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By using the cubic spline interpolation method, we reconstruct the shape of the primordial scalar and

tensor power spectra from the recently released Planck temperature and BICEP2 polarization cosmic

microwave background data. We find that the vanishing scalar index running (dns=d ln k) model is strongly

disfavored at more than 3σ confidence level on the k ¼ 0.0002 Mpc−1 scale. Furthermore, the power-law

parametrization gives a blue-tilt tensor spectrum, no matter using only the first five bandpowers

nt ¼ 1.20þ0.56
−0.64 ð95% C:L:Þ or the full nine bandpowers nt ¼ 1.24þ0.51

−0.58 ð95% C:L:Þ of BICEP2 data sets.

Unlike the large tensor-to-scalar ratio value (r ∼ 0.20) under the scale-invariant tensor spectrum

assumption, our interpolation approach gives r0.002 < 0.060ð95% C:L:Þ by using the first five bandpowers

of BICEP2 data. After comparing the results with/without BICEP2 data, we find that Planck temperature

with small tensor amplitude signals and BICEP2 polarization data with large tensor amplitude signals

dominate the tensor spectrum reconstruction on the large and small scales, respectively. Hence, the

resulting blue tensor tilt actually reflects the tension between Planck and BICEP2 data.
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I. INTRODUCTION

Recently, the BICEP2 experiment [1] reported an excess

of cosmic microwave background (CMB) B-mode polari-

zation power spectrum over the base lensed-ΛCDM expect-

ation in the range 30 < l < 150, inconsistent with the null

hypothesis at a significance of > 5σ. Since the single field

slow-roll inflationary model predicts a peak around multi-

pole l ∼ 80 in the B-mode autocorrelation (BB) spectrum

seeded by the primordial gravitational wave/tensor pertur-

bation mode, the BICEP2 results are believed to be the

first indirect detection of the primordial gravitational wave.

Under the assumption of power-law scalar and scale-

invariant tensor spectra, the observed B-mode power

spectrum is well described by a lensed-ΛCDMþ tensor

theoretical model with tensor-to-scalar ratio r ¼ 0.20þ0.07
−0.05

with r ¼ 0 disfavored at the 7.0σ confidence level.

However, the scientific results of BICEP2 data are in

tension with those from other CMB experiments, such as

Planck [2]. The first discrepancy is in the amplitude of the

scale-invariant tensor spectrum, which is described by the

tensor-to-scalar ratio r≡ At=As. Unlike the scalar pertur-

bations, due to the absence of acoustic oscillation mecha-

nism the tensor contributions to the temperature CMB

spectrum are rapidly washed out inside the horizon at

electron-proton recombination epoch (l ≥ 200) [3]. Hence,

the temperature anisotropies on the large scales are the

mixture of scalar and tensor contributions. Furthermore, if

one assumes the simple power-law form of the primordial

scalar power spectrum, i.e. no scalar index running

dns=d ln k ¼ 0, the precisely measured higher multipoles

by Planck put stringent constraints on the scalar amplitude

As and index ns. Therefore, in order to explain the observed
power deficit in the low-l regime by Planck, one has to

suppress the tensor spectrum amplitude. Consequently,

from only the temperature anisotropy measured by

Planck, one has r < 0.11 at 95%, which is in a “very

significant” tension (around 0.1% unlikely) with BICEP2

results [4]. As stressed by the BICEP2 team, however, this

tension could be reconciled by adding the running of the

scalar index which is the degree of freedom to suppress the

scalar temperature anisotropy in the low-l regime. Then,

combining Planck with WMAP low-l polarization [5] and

ACT [6] /SPT [7–9] high-l data, one could get r < 0.26 at

95%. Besides that, several other possible solutions to this

tension have been proposed, such as step feature spectra

[10–12], fast-slow roll model [13], anticorrelation scalar

isocurvature initial condition [14,15], sterile neutrino spe-

cies [16–18], sudden change in speed of inflaton or Lorentz

violation [19]. See also [20–25] for other possibilities.

