference, we also per-

formed lagged cross-correlation analysis on the same

dataset. We computed the cross-correlation curves ρij (τ )

for all pairs of neurons with a bin size of 
 = 10 ms and

a maximum time lag of τmax = ±200 ms. The normal-

ized Pearson cross-correlation coefficient for a stationary

ergodic point process for sufficiently large number of sam-

pled bins K is defined as follows (Shao and Chen 1987):

ρij (τ ) =

K∑
k=0

S̃i(k
)S̃j (k
 + τ) − NiNjK
−1

√(
Ni − N2

i K−1
) (

Nj − N2
j K−1

) .

Here, S̃i(t) and S̃j (t) are binned spike trains of neurons

i and j (both K-bins long), whereas Ni and Nj are the

total numbers of spikes of the respective neurons. For

each ρ(τ) curve, we found the absolute extrema τ
ij

peak =

argmaxτ (|ρij (τ )|) and represented the results as a matrix

of lagged cross-correlation coefficients J̃ij = ρij (τ
ij

peak),

shown in Fig. 9g–i.

We performed clustering on the J̃ij matrix as previ-

ously described, however, we had to limit ourselves to

the first step only, because the cross-correlation matrix

is symmetric by construction. The matrix shows similar

patterns to the ground truth and MLE connectivity matri-

ces, albeit with substantially lower contrast. Additionally,

the direction of the synfire chain cannot be detected, due

to the symmetry of the measure mentioned above. More-

over, the individual values of the correlation matrix are

difficult to directly relate to the experimental quantities

and/or model parameters, because the correlation matrix

alone does not constitute a generative model, as we discuss

below.

3.4.4 Simulation of original and reconstructed synfire

chain networks

Finally, we compared the dynamics of the original and

reconstructed network in simulation, including occasional

stimulation of the first group of the synfire chain. In both

networks, we can identify the order of the groups of the

chain by following the links backwards starting from the

last link identified in Fig. 8b. Note that the identification

of the last link is not determined by the clustering algo-

rithm but simply by membership of the neurons as pre- and

post-synaptic partners in the strong connections represented

as red boxes in the clustered connectivity matrix. Neurons

in the last link occur just as post-synaptic targets; there is

no red box in which they occur as pre-synaptic sources.

Conversely the neurons of the first link only occur as pre-

synaptic sources. Thus the chain can be unrolled from either

end by analogous processes.

The simulation of the reconstructed GLM network was

carried out in NEST using “pp psc delta” neurons and the

recovered connectivity matrix. In order to avoid the neces-

sity of fine-tuning the parameters of the stimulation, we

additionally included a reset of the membrane potential

Ui(t) ← 0 after spike emission (option “with reset” in the

“pp psc delta” model, enabled for all neurons), which pre-

vents runaway excitation of the neurons in the network upon

delivering a strong stimulus to the synfire chain.

The results of this experiment are displayed in Fig. 10.

We used the order of the neuron identifiers in which the

cells were originally wired up to permit a clear visualiza-

tion of the activity. The raster plots show that the dynamics

of the spike patterns of ground truth and estimated network

are very similar. Generally, an estimate of a GLM based on

recorded spike trains is a generative model of the data, in

the sense that, if itself simulated, will produce similar data;

Fig. 10 demonstrates this using our embedded synfire chain

example.

4 Discussion

In the present work, we introduce a method for analysis

of parallel spike trains based upon maximum likelihood

estimation of parameters of a recurrent network of stochas-

tic generalized linear model neurons. The method not only
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Fig. 10 Synfire dynamics of the original and reconstructed networks.
The first links in the synfire chains in both original and reconstructed
network were stimulated (by injection of a strong input current) at

250 ms and 750 ms. The stimulation was performed using a large cur-
rent pulse injection into all neurons of the first link. a Original network.
b Reconstructed network

makes it possible to perform large-scale reconstruction of

the directed synaptic connectivity of neuronal circuits, but

also to recover neuronal parameters, which can be used

to obtain a dynamic (i.e. simulatable) model of the net-

work under investigation. Through radical simplification of

the single neuron model and interaction kernels as com-

pared to previous studies (Song et al. 2013; Citi et al.

2014; Ramirez and Paninski 2014), the numerics in our

method lend themselves to an efficient implementation on

both CPUs and GPUs. Moreover, the estimation procedure

is highly amenable to parallelization, which makes it possi-

ble to scale up the number of units and putative connections

dramatically.

