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ABSTRACT
In this paper we address the problem of compressive sens-
ing with multiple measurement vectors. We propose a re-
construction algorithm which learns sparse structure inside
each sparse vector and among sparse vectors. The learning
is based on a cross entropy cost function. The model is the
Bidirectional Long Short-Term Memory that is deep in time.
All modifications are done at the decoder so that the encoder
remains the general compressive sensing encoder, i.e., wide
random matrix. Through numerical experiments on a real
world dataset, we show that the proposed method outperforms
the traditional greedy algorithm SOMP as well as a number
of model based Bayesian methods including Multitask Com-
pressive Sensing and Compressive Sensing with Temporally
Correlated Sources. We emphasize that since the proposed
method is a learning based method, its performance depends
on the availability of training data. Nevertheless, in many
applications huge dataset of offline training data is usually
available.1

Index Terms— Deep Learning, Compressive Sensing,
Sparse Reconstruction.

1. INTRODUCTION

Compressive Sensing (CS) [1] is a framework where both
sensing and compression are performed at the same time.
This has been made possible by exploiting the sparsity of a
signal, either in time or spatial domain, or in a transform do-
main like DCT or Wavelet. Given the fact that there are many
natural signals that are sparse in one of the above domains,
CS has found numerous applications.

In compressive sensing with one measurement vector, in-
stead of acquiring N samples of a signal x ∈ <N×1, M ran-
dom measurements are acquired where M < N :

y = Φx (1)

where y ∈ <M×1 is the known measured vector and Φ ∈
<M×N is a wide random measurement matrix. To find a
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unique x given y and Φ, x must be sparse enough in a given
basis Ψ. This means that

y = Φ(Ψs) = As (2)

where A = ΦΨ. This problem is also called the Single Mea-
surement Vector (SMV) problem.

In the Multiple Measurement Vectors (MMV) problem,
L measurement vectors {yi}i=1,2,...,L are given.The goal is
to jointly reconstruct L sparse vectors {si}i=1,2,...,L from the
measurement vectors. Let the L sparse vectors and the L mea-
surement vectors be arranged as columns of matrices S =
[s1, s2, . . . , sL] and Y = [y1,y2, . . . ,yL], respectively. In
the MMV problem, S is to be reconstructed given Y and A:

Y = AS (3)

To reconstruct S in (3), there are a number of approaches
in the literature, the greedy approach [2] where a subset se-
lection is performed that is not necessarily optimal, the re-
laxed mixed norm minimization approach [3] where by relax-
ing `0,p to `1,p, a convex problem is solved and the Bayesian
approach [4, 5, 6] where given a prior, i.e., Y is observed and
S is sparse, a posterior distribution is estimated for the entries
of S.

Recently a number of methods based on Deep Learning
[7, 8, 9, 10, 11, 12] have been proposed for the MMV problem
[13, 14, 15, 16]. These methods are learning based methods
that exploit the structure of the sparse vectors as well as their
sparsity. In [13], a Deep Stacking Network (DSN) [17] was
used to extract the structure of the sparse vectors in S. To find
the parameters of the DSN, a Restricted Boltzmann Machine
(RBM) was used for pre-training and then fine tuning was
performed. In [14], a different type of MMV problem where
the sparse vectors are not jointly sparse was studied. A deep
architecture based on Long Short-Term Memory (LSTM)[18]
was used to capture the dependency among sparsity patterns
of different channels.

In this paper, we address the MMV problem where the
sparsity patterns in different channels are not much different.
For example, all channels are DCT or Wavelet transforms of
images. This problem has wide practical applications. Given



the fact that in the MMV problem, usually all measurement
vectors are given, we can use both past and future informa-
tion about the structure of the sparse vectors in S. This means
that we can perform support prediction for a given column of
S, based on both previous columns and future columns. This
calls for a bidirectional learning architecture. We propose a
sparse reconstruction algorithm that addresses this problem.
We experimentally show that by using a bidirectional learn-
ing method in the proposed reconstruction algorithm, the pro-
posed method outperforms [5, 6, 13] and [14].

2. THE PROPOSED METHOD

As a high level picture, we can think of a greedy sparse recon-
struction problem as a classification task plus a least squares
step. Different classes in this task are different atoms of a
dictionary, i.e., different columns of the matrix A in (3). The
goals of a sparse reconstruction method are: (i): to find the
“correct” subset of classes (atoms) and report them as the
support of the reconstructed sparse vector(s). (ii): find the
values of corresponding entries in sparse vector(s). In many
applications a huge amount of data is available. For example,
an offline dataset, recorded image frames of a security cam-
era, recorded biological signals of a patient over time. Now
the question is, considering the recent success of deep learn-
ing methods in difficult classification tasks on huge datasets
[7, 19, 9], can we use these methods to extract high level fea-
tures for above sparse reconstruction classification task?

