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Reconstruction of time‑shifted 
hemodynamic response
Bärbel Herrnberger

Regression of voxel time course onto expected response is a standard procedure in functional 
magnetic resonance imaging that relies on exact onset time and shape of superimposed hemodynamic 
response functions. Elegant capture of time deviation by time derivative regressors appears 
complicated by shape distortion and limited to ±1 s, and is usually not exploited for reconstructing the 
true time-shifted response function together with its magnitude. This analysis of the time-derivative 
approach provides closed-form functional relations between time shift and regression coefficients that 
allow for hemodynamic shifts of ±5 s and can explain shape distortion and reconstruction behavior. 
Reliable absolute latencies were no smaller than 0.6 s in a best-case experiment. Confusions of latency 
are a previously undiscussed shortcoming where current limitation strategy may eliminate correct 
latencies and protect incorrect ones.

The hemodynamic response function (HRF) is the impulse response1 of the brain to neural activity2–5 and key to 
quantifying the blood oxygen level-dependent (BOLD) signal6, 7 from functional magnetic resonance imaging 
(fMRI). The function describes the temporal evolution of oxygenated hemoglobin in the vasculature, following 
oxygen consumption by activity-related metabolism.

Established procedure towards maps of task relevant brain areas8 regresses measured voxel time courses 
onto expected superpositions of standard HRFs2, 9 whose different onset times are the different stimulus times. 
Stimulus models other than Dirac impulses require replacement of the HRFs by their convolutions with the 
specific shape function.

For true BOLD response magnitude to appear in the regression coefficient, and apart from HRF shape 
variants10–14, such procedure must take into account unknown shifts in time that may come from region-specific 
neurovascular coupling, different stimulus quality or familiarity15, 16, reaction time, genetics17, age and disease18, 
stress19, unknown internally triggered processes, or specification failure of onset time.

Optimization would shift the expected BOLD response by a number of latencies, often determined from 
gradients of a cost function, until a best match with the measured response. This requires one computationally 
intensive pseudoinverse for each latency, or each combination of condition-specific latencies, in each voxel. 
Motivated by Taylor series and with considerably less computational effort, time derivatives20 are sensitive to 
time shift and may abbreviate optimization. They are used within additional regressors, hence estimation would 
still take only one pseudoinverse for all voxels.

The time derivative is a proper choice even if in regression, unlike the Taylor series, the coefficients to shifted 
and standard HRF are not the same. Reconstruction of latency and magnitude requires a dedicated processing of 
the coefficients to the HRF and the derivative; the derivative coefficient alone would only indicate the presence 
(and the sign) of a response latency. Given orthogonality to both the HRF and the constant regressor, a change 
in the coefficient to the HRF regressor on introduction of the derivative would solely be due to new correlations 
with other regressors15, never indicate any correction for time shift.

Latency has been retrieved from an asymmetric coefficient ratio–latency function with a latency range of 
about ±2 s15. This function was calibrated on a single shifted HRF and two regressors but on application saw 
coefficient ratios from complex experimental designs with multiple HRFs and more than two regressors. During 
calibration, the standard HRF is shifted in time for a number of predetermined known latencies; each shifted 
HRF is decomposed into standard HRF and time derivative, finally the ratio of derivative to HRF coefficient 
is assigned a latency. On application, the calibrated function receives a coefficient ratio and returns a latency.

Rather than the known latency of the decomposed HRF, the assigned latency was determined as the difference 
between maximum positions of the unshifted HRF and a more or less seriously distorted HRF synthesized from 
the sum of HRF and time derivative, weighted by their estimated coefficients. Distortions were accepted within 
±1 s, about the linear range of the ratio–latency function. Respective restrictions have been applied to either 
the latency, or the coefficients15, 16, 21, 22. In contrast, symmetric calibration curves with latency limits beyond 
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±4 s emerged upon decomposition into basis functions from singular value decomposition and assignment of 
coefficient ratios to the known shifts in time23. Significance of latency has been assessed in groups of subjects, 
not in the single subject.