The second tension is between the observed blue-

tilt tensor spectrum (nt > 0) [26–30] by BICEP2 and

the red-tilt one (nt ¼ −r=8) predicted by the standard

inflationary paradigm. Generally, the blue tensor spectrum

asks for violation of the null energy condition (NEC), which
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is equivalent to ρþ P < 0 (or _H > 0) in the flat universe.

There exist several NEC violation inflationary models in the

literature, such as super inflation [31], phantom inflation

[32], G-inflation [33], etc. Some alternative paradigm of

inflation, such as “string gas cosmology” [34], bouncing

universe [35–41] or other possibilities [42,43] (see the

references therein) might be helpful to solve this tension.

In this paper, we start from a purely phenomenological

point of view to reconstruct the shape of primordial scalar

and tensor spectra from Planck temperature and BICEP2

polarization data.

II. PARAMETRIZATION OF PRIMORDIAL

SPECTRA AND DATA SETS

In order to reconstruct a smooth spectrum with

the continuous first and second derivatives, in this paper

we adopt the cubic spline interpolation method, which

has been used to analyze WMAP or Planck temperature

and polarization data [44–51]. Besides the cubic spline

interpolation reconstruction, there also exist other model

independent algorithms, such as Bayesian evidence

selected linear interpolation [52,53]. Due to the fact that

the amplitude of CMB anisotropy is so tiny, δT=T̄∼
Oð10−5Þ, and CMB observational windows cover several

orders of magnitude in spatial scale, it is reasonable to

parametrize the logarithms of primordial spectra, which

seed the CMB anisotropy, in the logarithms of fluctuation

wave number, ln k. The method of cubic spline interpola-

tion can be summarized as follows.

First, we uniformly sample Nbin points in the logarithmic

scale of wave number. Second, inside of the sampled bins

ln ki < ln k < ln kiþ1, we use the cubic spline interpolation

to determine logarithmic values of the primordial power

spectrum. Third, the boundary conditions are adopted, where

the second derivative is set to zero. For k < k1 or k > kNbin
we

fix the slopeof theprimordial power spectrumat theboundaries

and linearly extrapolate to theoutside regimes.Mathematically,

the corresponding formula could be written as

lnPðkÞ¼

8
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This reconstruction method has three advantages: first of

all, it is easy to detect deviations from a scale-invariant

spectrum or a power-law spectrum because both the scale-

invariant and power-law spectra are just straight lines in the

lnP-ln k plane. Second, negative values of the spectrum

can be avoided by using lnPðkÞ instead of PðkÞ for splines

with steep slopes. Finally, the shape of the power spectrum

reduces to the scale-invariant or power-law spectrum as a

special case when Nbin ¼ 1; 2, respectively.
Since the purpose of this work is to reconstruct the scalar

and tensor spectra, we need to adopt different sampling

logarithms based on the different observational windows.

For the primordial scalar curvature spectrum, its constraints

are mainly driven by the CMB temperature modes.

With Planck sensitivities, we uniformly sample three

bins ranged in ln k ∈ ð−8.517;−1.609Þ, which corresponds
to k ∈ ð0.0002; 0.2Þ Mpc−1. For the tensor spectrum, we

adopt two uniformly logarithmic sampling strategies, one

is corresponding to the scales k ∈ ð0.002; 0.03Þ Mpc−1,

the other is k ∈ ð0.002; 0.02Þ Mpc−1. This is because

the BICEP2 B-mode polarization data, which is a very

sensitive probe for the primordial tensor spectrum, have

an excess of B-mode power in the range of polar

angle multipoles (20 ≤ l ≤ 340). Moreover, compared

with the first five bandpowers, which is in the range of

(20 ≤ l ≤ 200), the power in the second four bandpowers

has extraordinary excess over the base lensed-ΛCDM

expectation. This extraordinary excess might arise from

the exotic physical origin beyond standard inflationary

paradigm or from some unresolved foreground contami-

nations. Given this consideration, in this paper we take two

different choices of BICEP2 data, the first is using the full

nine bandpowers, and the second is to use the selected first

five bandpowers. Hence, we have to adjust our sampling

logarithms as mentioned above.