The proposed estimation procedure operates in continu-

ous time on precise timestamps of the events (spikes), and

does not require discretization, binning or smoothing of the

data, which avoids the associated choice of bin or kernel size

and induced artifacts (Ba et al. 2014). Additionally, unlike

pairwise methods such as the coupled escape rate model

(CERM) by Kobayashi and Kitano (2013), the reconstruc-

tion takes into account the complete ensemble spike history

and thus is able to disambiguate complex indirect neural

interactions. Other recently proposed connectivity recon-

struction methods, not based on GLMs, exploit specific

properties of leaky integrate-and-fire neurons (Van Bussel

et al. 2011; Memmesheimer et al. 2014) or of linearly inter-

acting point processes (Pernice and Rotter 2013). While

this might be less clear for these methods, our procedure,

since it is a MLE of a GLM, can be shown to have the

optimality properties of becoming an asymptotically unbi-

ased, consistent and efficient estimator of the ground truth

connectivity in the limit of large sample sizes (Pawitan

2001) (provided that the suggested model is appropriate to

describe neuronal dynamics). Moreover, it is amenable to

efficient optimization via gradient ascent, since it is mathe-

matically guaranteed to converge to the global maximum of

the likelihood.

We present benchmarks against simulated random bal-

anced networks of N = 1000 neurons with known ground

truth connectivity, and show that our method achieves good

performance for realistic model parameters and plausible

amounts of data. Additionally, we performed a success-

ful reconstruction of a structured network, where a synfire

chain was embedded in a balanced network of excitatory

and inhibitory neurons. The simulation of the reconstructed

network with stimulation applied to the first link of the

synfire chain, which was identified by carrying out cluster

analysis of the recovered synaptic connectivity matrix, high-

lighted the generative properties of the GLM and showed

virtually identical network dynamics to the original net-

work. The application of cluster analysis to the recon-

structed connectivity of the synfire chain is an example of

how an inferred network model can be subdivided into inter-

acting populations of neurons. Given such a partition of the

network in functional subgroups, the activity dynamics can

be analyzed using theory of population dynamics of GLM

neurons (Deger et al. 2014).

Ideally our approach would also be validated against

experimental data. Unfortunately, no datasets are currently

available that contain long recordings of many individual

spike trains and also the connectivity between the neurons.

Indeed, generating such a dataset, although now technically

possible, for example, using a high density microelectrode

array setup (Ballini et al. 2013), would require extraordinary

investment from an experimental laboratory. It is therefore

more realistic to hope that the experimental validation of our

technique can take place opportunistically on a dataset that

is obtained for some other purpose.

In spite of the apparent simplicity of our model, the

point process GLM framework that we used is very flex-

ible and can be readily extended with additional features.

The exponential kernels that we chose to describe the

membrane filtering and nonlinear properties of the neurons

can be replaced with more elaborate ones. For instance,
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previous works have represented neuronal interaction ker-

nels by cosine “bumps” (Pillow et al. 2005), or composition

of basis functions, such as Laguerre polynomials or B-

splines (Song et al. 2013). However, in order to enable the

reconstruction of networks of thousands of units, the key

is to use functions that can both guarantee the concavity of

the likelihood, as discussed in Paninski (2004), and at the

same time make it possible to find analytical closed forms

for the resulting expressions to enable efficient evaluation.

These considerations, and the notion that the exponential

PSP is a coarse first-order approximation to the dynamics

of synaptic transmission, were the primary motivations for

us to adopt the exponential kernels in this work. However,

in Section 3.2 we have demonstrated that this simplifica-

tion does not affect the reconstruction performance for the

data generated by a more complex and realistic LIF model

with α-shaped PSCs. Besides, we argue that our model

would be most useful to investigate network effects, as

opposed to the effects explained by intricate features of the

dynamics of individual synapses, for which purpose, con-

versely, smaller-scale, but more detailed models like the one

by Song et al. (2013) might be more appropriate. Apart

from that, it is possible to add supplementary terms to the

membrane potentials of the neurons Ui(t). One such option

is to incorporate known external inputs directly into the

model, such as those occurring in experimental paradigms

widely used for studying predominantly stimulus-driven cir-

cuits like the retina (Pillow et al. 2008). Another option is to

add unknown, common external inputs (Kulkarni and Panin-

ski 2007; Vidne et al. 2012) in order to treat non-stationarity

in the data.

A further possibility to improve the results of the esti-

mation lies in enforcing Dale’s law: neurons can be either

inhibitory or excitatory, and they cannot form connections

of both types at the same time (Eccles 1976). Unfortunately,

the mathematical re-formulation of this law in the context

of our model (the sign of all elements in each column of

the synaptic weight matrix Jij should be identical) turns

the original problem into a non-convex and non-separable

one. Instead of trying to solve this much more difficult opti-

mization problem, an approximate, greedy method can be

implemented as outlined in Mishchenko et al. (2011). This

involves first solving the original problem, then classifying

the neurons as excitatory, inhibitory or unassigned based

on the discovered synaptic weights, and, finally, imposing

corresponding box constraints on the relevant elements of

the Jij rows, which neither compromises the convexity, nor

the separability properties. However, in our case, the major

source of errors is the overlap between the unconnected and

excitatory distributions, which generates non-Dale connec-

tions as a consequence. The benchmarks that we conducted

show that very few of the errors are of the non-Dale cate-

gory (see Tables 2, 3, 5), so any gain from imposing a Dale

condition would be minimal and does not justify the addi-

tional complexity incurred. Therefore, effort should primar-

ily be focused on tightening distributions.