Regarding reconstruction of magnitude, addition of the derivative coefficient to the HRF coefficient led to 
larger or smaller value, depending on shift direction24. Such behavior was not reported for an enhanced HRF 
coefficient, computed as a signed Euclidean norm of the vector of HRF and derivative coefficients, after mul-
tiplication by their respective regressor norms16, 21. However, lost effect over subject group25 by larger subject 
variance26 spoke against such enhancement, same as absent qualitative improvement at restricted latency in favor 
of retained HRF shape or retained group effect26.

The distortions in combined HRF and time derivative remained confusing and unexplained, as a shift in time 
is not necessarily associated with altered magnitude or shape27, 28, and unless they include undistorted shifted 
HRFs as well, the different shapes would not express HRF variability.

This paper shows that the shape problem arises from attributing the distortions to brain response; it disap-
pears with a change of perspective, from synthesis of a shifted HRF to analysis. From the functional relation of 
the unknown shift and magnitude to the observable regression coefficients the analysis derives equations for 
the unknowns that may clarify current procedure, or serve as alternatives. Monte-Carlo simulations then help 
determine a preferable variant of magnitude retrieval, by looking at bias and shape of distributions. The simula-
tions also validate a proposed variance relation between shift and magnitude, for use in single-subject t-tests of 
latency. Finally, a best-case experiment investigates if these distributions hold with fMRI data, explores latencies 
within one sensory domain along with their impact on magnitude, quantifies reliable latency, and illustrates 
persisting limitations from confusions of latency.

Results
Analysis.  Regression decomposes a shifted, scaled, and biased function of time t as

β is the unknown magnitude, a is the unknown time shift. a< 0 shifts to later time, so −a is a positive latency. C 
is a bias. βi(a,β , Li) are the coefficients to the regressors fi(t) , Li > 0 are the known scalars for normalization, and 
ǫ(t, a,β)⊥ fi(t) for all i is an orthogonal deterministic residual function. Specifically, f (t)= f1(t) , ddt h(t)= f2(t) , 
and n= 3 ; the last regressor is a constant function, fn(t)= 1.

For the HRF as the difference of two Gamma probability density functions (PDFs) of time20, 29,

(where pi are shapes, qi are rates, Ŵ is the Gamma function, and c is a factor (A23–A26), see supplementary 
Appendix), and its time derivative (A27), f1(t) and f2(t) are mutually orthogonal (A29), same as fn(t) and f2(t) 
(A30). fn(t) and f1(t) are correlated (A25), and ǫ(t, a,β) is nonzero for a  = 0 . Back to (1), β and β1(a,β , L1) have 
no unit, and since ddt f1(t) is in units of s−1 , β2(a,β , L2) is in units of seconds.

Solutions to the coefficients βi(a,β , Li) (A2) are weighted sums of normalized correlation integrals

The weights (A3) depend on regressor correlations. C solely appears in the coefficient to the constant regressor, 
and by orthogonality (A30) β2(a,β , L2) (A7) is the same with or without that regressor.

The functions kj(a) exist in closed form. Symmetric k1(a) (A36, A38) is another weighted sum, this time 
determined by the factor c in the HRF (2). The four components

(arguments qi and qj omitted for simplicity), Fig. 1a, are each built of Gamma PDFs of shift, same as their deriva-
tives (A35). (i, j) is one pair of Gamma PDFs from shifted and standard HRFs, and S (A34) flips the function 
when a≤ 0 . Since kn(a) is a constant function, β1(a,β , L1) (A6) is symmetrical with respect to a= 0 , Fig. 1b.

Apart from the sign, the correlation integrals of f (t+a) with successive HRF derivatives with respect to time 
are successive derivatives of k1(a) with respect to shift. Anti-symmetric k2(a) (A39) is the negative derivative 
of k1(a) with a factor c11/c22 (A4) that compensates for regressor norm. Anti-symmetry persists in β2(a,β , L2) 
(A7), Fig. 1c; negative value before the zero crossing indicates shift to later time.