We continue the presentation using the diagram of the pro-
posed method in Fig. 1. If we detect the classes (the non-zero
entries) one by one, we can use the remaining residuals af-
ter finding each class (non-zero entry) as an appropriate input
to a deep model for feature extraction. The extracted feature
vectors are represented by {−→v1,

−→v2, . . . ,
−→vL} for left-to-right

model and {←−v1,
←−v2, . . . ,

←−vL} for right-to-left model in Fig. 1.
Since we are interested in reconstructing multiple sparse

vectors, it is desirable to have a model that generates high
level feature vectors by treating residual vectors of differ-
ent sparse vectors as a sequence. A good candidate for this
sequence model is Long Short-Term Memory (LSTM) [18]
given its recent success in difficult sequence modeling tasks
[20, 21]. Since in the MMV problem, we usually have access
to measurement vectors from the previous and future columns
of Y in (3), it is more efficient to use a bidirectional model
that captures the features from both left and right columns.
Feature vectors from both directions can be concatenated for
the next step of the algorithm.

We initialize the residual vector, r, for each channel by
the measurement vector, y, of that channel. These resid-
ual vectors, represented as r1, r2, . . . , rL in Fig. 1, serve
as the inputs to the bidirectional LSTM model. The bidirec-
tional LSTM model captures features of the residual vectors
using input weight matrices (W1,W2,W3,W4) as well as
the dependency among the residual vectors using recurrent
weight matrices (Wrec1,Wrec2,Wrec3,Wrec4) and the cen-

tral memory unit shown in Fig. 1. A transformation matrix
U is then used to transform, [−→v ,←−v ]T ∈ <2ncell×1, the out-
puts of each memory cell after gating for both left-to-right
and right-to-left models, into the sparse vectors space, i.e.,
z ∈ <N×1. “ncell” is the number of cells in the LSTM
model. Then a softmax layer is used for each channel to find
the probability of each entry of each sparse vector being non-
zero. For example, for channel 1, the j-th output of the soft-
max layer is:

P (s1(j)|r1) =
ez(j)∑N
k=1 e

z(k)
(4)

Then for each channel, the entry with the maximum proba-
bility value is selected and added to the support set of that
channel. After that, given the new support set, the follow-
ing least squares problem is solved to find an estimate of the
sparse vector for the j-th channel:

ŝj = argmin
sj

‖yj −AΩjsj‖22 (5)

where Ωj is the support set of the j-th channel. Using ŝj ,
the new residual value for the j-th channel is calculated as
follows:

rj = yj −AΩj ŝj (6)

This residual serves as the input to the bidirectional LSTM
model at the next iteration of the algorithm. The pseudo-code
of the proposed method is presented in Algorithm 1.

Algorithm 1 Pseudo-code of the Proposed Method
Inputs: CS measurement matrix A ∈ <M×N ; matrix of measurements Y ∈
<M×L; minimum `2 norm of residual matrix “resMin” as stopping criterion;
Trained “lstm” model
Output: Matrix of sparse vectors Ŝ ∈ <N×L

Initialization: Ŝ = 0; j = 1; i = 1; Ω = ∅; R = Y.
1: procedure LSTM-CS(A,Y, lstm)
2: while i ≤ N or ‖R‖2 ≤ resMin do
3: i← i + 1
4: for j = 1→ L do
5: R(:, j)i ←

R(:,j)i−1
max(|R(:,j)i−1|)

6: vj ← blstm(R(:, j)i,vj−1, cj−1) . Bidirectional LSTM
7: zj ← Uvj

8: c← softmax(zj)
9: idx← Support(max(c))

10: Ωi ← Ωi−1 ∪ idx

11: ŜΩi (:, j)← (AΩi )†Y(:, j) . Least Squares

12: ŜΩC
i (:, j)← 0

13: R(:, j)i ← Y(:, j)−AΩi ŜΩi (:, j)
14: end for
15: end while
16: end procedure

Please note that since we do not know the sparsity level
in advance, and also since at each iteration of the proposed
method we predict the location of one of the non-zero entries,
we will also need to generate residual vectors corresponding
to different sparsity levels. To generate the training data, i.e.,
the “(residual,sparse vector)” pairs, assume that a sparse vec-
tor in the training data of the j-th channel sj has K non-zero



entries. We find the location of the largest entry of sj and add
it to the support set of the j-th channel. Assume that the in-
dex of this location is k0. Then we set the k0-th entry of sj to
zero. Now we find the residual vector where the support set
of the j-th channel has only one member, which is k0:

rj = yj −AΩjs(k0) (7)

It is obvious that this residual results from not knowing the
locations of the remaining k − 1 non-zero entries in the j-th
channel. From these k − 1 non-zero entries, the maximum
contribution to the residual in (7) is from the second largest
entry in sj . Assume that it is the k1-th entry of sj . We nor-
malize all entries in sj with respect to the value in the k1-th
entry. Therefore the training pair is rj in (7) as input and the
normalized sj with k0-th entry set to zero as target. We con-
tinue this procedure up to the point where sj does not have
any non-zero entry. Then we continue with the next training
sample. We do the same procedure for each channel.