In the left part of this section, we would like to briefly

review the data sets we used. First of all, we utilize the

Planck temperature-temperature power spectra, namely, for

low-l modes (2 ≤ l < 50) via all the nine frequency

channels ranged from 30–353 GHz, for high-l modes

(50 ≤ l ≤ 2500) through 100, 143, and 217 GHz fre-

quency channels
1
[54,55]. Second, in order to break the

well-known parameter degeneracy between the reionization

optical depth and the amplitude of CMB temperature

anisotropy, we also include WMAP9 low-l temperature/

polarization spectra (2 ≤ l ≤ 32) [5]. In addition, we use

BICEP2 polarization (EE,EB,BB) spectra from nine (or

five) bandpowers of multipoles in (20 ≤ l ≤ 340 or 200) of

150 GHz channels [1].
2
For the data analysis numerical

package, we compute the CMB angular power spectra by

using the public Einstein-Boltzmann solver CAMB [56]

and explore the cosmological parameter space with a

Markov Chain Monte Carlo sampler, namely

COSMOMC [57].

III. RESULTS AND DISCUSSIONS

In this section we will start with the scalar spectrum

reconstruction, and then turn to the tensor spectrum case.

1
http://pla.esac.esa.int/pla/aio/planckProducts.html
2
http://www.cfa.harvard.edu/CMB/bicep2/papers.html
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The prior ranges of the primordial spectrum parameters we

studied are listed in Table I. Here we emphasize that the

differences in the prior of tensor spectra amplitude at our

cubic spline sampling knots when BICEP2 data are

included, lie in the tension between Planck and BICEP2

data (we will show later). When our Markov-Chain

Monte Carlo sampler investigates the wide parameter space

spanned by (lnB1; lnB2; lnB3), at some points the resulting

spectra are inconsistent with Planck TE cross-correlation

data; in order to avoid this problem we have to adjust the

prior ranges. But still the widths of the priors are large

enough and also the tensor amplitudes (lnB1; lnB2; lnB3)

get well constrained in these prior ranges as shown in

Fig. 9. So, we conclude that our prior choices will not affect

the results significantly.

A. Scalar spectrum reconstruction

Since the main capability of scalar spectrum

reconstruction is driven by the CMB temperature data,

we first study the case without BICEP2 polarization, i.e. the

case with only Planck temperature and WMAP9 low-l

polarization (WP) data sets. As mentioned in the previous

section, here we uniformly sample three points in the

logarithmic scale of wave number, which are located at

k1 ¼ 0.0002, k2 ¼ 0.0063 and k3 ¼ 0.2 Mpc−1 with the

logarithmic amplitudes lnA1, lnA2 and lnA3, respectively.

Then, we sample the parameter space spanned by vanilla

ΛCDM parameters without the scalar amplitude lnAs and

its index tilt ns and replacing them with lnA1, lnA2

and lnA3, hereafter we call this parameter compilation

ΛCDM- ln As-ns þ ln A1 þ ln A2 þ ln A3.

The marginalized mean scalar spectrum reconstructed

from PlanckþWP data is represented by the black solid

curve in Fig. 1 and the corresponding 1 ∼ 3σ error bars at

the sampling points are denoted by the blue, red, and green

segments, respectively. For comparison, we also show the

primordial scalar spectrum from the Planck marginalized

mean vanillaΛCDM and ΛCDMþ dns=d ln k (scalar index
running) with blue dashed and red dot-dashed curves. From

Fig. 1, we can see that, first, our cubic spline interpolation

result mimics the ΛCDM+dns=d ln k case; second, on the

k ¼ 0.0002 Mpc−1 scale, the simplest vanilla model is

disfavored at the nearly 2σ level.