In our GLM, we have used the exponential link function

to map the membrane potential Ui(t) to the instantaneous

firing rate λi(t). The exponential function is the canonical

link function for the Poisson distribution, and it is com-

monly used in the single neuron modelling context, e.g. in

the spike response model (Gerstner et al. 2014). Further rea-

sons for us to choose an exponential function as the link

function were as follows: 1) it has been previously shown

(Jolivet et al. 2006; Mensi et al. 2012) that an exponen-

tial function is a good model for the nonlinear relationship

between the conditional intensity of spike emission and

the distance from the voltage threshold; 2) an exponential

nonlinearity satisfies the sufficient condition established in

Paninski (2004) for the likelihood of the model to be con-

cave; 3) this choice makes it possible for us to obtain the

closed form for the likelihood function as an exponential

integral Ei (10), which is crucial here for reasons of com-

putational efficiency. If the closed form cannot be obtained,

then one either needs to discretize the likelihood integral,

possibly using clever corrections to improve the accuracy

(Citi et al. 2014), or, if the conditional intensity function can

be shown to be piecewise smooth like in our case, attempt to

get better precision and performance by applying quadrature

methods to the smooth segments (Mena and Paninski 2014).

Unfortunately, both approaches are still not fast enough for

large GLMs such as ours. Other link functions such as logit

and probit functions are also commonly used in the context

of GLMs and have the property of being bounded (Song

et al. 2013). Indeed, within our framework, it is possible to

adopt a different link function instead of the canonical one.

However, both logit and probit functions in particular are

ruled out by the concavity condition (Paninski 2004), being

saturating (“sigmoidal”) nonlinearities. In practice, how-

ever, we did not experience any substantial issues due to the

exponential function being positively unbounded. The box

constraints that we imposed on the base rate and synaptic

weights served only to repel the optimizer from the borders

of the feasible region, where it might occasionally find itself

due to an unfortunate combination of numerical artifacts.

In none of the results presented in the paper did the recov-

ered parameters turn out to be equal to the values of the box

constraints.

Throughout this study, we have assumed that we have

simultaneous access to all the spike trains of a neuronal

population. For this case, and for a small number of

neurons, it was shown that connectivity estimation via

GLM can recover anatomical connectivity (Gerhard et al.

2013), as opposed to other methods, which mostly uncover

“functional” or “effective” connections (Stevenson et al.

2008) that do not necessarily correspond to real synapses.
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Here, we scaled the GLM approach up to large networks.

However, in many experiments, such as in cortical multi-

electrode array recordings (Truccolo et al. 2010), a complete

recording of all neurons in a network is not feasible, but

rather only parts of a neuronal network can be observed.

With respect to the inference of connectivity from activ-

ity this is known as the problem of undersampling (Kim

et al. 2011; Gerhard et al. 2011; Shimazaki et al. 2012;

Lütcke et al. 2013): an unobserved neuron might excite sev-

eral observed ones reliably and frequently. Even if these

observed neurons are not synaptically connected to each

other, connectivity inference methods that do not account

for hidden units would infer connections among them to

explain the correlations in their activity. Thus, we gen-

erally expect the reconstruction accuracy of our method

to decrease in case of undersampling of the network, as

the input from unobserved units will be “explained” by

non-existing connections (see also Appendix C.2). Other

experimental preparations, such as neuronal cultures on

substrate-integrated multi-electrode arrays, are amenable to

more complete recordings (Ballini et al. 2013), possibly

enabling direct interpretation of the recovered connectivity.

We emphasize that our method is practical for networks

of up to thousands of neurons, and yet we recognize that

the machines featuring a large number of cores (> 105),

such as the ones we used during the development phase of

this project, are generally only to be found at major research

institutions. These supercomputing facilities are becom-

ing increasingly available to neuroscience researchers. For

example, researchers based in Germany may take advan-

tage of the twice-yearly calls for applications for computing

time on the supercomputers at Jülich Supercomputing Cen-

tre7, at no cost to the researcher if accepted. European

researchers outside Germany can apply analogously for

resources through PRACE,8 and labs based in the US can

apply for time at the NSF facilities.9 Additionally, initiatives

such as the Human Brain Project10 and the Neuroscience

Gateway11 aim to make such resources more accessible to

the neuroscience community. Even so, core-hour allocations

often require a thorough justification and quantitative evi-

dence of the scaling properties of the algorithm, both of

which entail significant investment from the researcher in

preparing the application.