Unless β = 0 , the deterministic residual functions ǫ(t, a,β) , Fig. 1g, and deterministic residual power E(a,β) 
(A1) as the time integral of ǫ2(t, a,β) , Fig. 1d, do not vanish for nonzero shift. Under noise, deterministic residual 
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power adds onto stochastic residual power (A16–A17) and via residual variance (A18) leads to over-estimated 
parameter variance. Despite the different shapes of residual functions for the same amount of shift to earlier and 
later time, residual power is symmetrical with respect to zero shift.

Higher-order derivatives or time-shifted regressors reduce ǫ(t, a,β) and E(a,β) , but even an infinite number 
of derivatives would not accomplish shift to earlier time, supplementary Fig. S1. Fortunately, there is no need 
for a residual function to vanish, if there is a means to retrieve latency from the coefficients to HRF and time 
derivative. Magnitude can then be estimated in a model without a time derivative, when the HRF regressor is 
shifted by the retrieved latency.

Such a means is the former coefficient ratio–latency curve15, now with an assignment to the known initial 
shift as in Liao et al.23. That function a(r, L1, L2) , Fig. 1f, is the part of the ratio function

(A8), Fig. 1e, between the zero crossings of β1(a,β , L1) to both sides of a= 0 , resolved for shift. The overall range 
of a(r, L1, L2) is set by the zero crossings of β1(a,β , L1) , slope is given by Li ratio (A9), and the linear range extends 
to shifts beyond 1 s, Fig. 1f. Limit latencies are ±7.27 s for a decomposition into HRF and time derivative, and 
±6.41 s for a decomposition into HRF, time derivative, and the constant function.

For an accurate mapping the ratio–latency curve would be calibrated on the regression model specific to the 
experimental design. Compression of a(r, L1, L2) at inclusion of the constant function is a result of correlation 
with the HRF by which the range of β1(a,β , L1) becomes larger and the points of zero crossing move towards 
zero. The coefficients βi(a,β , Li) lose symmetry with correlations introduced by temporal filtering or further 
regressors, and narrow spacing of multiple HRFs in a regressor may not allow for zero crossings in β1(a,β , L1) , 
Fig. 1b. Then, the range of retrievable latency is the monotonous part of a(r, L1, L2) , Fig. 1f.

Rather than mapping large true latencies back to a limit latency, the central ratio–latency function would 
confuse such latencies, since a given coefficient ratio occurs at shifts between and beyond the zero crossings of 
β1(a,β , L1) in the full ratio function. The same ratio emerges for a positive latency outside limits (which has a 
positive derivative coefficient and a negative HRF coefficient) and a negative latency within limits (which has a 
negative derivative coefficient and a positive HRF coefficient), and vice versa, Fig. 1e. Ignoring the origin of the 

(6)r(a, L1, L2) =
β2(a,β , L2)

β1(a,β , L1)

Figure 1.   Shift dependencies for parameters of HRF decomposition. Shift a is in seconds. Residual functions 
ǫ(t, a,β) and residual power E(a,β) (A1) are in arbitrary units. (a) Components G(a, pi , pj) (5) for combination 
(A36) into k1(a) (4). Numbers indicate shape parameters pi and pj . When omitted, pi = pj = 16 . All components 
have practically identical least-squares approximations by single Gaussians or Gamma PDFs, (b) HRF coefficient 
β1(a,β , L1) (A6), (c) Derivative coefficient β2(a,β , L2) (A7), (d) Residual power E(a,β) (A1), (e) Coefficient 
ratio r(a, L1, L2) (6), (f) Central ratio–latency function −a(r, L1, L2) from r(a, L1, L2) by interchange of axes 
and interpolation, all for β = 1 and L1 = L2 = 1 , (g) Examples of residual functions. Numbers indicate shift 
in seconds, (h) Central ratio–latency functions −a1(r1, L1, L2) for condition m= 1 in the presence of another 
condition m= 2 . Here, βm is the magnitude in condition m, β1 = 1 . Numbers on curves indicate a2 in seconds. 
Both conditions contain only one HRF. The HRF of condition m= 2 is 8 s later in time. The legend in panel 
(f) applies to panels (b–f). D1–D6 are different versions of decomposition (1). D1, Omission of the constant 
regressor, D2, Decomposition as is, D3, Regressors and input filtered with SPM highpass filter at 128 s cutoff 
time (curves mostly overlap with D2), D4, Additional correlated regressor (the non-orthogonalized dispersion 
derivative), D5, Regressors with 5 HRFs or derivatives 8 s apart. Latency can be retrieved within ±2 s, D6, 
Regressors with 15 HRFs or derivatives about 32 s apart, filtering as in D3. The curves for D3, D4, and D6 are 
asymmetric. The latency range for D6 is [−5.51, 5.50], smaller than for D3 because of the multiple HRFs. All 
curves except D1 and D2 were calibrated.
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signs along with the other parts of the ratio function, the central part thus maps true latencies outside limits to 
latencies within limits; the more distant true latencies appear as the smaller retrieved latencies of opposite sign.