Adding the BICEP2 polarization data, we show the

results in Fig. 2 for models including the tensor-to-scalar

ratio r, i.e. ΛCDM − ln As − ns þ rþ ln A1 þ ln A2þ
ln A3. We find that, first of all, due to the anticorrelation

between scalar and tensor amplitudes (see the bottom left

subpanel of Fig. 8 in Appendix A), the large value of

tensor-to-scalar ratio discovered by BICEP2 data will lead

to the suppression of scalar amplitude on the large scales.

This is also explicitly demonstrated in the top subpanel of

Fig. 8 in Appendix A. As a result of deficit of scalar power

FIG. 1 (color online). Reconstruction of primordial scalar

spectrum without BICEP2 data.

TABLE I. List of the primordial spectrum parameters used in

the Monte Carlo sampling.

Parameter Range (min, max)

lnð1010A2
sÞ (2.7,4.0)

ns (0.9,1.1)

dns=d ln k ð−1.0; 1.0Þ
r0.05 (0.0,2.0)

nt ð−1.0; 5.0Þ
lnð1010A1Þ (1.0,5.0)

lnð1010A2Þ (1.0,5.0)

lnð1010A3Þ (1.0,5.0)

lnð1010B1Þ
a ð−3.0; 3.0Þ=ð−3.0; 3.0Þ

lnð1010B2Þ
a ð−2.0; 5.0Þ=ð−3.0; 3.0Þ

lnð1010B3Þ
a ð−1.0; 5.0Þ=ð−3.0; 3.0Þ

a
The left parameter ranges are for the chains from Planckþ

WPþ BICEP2 data compilation, while the right ones are for
those without BICEP2 data.

FIG. 2 (color online). Reconstruction of primordial scalar

spectrum with BICEP2 data.
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on the large scales, as shown in Fig. 2 the vanilla ΛCDM

model (blue dashed curve) is strongly disfavored with> 3σ

confidence level on the k ¼ 0.0002 Mpc−1 scale. A similar

result is obtained by the authors of [51]. By using Planck

and BICEP2 data, they found a distinct preference for a

suppression of power in the scalar spectrum at large scales,

k ≤ 10−3 Mpc−1 via a linear spline reconstruction method.

Second, by assuming the scale invariant tensor spectrum,

our scalar spectrum cubic spline interpolation parametriza-

tion still gives a large tensor-to-scalar ratio r ¼ 0.21þ0.10
−0.09 at

95% C.L., see Table II in Appendix A.

B. Tensor spectrum reconstruction

In the previous subsection, we have assumed the tensor

spectrum is scale invariant. In this subsection we relax the

assumption and use the same cubic spline interpolation

method to reconstruct the shape of the tensor spectrum.

Unlike the CMB temperature spectrum which is mainly

sourced by the primordial scalar perturbations, the B-mode

polarization anisotropy seeded by tensor perturbation is

only detected by BICEP2 on the large scales with the polar

spherical harmonic multipoles ranged 20 ≤ l ≤ 340 (nine

bandpowers). As the case for the scalar spectrum, here the

tensor spectrum is also uniformly sampled with three points

in the logarithmic scale of wave number, but only on the

scales covered by BICEP2 observations. Consequently,

we sample them at k1 ¼ 0.002, k2 ¼ 0.0077 and k3 ¼
0.03 Mpc−1, respectively. The cosmological parameters we

estimated are the six vanilla ΛCDM model parameters plus

the extra three tensor amplitudes lnB1, lnB2 and lnB3.