Therefore, we also investigated the option of offload-

ing the computations to the kinds of GPGPU accelerators

that are currently available off-the-shelf. We implemented

7http://www.fz-juelich.de/ias/jsc/EN/Home/home node.html
8http://www.prace-ri.eu
9https://www.xsede.org
10https://www.humanbrainproject.eu
11http://www.nsgportal.org

a naive version of a GPU port, in which the compu-

tation kernels originally written in C++ and parallelized

using OpenMP to use multiple threads were rewritten using

CUDA technology by Nvidia Corporation to use a GPU

instead. In order to assess the performance of this port, we

measured the time it takes to complete the reconstruction

of the incoming synapses of one neuron of a network of a

thousand of neurons, such as those presented in Section 3.

Both applications were tested on an IBM System x iData-

Plex dx360 M4 machine featuring two Intel Xeon X5650

processors (6 cores, 12 threads) and one NVIDIA Tesla

M2070 (Fermi microarchitecture). The CPU version took 38

minutes to converge in 433 iterations, while the GPU port

required 49 minutes and 427 iterations; the obtained log-

likelihood values were identical up to an absolute difference

of ≃ 4 × 10−10 and a relative difference of ≃ 3 × 10−15.

This way, the speedup achieved by offloading the calcula-

tions to a single GPU as compared to a single CPU thread

amounted to approximately a factor of 18. However, profil-

ing revealed, that around 70 % of the runtime of the GPU

port was not actually spent doing useful calculations, but

rather transferring νij vectors from the CPU to the GPU

memory. Therefore, simply switching to a better GPU, such

as the ones based on the Kepler microarchitecture, providing

double of the data transfer bandwidth as compared to Fermi,

will increase the speedup for a naive GPU port up to a factor

of 28. Furthermore, we are currently investigating algorith-

mic improvements that completely remove the need for data

transfers by storing νij vectors directly in the GPU memory

using specialized compression. Extrapolating on the perfor-

mance from the proof-of-concept kernels we implemented,

a future GPU realization may perform at least as fast as ∼ 55

generic CPU threads, and require only a fraction of RAM

as compared to the CPU-only realization by storing all of

the working data in the onboard GPU memory. The com-

plete GPU port of the method, along with its core algorithms

and performance benchmarks, will be described in detail in

a separate publication. The development of a substantially

more efficient implementation will enable us to thoroughly

investigate the limits of our approach in a way that is out

of scope in the current study due to computational expense.

One obvious area for investigation would be the degradation

of performance in the case of undersampling as discussed

above. Other areas worthy of further examination are the

effects on misclassification error rates of correlated external

inputs and non-stationarities in the recorded activity.

It is also important to mention that anatomically, cor-

tical neurons receive on the order of 103-104 incoming

synapses (Braitenberg and Schüz 1991). In our demon-

strations, we assumed that the network might be fully

connected, or, in other words, each of the N = 1000 neu-

rons can possibly receive up to 103 incoming synapses from

all other neurons, yielding O(N2 = 106) parameters to

http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
http://www.prace-ri.eu
https://www.xsede.org
https://www.humanbrainproject.eu
http://www.nsgportal.org


J Comput Neurosci (2015) 39:77–103 99

constrain in total. However, given a substantially larger

amount of recording channels, such as N > 104, if such data

becomes available, this assumption is no longer reasonable.

Instead, the data can be pre-processed to purge unlikely

incoming connections, from N down to the most likely

103-104 putative synapses per neuron, thereby avoiding the

quadratic explosion in the number of model parameters. We

suggest that such pre-processing can be performed using

computationally efficient pairwise linear methods, such as

cross-correlation or cross-coherence, or various information

theory metrics (Staniek and Lehnertz 2008). This way, while

recovering the connectivity of even larger networks would

still require a linear increase in computational resources (or

wallclock time), the challenge to further scale the model up

to a larger number of putative incoming synapses can be

alleviated.

Finally, we would like to stress that even though net-

work models that can be directly simulated as extracted

from the data are interesting in themselves for further

studies, the proposed method also has potential to pro-

vide insights into the network-wide plasticity of synaptic

connectivity. Even though in our method we assume that

the connectivity is fixed over the time of a recording,

estimated synaptic weights can be tracked accross sev-

eral recordings performed in a time-lapse fashion. Such

data could be relevant for models of synaptic plasticity

over long time-scales (structural plasticity) (Escobar et al.

2008; Deger et al. 2012), which currently have to rely on

statistics of synapse numbers without temporal informa-

tion, or time-lapse imaging of small numbers of individual

synapses.
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Appendix

The spike data used in this paper and the code that imple-

ments our connectivity reconstruction method are publicly

available for download at http://dx.doi.org/10.5281/zenodo.

17662 and http://dx.doi.org/10.5281/zenodo.17663 respec-

tively.