Ratio–latency curves from a single HRF and curves from a specific experimental design may not even coincide 
at a= 0 in case of multiple conditions, correlated regressors, or condition-specific shifts, Fig. 1h. Condition-
specific calibration is hardly feasible, as the ratio–latency function am(rm, L1, L2) for condition m would depend 
on the unknown shifts and magnitudes in all other conditions.

Like the ratio of two estimated coefficients can retrieve shift, the ratio of an estimated coefficient and the 
explicit or calibrated function value at retrieved shift can retrieve magnitude,

Alternatively, persistence of HRF mean and power (A4) under shift yields

adopting the sign from Calhoun et al.16. si (A12) is the inverse power of the mean-corrected regressor i. Equation 
(8) expands the equation for unnormalized regressors of Steffener et al.21 by residual power E(a,β) and replaces 
the norms of plain regressors by those of mean-corrected regressors (A10–A12), so accounts for the constant 
regressor. Multiplication by √s1 removes a factor common to all voxels. Monte-Carlo simulations reveal that the 
magnitudes by quotient (7), power (8), and re-estimation are no longer identical in the presence of noise because 
of different bias or shape of distribution, Fig. 2, as shown next.

Simulation.  Addition of normally distributed noise onto a single shifted HRF in yields normally distributed 
coefficients with nonzero expectations (A14), hence coefficient ratio r̂(a, L1, L2) (6) follows a noncentral normal 
ratio distribution. Within the latency limits of the time derivative, the distribution is left-skewed for positive 
latency, right-skewed for negative latency, and symmetrical otherwise, Fig. 2b1.

Owing to the central nonlinear coefficient ratio–latency function a(r, L1, L2) , Fig 1f, latencies are limited and 
have a less asymmetric distribution. Consistent with the confusion by ambiguous coefficient ratio, Fig. 1e, true 
latency beyond the limits settles with opposite sign in between. Another confusion is due to noise. Opposite 
signs and two-peaked distributions emerge at arbitrarily small nonzero noise variance for true latencies within 
the limits close to the borders. There, the HRF coefficients become small enough to take on values to both sides 
of zero, while the derivative coefficents retain their large value and sign, Fig. 2b2.