In Fig. 3 we plot the primordial tensor spectra from the

best-fit model of ΛCDMþ ln B1 þ ln B2 þ ln B3 (black

solid curve) and ΛCDMþ rþ nt (red dot-dashed curve) as
well as the error bars at the sampling points of the cubic

spline interpolation method. First of all, both the standard

power-law and our cubic spline parametrizations favor a

blue-tilt tensor spectrum. The former (see Table III in

Appendix B) reports

r0.002 < 0.061; 95% C:L: ðnine bandpowersÞ; ð2Þ

nt ¼ 1.24þ0.51
−0.58 ; 95% C:L: ðnine bandpowersÞ; ð3Þ

which are qualitatively consistent with the results reported

in [26–30]. For example, by using BICEP2þ Planckþ
WPþ SNþ BAO, the authors of [29] give nt ¼
0.822þ0.240

−0.182 at 68% C.L. The small differences of margin-

alized mean value and confidence regime among those

reported results come from the differences of data sets and

the number of cosmological parameters adopted in those

analyses. Our cubic spline interpolation method gives

r0.002 < 0.064; 95% C:L: ðnine bandpowersÞ: ð4Þ

Second, we notice that in our cubic spline interpolation

method the slope of the tensor spectrum becomes larger in

the low-k regime, but still is consistent with the power-law

parametrization at the 2σ confidence level.

As we argued in the previous section, there exists an

extraordinary power excess in the higher wave number

regimes of BICEP2 data. Given this consideration, in what

follows we only adopt the selected first five bandpower data

of BICEP2 for our reconstruction. Based on the multi-

pole ranges covered by these powerbands (20 ≤ l ≤ 200),

we sample points at k1 ¼ 0.002, k2 ¼ 0.0063 and k3 ¼
0.02 Mpc−1, respectively.

The reconstructed tensor spectra as well as error bars are

shown in Fig. 4. First, from the power-law parametrization,

we can see that the blue tensor spectra are still favored but

with the tilt becomes smaller as expected:

r0.002 < 0.067; 95% C:L: ðfive bandpowersÞ; ð5Þ

nt ¼ 1.20þ0.56
−0.64 ; 95% C:L: ðfive bandpowersÞ: ð6Þ

FIG. 3 (color online). Reconstruction of primordial tensor

spectrum with BICEP2 data (nine bandpowers).

FIG. 4 (color online). Reconstruction of primordial tensor

spectrum with BICEP2 data (five bandpowers).
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Second, with only the first five bandpower data, unlike the

simplest power-law parametrization, a nontrivial shape of

tensor spectrum is obtained. Concretely, in the range of

k ∈ ð0.002; 0.006Þ BICEP2 data favor a large tensor blue

tilt, while when k > 0.0063 Mpc−1 the spectrum becomes

almost flat. This is due to the fact that we do not use the last

four bandpower data. The resulting tensor-to-scalar ratio in

our cubic spline interpolation method is

r0.002 < 0.060; 95% C:L:ðfive bandpowersÞ: ð7Þ

Because the above blue tensor tilt is significantly

inconsistent with the standard inflationary prediction, we

have to figure out its reason on the data analysis level.

Notice that for now we always utilize PlanckþWPþ
BICEP2 data compilation, so one natural guess is that this

blue tensor tilt might reflect the tension among Planck,

WMAP polarization and BICEP2 data sets. In order to

justify our conjecture, we have to remove the above data

sets one by one. Since we vary both the primordial

spectrum and standard ΛCDM parameters, such as baryon

(Ωbh
2), and cold dark matter density (Ωch

2) etc., we have

to keep the robust Planck temperature data in order to get

well estimations of the ΛCDM parameters. Hence, we first

remove the BICEP2, i.e. using PlanckþWP, and further

discard WMAP polarization data, i.e. only using Planck

temperature data. However, due to the fact that CMB

temperature data are insensitive to the reionization optical

depth (τ), if we discard WMAP polarization data we have

to include Gaussian prior on τ to break the well-known

degeneracy between τ and the scalar amplitude As. Here we

take the Gaussian prior as

τ ¼ 0.089� 0.013: ð8Þ

Besides this, because the contribution of tensor spectra

to CMB temperature anisotropies is only significant in the

multipole range (2 ≤ l ≤ 100), when we use Planckþ
WP or Planckþ τ prior data sets, we sample the k knots of
tensor spectra in the range of (0.0002,0.01).