A: Concavity of the point process log-likelihood

The derivative of the log-likelihood Li (2) with respect to

Jij is

∂Li

∂Jij

=

qi∑

k=1

νij (ti,k) −

∫ T1

T0

λi(t)νij (t)dt ,

cf. (12), with νij (t) = (hi ∗ sj )(t) and νi0 = 1 (11). The

second derivative is then simply

∂

∂Jik

∂

∂Jij

Li = −

∫ T1

T0

λi(t)νij (t)νik(t)dt . (18)

Using these expressions, in the following we give a proof,

specific to our model, that Li is concave. A condition for

the concavity of the log-likelihood of more general point

process GLMs is given in Paninski (2004).

A twice differentiable function of several variables is

concave if and only if its Hessian matrix H is nega-

tive semi-definite. In terms of the parameter vector θi =

(Ji0, . . . JiN ), the Hessian matrix of Li has the elements

(18). This matrix is negative semi-definite if xT Hx ≤ 0 for

all real vectors x. We evaluate this expression as

xT
Hx =

∑

j

xj

∑

k

Hjkxk =
∑

j,k

xjxk

∂

∂Jik

∂

∂Jij

Li

= −

∫ T1

T0

λi(t)
∑

k

xkνik(t)
∑

j

xjνij (t)dt

= −

∫ T1

T0

λi(t)V
2
i (t)dt ≤ 0 , (19)

where Vi(t) is defined analogously to Ui(t) (3) as∑N
j=0xjνij (t), and λi(t) ≥ 0. Hence H is negative semi-

definite, and thus Li is concave in the parameters θi .

B: Closed form for the log-likelihood integral

To evaluate Eq. (9), we need to compute the term
∫ tk+1

tk

exp

{
(Ui(tk) − Ji0)e

−
t−tk
τi

}
dt .

Let us introduce the shorthand g(t) = (Ui(tk) − Ji0)e
−

t−tk
τi .

We need to show that the exponential integral Ei(x) =

http://dx.doi.org/10.5281/zenodo.17662
http://dx.doi.org/10.5281/zenodo.17662
http://dx.doi.org/10.5281/zenodo.17663
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−
∫ ∞
−x

e−t

t
dt is a primitive of exp{g(t)} for tk ≤ t < tk+1. We

differentiate

d

dt
Ei(g(t)) = −

d

dt

∫ ∞

−g(t)

e−u

u
du =

eg(t)

−g(t)

(
−

d

dt
g(t)

)

= −
1

τi

eg(t) .

Thus, we can evaluate the integral as
∫ tk+1

tk
exp {g(t)} dt =

−τi Ei(g(t))|
tk+1
tk

, and so follows (10).

C: Spot checks for several degrees

of undersampling and sparsity

C.1: Chance level of the misclassification error rate

Connections in our networks are formed with a connection

probability p. A fraction fe of neurons is excitatory, the

remainder fi = 1 − fe is inhibitory. To assess the qual-

ity of our connectivity reconstruction, here we compute the

misclassification error rate (MER) of a random connection

classifier that maintains p, fe and fi. We call this the chance

level MER0.

Misclassification errors can occur for three types of

synaptic connections: excitatory, inhibitory and null con-

nections. Let us take the example of the excitatory type.

We expect p(feN)(N − 1) excitatory connections, each

of which is misclassified (false negative) with probability

(1−pfe), because with probability pfe it would be classified

correctly as excitatory. Analogously the expected number of

misclassifications of each type is given by

• excitatory: ne = p(feN)(N − 1)(1 − pfe);
• inhibitory: ni = p(fiN)(N − 1)(1 − pfi);
• null: nn = (1 − p)N(N − 1)p .

The total rate of errors is then the expected number of errors,

summed over types, divided by the total number of possible

connections. This yields the following expression:

MER0 =
ne + ni + nn

N(N − 1)
= p

(
2 − p(1 + f 2

e + f 2
i )

)
, (20)

which is independent of N , but depends on the connec-

tion probability p and the ratio of excitatory to inhibitory

neurons.

C.2: Effects of undersampling

To assess the degree to which undersampling deteriorates

the quality of the network reconstructions, we performed

several experiments with different datasets, each being a

subsample of the original one presented in Section 3.1. In

each experiment we randomly selected a fraction of neurons

(maintaining the ratio of excitatory and inhibitory neurons)
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Fig. 11 Misclassification error rate as a function of the number of
sampled neurons. The reconstructions on the partial datasets were per-
formed with the parameters and data presented in Section 3.1 (black

dots). The full network consists of N = 1000 neurons, partial datasets
consist of the spike trains of a smaller number of randomly selected
neurons (maintaining the ratio of excitatory and inhibitory cells).
Annotations give the percentage of neurons sampled to the full net-
work size. The chance level MER (20) was calculated for p = 0.2,
fe = 0.8 and fi = 0.2 (MER0 = 33.28 %; dashed line). The synaptic
weights were classified using k-means as described in Section 3.3

that are fed into the optimizer. The results are shown in

Fig. 11. In contrast to Fig. 3, here the connections were

classified using k-means as described in Section 3.3, which

is more robust in the undersampled cases. Therefore, for

the case of N = 1000 neurons the MER is slightly higher

than when classified using GMM, as reported in Table 2.