To find the bidirectional LSTM parameters, i.e., Wi,
Wreci, bi, i = 1, 2, 3, 4, we minimized a cross entropy
cost function on the training pairs, i.e., the “(residual,sparse
vector)” pairs. We used backpropagation through time and
Adam [22] for minimizing the cost function. Please note that
the training is done only once, after that the trained model is
used in the reconstruction algorithm (Algorithm 1).

3. EXPERIMENTAL EVALUATION

We performed experiments on three different classes of im-
ages from a natural image dataset provided by Microsoft Re-
search in Cambridge [23]. This was to evaluate the perfor-
mance of different reconstruction algorithms for the MMV
problem, including the proposed method when Wavelet or
DCT transform were applied on images. We also compared
the CPU time of these methods.

The reconstruction error was defined as:

NMSE =
‖Ŝ− S‖
‖S‖

(8)

where S is the actual sparse matrix and Ŝ is the recovered
sparse matrix from random measurements by the reconstruc-
tion algorithm. The machine used to perform the experiments
has an Intel(R) Core(TM) i7 CPU with clock 2.93 GHz and
with 16 GB RAM.

Five randomly selected test images belonging to three
classes of this dataset (flowers, buildings, cows) were used
for test experiments. For each class of images, we used just
55 images for training set and 5 images for validation set
which do not include any of 5 images used for test. We re-
sized images to 128 × 128 images. Each image was divided
into 8× 8 blocks. After reconstructing all blocks of an image
in the decoder, the NMSE for the reconstructed image was
calculated. The task was to simultaneously encode 4 blocks
(L = 4) of an image and reconstruct them in the decoder.

This meant that S in (3) had 4 columns each one having
N = 64 entries. We used 40% measurements, thus Y in
(3) had 4 columns each one having M = 25 entries. The
encoder was a typical compressive sensing encoder, i.e., a
randomly generated matrix A. We normalized each column
of A to have unit norm. To simulate the measurement noise,
we added a Gaussian noise with standard deviation 0.005 to
the measurement matrix Y in (3).

We compared the performance of the proposed algo-
rithm, BLSTM-CS, with SOMP [2], MT-BCS[5], T-SBL[6],
NWSOMP[13] and LSTM-CS[14]. For MT-BCS we set
the parameters of the Gamma prior on noise variance to
a = 100/0.1 and b = 1 which are the values suggested by the
authors. We set the stopping threshold to 10−8 as well. For
T-SBL, we used the default values proposed by the authors.
We used T-MSBL which is a faster version of T-SBL. For
NWSOMP, during training, we used one layer, 512 neurons
and 15 epochs of parameters update. The experiments were
performed for two popular transforms, DCT and Wavelet, for
all of the above reconstruction algorithms. For the wavelet
transform, we used Haar wavelet transform with 3 levels of
decomposition. For both LSTM-CS and BLSTM-CS, we
used a small model with 16 cells. For NWSOMP we used 3
layers and 512 neurons per layers. Due to lack of space, only
the results for one class of images, i.e., buildings, are pre-
sented. To monitor and prevent overfitting, we used 5 images
per channel as the validation set and we used early stopping
if necessary. Please note that the images used for validation
were not used in the training set or in the test set. Results for
DCT transform and wavelet transform are shown in Fig. 2.
The results from the other two classes of images are similar
to what is presented here.

As observed in Fig.2, BLSTM-CS outperforms the other
methods discussed in this paper for different sparsity levels.
To evaluate run time of different methods, considering the fact
that all methods are implemented in MATLAB and run on the
same machine, the CPU time shown in Fig.2 demonstrates
that the proposed method is faster than the Bayesian methods
discussed in this paper and is almost as fast as the greedy
method SOMP.

4. CONCLUSION

In this paper, a sparse reconstruction method for the MMV
problem was proposed. The main difference of the proposed
approach with other methods was that it was a learning based
method that exploit the dependencies among sparse vectors
in both directions. Through numerical experiments, it was
shown that the proposed method outperforms the traditional
greedy methods, a number of model based Bayesian meth-
ods and two of the previous learning based methods. Our
future work is to use the proposed method for applications
where there is high correlations among sparse vectors, e.g.,
compressive sensing of electroencephalogram (EEG) signals
for health telemonitoring and compressive sensing of differ-
ent frames in a video.
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Fig. 1. Up: Block diagram of the proposed method unfolded
over channels. Bottom: Block diagram of the Long Short-
Term Memory (LSTM).
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