The resulting primordial tensor spectrum shape, corre-

sponding marginalized 1D=2D posterior distributions and

parameter regimes are shown in Fig. 5, Fig. 10 and

Table IV, respectively. First, we can see that the recon-

structed tensor spectra from PlanckþWP and Planckþ τ

prior are very similar, both for the central values and the

marginalized error bars. So, we can draw the conclusion

that WMAP low-l polarization data are not crucial for the

tensor reconstruction results. Second, as shown in Fig. 6

the error bars from Planck temperature data are quite

large compared with those from the data compilation

PlanckþWPþ BICEP2 (see the error bars at sampling

knot k ¼ 0.01 Mpc−1 in the dashed black curve and those

at the second knot in the black solid curve in Fig. 6). It

indicates that the current Planck temperature data are not

robust to determine the shape of the primordial tensor

spectrum. The resulting tensor spectrum from only Planck

temperature data could be any shape among red, blue or

scale-invariant types. Third, when we compare the second

knot in PlanckþWP (dashed black curve) and the first left

knot PlanckþWPþ BICEP2 results (solid black curve),

Fig. 6 shows that both their central value and marginalized

error bars are very close. It reflects the fact that the

reconstructed tensor spectrum in the low-k regime is

actually driven by Planck temperature data. Furthermore,

considering the fact that the BICEP2 data dominate the

high-k part, we conclude that our reconstructed blue tensor
tilts are due to the tension between Planck and BICEP2

data sets, i.e. the fact that small tensor amplitude signals

from Planck temperature data dominate the large scale

reconstruction, while the large tensor amplitude signals

from BICEP2 B-mode polarization data dominate the small

scale reconstruction, leads to the resulting blue tensor tilt.

Finally, in order to give an intuitive impression of

our reconstruction result, in Fig. 7 we plot the BB

FIG. 5 (color online). Reconstruction of primordial tensor

spectrum with PlanckþWP and Planckþτ prior.

FIG. 6 (color online). Reconstruction of primordial tensor

spectrum with/without BICEP2.
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autocorrelation power spectrum of our marginalized mean

models (listed in Table V of Appendix B) as well as the

scale-invariant tensor spectrum with the r ¼ 0.2 model

against the BICEP2 bandpower data sets. We can see that in

order to fit the BICEP2 data in the last four bandpowers,

compared with the five bandpower reconstruction result

(green dotted curve) and the scale-invariant one (blue

dotted curves), the nine bandpower (red) curve grows up

in the high-l regime significantly. Furthermore, from Fig. 7

we can see that the marginalized mean BB power spectrum

from five bandpowers (green dotted curve) is lower than the

scale invariant one (blue dotted curve) in the multipole

regime l ∈ ð250; 350Þ. This is because, in the five band-

power case, the marginalized mean primordial tensor

spectrum becomes nearly flat or even red tilt after the

second knot (see Fig. 4).

IV. CONCLUSIONS

Starting with a purely phenomenological point of view,

in this paper we have reconstructed the shape of the

primordial scalar and tensor spectra by using the cubic

spline interpolation method with Planck temperature and

BICEP2 B-mode polarization data sets. We find that, due to

the anticorrelation between scalar and tensor amplitudes on

the large scales, the large value of tensor-to-scalar ratio

discovered by BICEP2 data will lead to the suppression of

scalar amplitude in this regime. Concretely, the vanishing

scalar index running model is strongly disfavored by

PlanckþWPþ BICEP2 data compilation with more than

3σ confidence level on the k ¼ 0.0002 Mpc−1 scale.