As expected, the MER of the partial network increased as

we decreased the number of neurons that were visible to the

GLM (undersampling). This was largely due to the broad-

ening of the distribution of the synaptic weights for null

connections (data not shown, cf. Figure 3). Yet, in all cases,

synapse classification based on the reconstruction method

was substantially better than random classification of the

synapses, see Appendix C.1 for the derivation of the chance

level MER.

Table 6 Breakdown of classification errors for the GLM random
network with sparsity p = 0.1

Connection type Errors FP FN ND

Excitatory 2 554 67 % 33 % 19 %

Inhibitory 0

Unconnected 2 554 33 % 67 % —

Total errors 0.26 %

The meaning of the abbreviations is the same as in Table 2
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C.3: Effects of varying connection sparsity

In this experiment we performed the reconstruction on a

dataset simulated as described in Section 3.1, but with con-

nection probability of p = 0.1 instead of p = 0.2. The

results are presented in Table 6. Note that whereas the

quality of the reconstruction is substantially better than for

p = 0.2 (shown in Table 2), the chance level of the mis-

classification error rate for this network with p = 0.1 is

MER0 = 18.32 %, rather than MER0 = 33.28 % for the

network with p = 0.2. Still, also in relative terms to MER0,

the reconstruction is more accurate in this case of increased

connection sparsity.
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Lütcke, H., Gerhard, F., Zenke, F., Gerstner, W., & Helmchen, F.
(2013). Inference of neuronal network spike dynamics and topol-
ogy from calcium imaging data. Front. Neural. Circuits, 7, 201.
doi:10.3389/fncir.2013.00201.

McCullagh, P., & Nelder, J.A. (1989). Generalized linear models, 2nd

edn. No. 37 in Monographs on statistics and applied probability.
London: Chapman and Hall.

Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs
and variable selection with the Lasso. The Annals of Statistics,
34(3), 1436–1462. doi:10.1214/009053606000000281.

Memmesheimer, R.M., Rubin, R., Olveczky, B.P., & Sompolinsky, H.
(2014). Learning precisely timed spikes. Neuron, 82(4), 925–938.
doi:10.1016/j.neuron.2014.03.026.

Mena, G., & Paninski, L. (2014). On quadrature methods for refractory
point process likelihoods. Neural Computation, 26(12), 2790–
2797. doi:10.1162/NECO a 00676.

Mensi, S., Naud, R., Pozzorini, C., Avermann, M., Petersen, C.C.H.,
& Gerstner, W. (2012). Parameter extraction and classification
of three cortical neuron types reveals two distinct adaptation
mechanisms. Journal of Neurophysiology, 107(6), 1756–1775.
doi:10.1152/jn.00408.2011.

Mishchenko, Y., Vogelstein, J., & Paninski, L. (2011). A Bayesian
approach for inferring neuronal connectivity from calcium fluo-
rescent imaging data. Annals of Applied Statistics, 5(2B), 1229–
1261. doi:10.1214/09-AOAS303.

Morrison, A., Straube, S., Plesser, H.E., & Diesmann, M. (2007).
Exact subthreshold integration with continuous spike times in
discrete-time neural network simulations. Neural Computation,
19(1), 47–79. doi:10.1162/neco.2007.19.1.47.

Nam, Y., & Wheeler, B.C. (2011). In vitro microelectrode
array technology and neural recordings. Critical

Reviews in Biomedical Engineering, 39(1), 45–61.
doi:10.1615/CritRevBiomedEng.v39.i1.40.

Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S.,
Wang, Q., Lau, C., Kuan, L., Henry, A.M., Mortrud, M.T., Ouel-
lette, B., Nguyen, T.N., Sorensen, S.A., Slaughterbeck, C.R.,
Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa,
K.E., Bohn, P., Joines, K.M., Peng, H., Hawrylycz, M.J., Phillips,
J.W., Hohmann, J.G., Wohnoutka, P., Gerfen, C.R., Koch, C.,
Bernard, A., Dang, C., Jones, A.R., & Zeng, H. (2014). A
mesoscale connectome of the mouse brain. Nature, 508(7495),
207–214. doi:10.1038/nature13186.

Okatan, M., Wilson, M.A., & Brown, E.N. (2005). Analyzing func-
tional connectivity using a network likelihood model of ensemble
neural spiking activity. Neural Computation, 17(9), 1927–1961.
doi:10.1162/0899766054322973.

Paninski, L. (2004). Maximum likelihood estimation of cascade point-
process neural encoding models. Network, 15(4), 243–262.

Pawitan, Y. (2001). In all likelihood: statistical modelling and infer-

ence using likelihood. London: Oxford University Press.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Research, 12,
2825–2830.

Perin, R., Berger, T.K., & Markram, H. (2011). A synaptic organizing
principle for cortical neuronal groups. Proceedings of the National

Academy of Sciences of the United States of America, 108(13),
5419–5424. doi:10.1073/pnas.1016051108.

Pernice, V., & Rotter, S. (2013). Reconstruction of sparse connectivity
in neural networks from spike train covariances. Journal of Sta-

tistical Mechanics: Theory and Experiment, 2013(03), P03,008.
doi:10.1088/1742-5468/2013/03/p03008.

Pillow, J.W., Paninski, L., Uzzell, V.J., Simoncelli, E.P., &
Chichilnisky, E.J. (2005). Prediction and decoding of retinal
ganglion cell responses with a probabilistic spiking model. Jour-

nal of Neuroscience, 2547, 11,003–11,013. doi:10.1523/JNEU-
ROSCI.3305-05.2005.

Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M.,
Chichilnisky, E.J., & Simoncelli, E.P. (2008). Spatio-temporal cor-
relations and visual signalling in a complete neuronal population.
Nature, 454(7207), 995–999. doi:10.1038/nature07140.

Ramirez, A.D., & Paninski, L. (2014). Fast inference in
generalized linear models via expected log-likelihoods.
Journal of Computational Neuroscience, 36(2), 215–234.
doi:10.1007/s10827-013-0466-4.

Ravikumar, P., Wainwright, M.J., & Lafferty, J.D. (2010). High-
dimensional Ising model selection using ℓ1-regularized
logistic regression. Annal of Statistics, 38(3), 1287–1319.
doi:10.1214/09-AOS691.

http://dx.doi.org/10.4236/msa.2013.48059
http://dx.doi.org/10.1088/1367-2630/10/1/015007
http://dx.doi.org/10.1016/j.conb.2009.09.003
http://dx.doi.org/10.3389/fninf.2010.00113
http://dx.doi.org/10.1146/annurev.neuro.051508.135241
http://dx.doi.org/10.1023/B:JCNS.0000037682.18051.5f
http://dx.doi.org/10.1016/S1053-8119(03)00112-5
http://dx.doi.org/10.1007/s10827-006-7074-5
http://dx.doi.org/10.1371/journal.pcbi.1001110
http://dx.doi.org/10.1007/s10827-013-0443-y
http://dx.doi.org/10.1080/09548980701625173
http://dx.doi.org/10.1007/bf01589116
http://dx.doi.org/10.3389/fncir.2013.00201
http://dx.doi.org/10.1214/009053606000000281
http://dx.doi.org/10.1016/j.neuron.2014.03.026
http://dx.doi.org/10.1162/NECO_a_00676
http://dx.doi.org/10.1152/jn.00408.2011
http://dx.doi.org/10.1214/09-AOAS303
http://dx.doi.org/10.1162/neco.2007.19.1.47
http://dx.doi.org/10.1615/CritRevBiomedEng.v39.i1.40
http://dx.doi.org/10.1038/nature13186
http://dx.doi.org/10.1162/0899766054322973
http://dx.doi.org/10.1073/pnas.1016051108
http://dx.doi.org/10.1088/1742-5468/2013/03/p03008
http://dx.doi.org/10.1523/JNEUROSCI.3305-05.2005
http://dx.doi.org/10.1038/nature07140
http://dx.doi.org/10.1007/s10827-013-0466-4
http://dx.doi.org/10.1214/09-AOS691


J Comput Neurosci (2015) 39:77–103 103

Schmidt, M., Fung, G., & Rosales, R. (2009). Optimization meth-

ods for ℓ1-regularization. Tech. Rep. TR-2009-19, Univer-
sity of British Columbia. http://www.cs.ubc.ca/cgi-bin/tr/2009/
TR-2009-19.

Shao, X.S., & Chen, P.X. (1987). Normalized auto- and cross-
covariance functions for neuronal spike train analysis. The Inter-

national Journal of Neuroscience, 34(1-2), 85–95.
Shimazaki, H., Amari, S.I., Brown, E.N., & Grün, S. (2012). State-

space analysis of time-varying higher-order spike correlation for
multiple neural spike train data. PLoS Computational Biology, 83,
e1002,385. doi:10.1371/journal.pcbi.1002385.

Simoncelli, E., Paninski, L., Pillow, J., & Schwartz, O. (2004). The

New Cognitive Neurosciences. Cambridge, MA, London, Eng-
land: MIT Press. chap Characterization of neural responses with
stochastic stimuli. Bradford Books.

Snyder, D.L., & Miller, M.I. (1991). Random Point Processes in Time

and Space (Springer Texts in Electrical Engineering). New York:
Springer. doi:10.1007/978-1-4612-3166-0.

Song, D., Wang, H., Tu, C.Y., Marmarelis, V.Z., Hampson, R.E., Dead-
wyler, S.A., & Berger, T.W. (2013). Identification of sparse neural
functional connectivity using penalized likelihood estimation and
basis functions. Journal of Computational Neuroscience, 35(3),
335–357. doi:10.1007/s10827-013-0455-7.