Furthermore, for the tensor spectrum reconstruction,

a blue-tilt spectrum is obtained no matter using only the

first five bandpowers nt ¼ 1.20þ0.56
−0.64ð95% C:L:Þ or the full

nine bandpowers nt ¼ 1.24þ0.51
−0.58ð95% C:L:Þ of BICEP2

data sets. Because of the large tensor tilt, compared with

the large tensor-to-scalar ratio value (r ∼ 0.20) under the

scale-invariant assumption, our cubic spline interpolation

method gives r0.002 < 0.060ð95% C:L:Þ and r0.002 <
0.064ð95% C:L:Þ by using the data sets PlanckþWPþ
BICEP2 (five bandpowers) and (nine bandpowers), respec-

tively. Finally, we also studied the data without BICEP2;

we found that our resulting blue tensor tilt actually reflects

the tension in the tensor amplitude between Planck (small

amplitude but dominate the reconstruction on the large

scale) and BICEP2 (large amplitude but dominate the

reconstruction on the small scale) data sets.

Our results show that the conclusion of the blue-tilt

tensor spectrum is very significant and independent of

using power-law or cubic spline parametrizations. More

important, this blue-tilt spectrum is not consistent with the

prediction of the standard single field inflationary paradigm

nt ¼ −r=8. On the one hand, it asks for a more careful

cross-check with future experiments, such as the polariza-

tion data of Planck and Keck array. On the other hand, once

this discovery is confirmed, it will lead to a paradigm

revolution about our understanding of the early Universe.
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APPENDIX A: MARGINALIZED STATISTICS

IN SCALAR SPECTRUM RECONSTRUCTION

Here we list the various marginalized statistical results

for cubic spline interpolation and power-law parametriza-

tions of scalar spectrum, including 1D, 2D marginalized

posterior distribution, marginalized mean values as well as

the 68% (or 95%) confidence levels.
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FIG. 8 (color online). 1D=2D posterior distribution of scalar spectrum reconstruction.

TABLE II. Mean values and 68% (or 95%) confidence limits for primary/derived parameters in the cubic spline and power-law

parametrization of scalar spectrum.

ΛCDM − ns − ln As þ rþ ln A1 þ ln A2 þ ln A3 ΛCDMþ dns=d ln kþ r

PlanckþWP

PlanckþWPþ BICEP2

(nine bandpowers)

PlanckþWPþ BICEP2

(nine bandpowers)

Parameters Mean �68% C:L: Mean �68% C:L: Mean �68% C:L:

100Ωbh
2 2.224� 0.031 2.224� 0.030 2.238� 0.028

Ωch
2 0.1204� 0.0028 0.1202� 0.0027 0.1186� 0.0017

100θMC 1.04125� 0.00065 1.04133� 0.00063 1.04150� 0.00057

τ 0.103� 0.016 0.106� 0.017 0.105� 0.016

lnð1010AsÞ � � � � � � 3.122� 0.033

ns � � � � � � 0.9600� 0.0063

dns=d ln k � � � � � � −0.028þ0.019
−0.021 (95% C.L.)

r < 0.41 (95% C.L.) 0.21þ0.10
−0.09 (95% C.L.) 0.20þ0.08

−0.09 (95% C.L.)

lnð1010A1Þ 2.89� 0.20 2.83� 0.15 � � �

lnð1010A2Þ 3.157� 0.032 3.154� 0.029 � � �

lnð1010A3Þ 3.045� 0.034 3.050� 0.034 � � �

Ωm 0.318� 0.018 0.316� 0.017 0.306� 0.010

H0½km=s=Mpc� 67.22� 1.27 67.34� 1.22 68.06� 0.79

χ2min=2 4901.833 4921.868 4924.052
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APPENDIX B: MARGINALIZED STATISTICS IN TENSOR SPECTRUM RECONSTRUCTION

Here we list the various marginalized statistical results for cubic spline interpolation and power-law parametrizations of

tensor spectrum, including 1D, 2D marginalized posterior distribution, marginalized mean values as well as the 68% (or

95%) confidence levels.

FIG. 9 (color online). 1D=2D posterior distribution of tensor spectrum reconstruction with BICEP2.

BIN HU et al. PHYSICAL REVIEW D 90, 023544 (2014)

023544-8



TABLE IV. Mean values and 68% (or 95%) confidence limits for primary/derived parameters in the tensor spectrum cubic spline

reconstruction.