Spira, M.E., & Hai, A. (2013). Multi-electrode array technologies for
neuroscience and cardiology. Nature Nanotechnology, 8(2), 83–
94. doi:10.1038/nnano.2012.265.

Staniek, M., & Lehnertz, K. (2008). Symbolic transfer
entropy. Physical Review Letters, 100(15), 158,101.
doi:10.1103/PhysRevLett.100.158101.

Stevenson, I.H., Rebesco, J.M., Miller, L.E., & Körding, K.P.
(2008). Inferring functional connections between neu-

rons. Current Opinion in Neurobiology, 18(6), 582–588.
doi:10.1016/j.conb.2008.11.005.

Stevenson, I.H., Rebesco, J.M., Hatsopoulos, N.G., Haga, Z., Miller,
L.E., & Körding, K.P. (2009). Bayesian inference of functional
connectivity and network structure from spikes. IEEE Trans-

actions on Neural Systems and Rehabilitation, 17(3), 203–213.
doi:10.1109/TNSRE.2008.2010471.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
J Roy Stat Soc B Met, 267–288.

Truccolo, W., Eden, U.T., Fellows, M.R., Donoghue, J.P., & Brown,
E.N. (2005). A point process framework for relating neural spik-
ing activity to spiking history, neural ensemble, and extrinsic
covariate effects. Journal of Neurophysiology, 93(2), 1074–1089.
doi:10.1152/jn.00697.2004.

Truccolo, W., Hochberg, L.R., & Donoghue, J.P. (2010). Collective
dynamics in human and monkey sensorimotor cortex: predict-
ing single neuron spikes. Nature Neuroscience, 13(1), 105–111.
doi:10.1038/nn.2455.

Van Bussel, F., Kriener, B., & Timme, M. (2011). Infer-
ring synaptic connectivity from spatio-temporal spike
patterns. Frontiers in Computational Neuroscience, 5, 3.
doi:10.3389/fncom.2011.00003.

Vidne, M., Ahmadian, Y., Shlens, J., Pillow, J.W., Kulkarni, J.,
Litke, A.M., Chichilnisky, E.J., Simoncelli, E., & Panin-
ski, L. (2012). Modeling the impact of common noise
inputs on the network activity of retinal ganglion cells.
Journal of Computational Neuroscience, 33(1), 97–121.
doi:10.1007/s10827-011-0376-2.

Ward, J.H. (1963). Hierarchical grouping to optimize an objec-
tive function. JJournal of the American Statistical Association,
58(301), 236–244.

http://www.cs.ubc.ca/cgi-bin/tr/2009/TR-2009-19
http://www.cs.ubc.ca/cgi-bin/tr/2009/TR-2009-19
http://dx.doi.org/10.1371/journal.pcbi.1002385
http://dx.doi.org/10.1007/978-1-4612-3166-0
http://dx.doi.org/10.1007/s10827-013-0455-7
http://dx.doi.org/10.1038/nnano.2012.265
http://dx.doi.org/10.1103/PhysRevLett.100.158101
http://dx.doi.org/10.1016/j.conb.2008.11.005
http://dx.doi.org/10.1109/TNSRE.2008.2010471
http://dx.doi.org/10.1152/jn.00697.2004
http://dx.doi.org/10.1038/nn.2455
http://dx.doi.org/10.3389/fncom.2011.00003
http://dx.doi.org/10.1007/s10827-011-0376-2

	Reconstruction of recurrent synaptic connectivity of thousands of neurons from simulated spiking activity
	Abstract
	Introduction
	Methods
	Point process likelihood of generalized linear models
	Conditional intensity model for a recurrent neural network
	Closed form expressions
	Recurrence formula for the membrane potential
	Evaluating the likelihood
	Evaluating the gradient

	Handling transmission delays
	Regularization of the model
	Practical implementation
	Efficient evaluation
	Parallelization and distribution
	Technical realization


	Results
	Random balanced network of GLM neurons
	Random balanced network of LIF neurons
	Random balanced network with distributed parameters
	Synfire chain embedded in a random balanced network
	Construction of the network model 
	Identification of the synfire chain by connectivity clustering
	Comparison to correlation-based connectivity estimation
	Simulation of original and reconstructed synfire chain networks


	Discussion
	Acknowledgments
	Conflict of interests
	Open Access
	Appendix
	Appendix A Concavity of the point process log-likelihood
	 Closed form for the log-likelihood integral
	Appendix B Closed form for the log-likelihood integral
	 Spot checks for several degrees of undersampling and sparsity
	Appendix C Spot checks for several degrees of undersampling and sparsity
	C.1: Chance level of the misclassification error rate
	C.2: Effects of undersampling
	C.3: Effects of varying connection sparsity
	References