ΛCDMþ lnB1 þ lnB2 þ lnB3

PlanckþWPþ BICEP2 (nine bandpowers) PlanckþWPþ BICEP2 (five bandpowers)

Parameters Mean �68% C:L: Mean �68% C:L:

100Ωbh
2 2.202� 0.028 2.202� 0.028

Ωch
2 0.1194� 0.0026 0.1195� 0.0026

100θMC 1.04130� 0.00063 1.04125� 0.00062

τ 0.090� 0.013 0.090� 0.013

ns 0.9610� 0.0071 0.9614� 0.0072

lnð1010AsÞ 3.087� 0.025 3.087� 0.025

lnð1010B1Þ < 0.45 (95% C.L.) < 0.39 (95% C.L.)

lnð1010B2Þ 0.98þ0.88
−0.92 (95% C.L.) 1.12þ1.05

−1.02 (95% C.L.)

lnð1010B3Þ 2.75þ1.29
−2.37 (95% C.L.) 1.48þ1.48

−2.00 (95% C.L.)

Ωm 0.313� 0.016 0.314� 0.016

H0½km=s=Mpc� 67.43� 1.17 67.37� 1.17

r0.002 < 0.064 (95% C.L.) < 0.060 (95% C.L.)

χ2min=2 4920.558 4909.799

TABLE III. Mean values and 68% (or 95%) confidence limits for primary/derived parameters in the power-law parametrization of

tensor spectrum.

ΛCDMþ rþ nt

PlanckþWPþ BICEP2 (nine bandpowers) PlanckþWPþ BICEP2 (five bandpowers)

Parameters Mean �68% C:L: Mean �68% C:L:

100Ωbh
2 2.200� 0.028 2.204� 0.028

Ωch
2 0.1194� 0.0026 0.1195� 0.0027

100θMC 1.04129� 0.00064 1.04127� 0.00063

τ 0.090� 0.013 0.089� 0.013

ns 0.9611� 0.0073 0.9615� 0.0073

lnð1010AsÞ 3.087� 0.025 3.086� 0.025

r0.05 < 2.00 (95% C.L.) < 2.00 (95% C.L.)

nt 1.24þ0.51
−0.58 (95% C.L.) 1.20þ0.56

−0.64 (95% C.L.)

Ωm 0.313� 0.016 0.313� 0.016

H0½km=s=Mpc� 67.38� 1.19 67.40� 1.11

r0.002 < 0.061 (95% C.L.) < 0.067 (95% C.L.)

χ2min=2 4920.773 4909.861
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TABLE V. Mean values and 68% (or 95%) confidence limits for primary/derived parameters in the tensor spectrum cubic spline

reconstruction.

ΛCDM þ ln B1 þ ln B2 þ ln B3

PlanckþWP Planckþ τ prior

Parameters Mean �68% C:L: Mean �68% C:L:

100Ωbh
2 2.204� 0.028 2.203� 0.028

Ωch
2 0.1200� 0.0028 0.1201� 0.0027

100θMC 1.04122� 0.00063 1.04119� 0.00063

τ 0.089� 0.013 0.090� 0.012

ns 0.9603� 0.0074 0.9599� 0.0071

lnð1010AsÞ 3.087� 0.025 3.089� 0.024

lnð1010B1Þ ð−3.00; 3.00Þ (95% C.L.) ð−3.00; 3.00Þ (95% C.L.)

lnð1010B2Þ ð−3.00; 0.49Þ (95% C.L.) ð−3.00; 0.45Þ (95% C.L.)

lnð1010B3Þ ð−3.00; 3.00Þ (95% C.L.) ð−3.00; 3.00Þ (95% C.L.)

Ωm 0.317� 0.017 0.317� 0.016

H0½km=s=Mpc� 67.20� 1.22 67.14� 1.17

r0.002 < 0.064 (95% C.L.) < 0.062 (95% C.L.)

χ2min=2 4902.387 3895.305

FIG. 10 (color online). 1D=2D posterior distribution of tensor spectrum reconstruction without BICEP2.
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