Failure of retrieved latency −â propagates to the magnitudes by calibration (7) or re-estimation with respec-
tive skewed and symmetric distributions. Following the latency confusions above, both distributions include 
another peak for the sign flip, Fig. 2b3–4.
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Figure 2.   Monte-Carlo simulations for parameters from time derivative and optimization for single HRF. (a) 
Example time courses in time windows of 32 s starting at a negative latency or zero. Black curves are estimates 
from standard HRF. Numbers indicate true latency in seconds and signal-to-noise ratio, (b) Parameter 
histograms for β = 2 . Left to Right, (b1) Coefficient ratio (6), (b2) Latency, (b3) Magnitude estimated on 
shifted HRF regressors with latency from (b2), (b4) Magnitude by calibration (7) from i= 1 , (b5) Enhanced 
HRF coefficient (A21), (b6) Magnitude by power (8), (b7) Optimized latency with envelope from the variance 
relation (9), (b8) Magnitude estimated on shifted HRF regressors with latency from (b7). Beyond the limits, 
the signs of enhanced HRF coefficient and magnitude by power are reversed, as they follow the sign change in 
the HRF coefficient. Outliers in the optimized parameters disappeared when the search for an initial value (see 
Methods) extended over the true latency. Titles show median and standard deviation. Vertical ticks and grid 
lines indicate zero. Red envelopes are theoretic, and black envelopes are least-squares fits. Line style indicates the 
better fit by a normal distribution (solid), or a normal ratio distribution (dashed).
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Successive extension (A13) of magnitude by calibration (7) by further terms of the decomposition (1) arrives 
at normally distributed magnitude by power (8, A19–A20), same as extension of βi(a,β)/Li (A6). So the dis-
tributions from the former extension become successively normal, while those from the latter, among them 
the enhanced HRF coefficient16 (A21), remain normal. By including all terms, magnitude by power has the least 
variance, smaller than βi(a,β)/Li alone (A15, A20), but gains bias from noise to exceed true magnitude (A14, 
A19), Fig. 2b5–6.

Smallest variances of magnitude occur at a= 0 . Elsewhere, re-estimation appears as the best choice in terms 
of bias and symmetry, Fig. 2b3–5. At sufficient noise variance and extreme latency, optimization may end in 
outliers if not initialized to a value near the solution, Fig. 2b7–8. At the true HRF latency, the time shift between 
regressors and voxel time course is zero, deterministic residual power is zero, therefore residual variance is 
minimal (A16–A17), Fig. 2b8.

Helpful for statistical evaluation, the variance of optimized latency −â is a multiple of the variance of opti-
mized magnitude β̂,

(with the variables as before), relates to the variance of the time derivative coefficient (A22), and provides a 
proper envelope to the histogram of optimized latency, Fig. 2b7.

Application.  Bootstrapping on residuals30, Fig. 3, reproduced the distributions from the Monte-Carlo simu-
lations in Fig. 2, with single-subject fMRI data upon passive viewing in an ideal experimental situation. Long 
inter-stimulus intervals and restriction to one stimulus modality and one experimental condition (see Methods) 
should provide clearly separated HRFs and ensure smallest regressor correlation.

With a focus on the immediate impact of time shift on regression coefficients and the smallest reliable latency, 
the single-subject analysis avoided blurring from averaging over subject group. FMRI data remained in native 
space, in order to minimize any effect on temporal shape by spatial operation; only the statistical maps were 
normalized into standard stereotactic space, for assignment of anatomic area.

In the models with a time derivative regressor, latency came from the model-specific coefficient ratio–latency 
function with limit latencies of ±5.5 s, Fig. 1f D6, that considered the constant regressor and temporal high-pass 
filtering. Magnitude was estimated voxel-wise in models without a time derivative but with HRFs shifted by 
retrieved latency, same as with optimization, so different latency alone would have caused different magnitude. 
Parameters and their differences were assessed at a significance level of p< 0.05 Bonferroni corrected (56225 
voxels, p< 8·10−7 uncorrected) unless stated otherwise. Magnitude gain was defined as the positive difference 
between the positive magnitudes from optimized and standard HRF, and the t-value for latency made use of the 
variance relation (9).

Optimization revealed significant magnitude gain with latencies close to 3 s in right precuneus in a cluster 
of six voxels (142 mm3 ; peak-voxel MNI coordinates [1.5, −63, 40.5] mm, Brodmann area (BA) 7, five-sigma 
( p< 10−7 ) confidence interval [2.52, 4.83] s), Fig. 4. Significant latency was rarely accompanied by a significant 
gain in magnitude, and no such gain occurred without a significant latency. Other voxels had an insignificant 

(9)var
(

−â
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Figure 3.   Bootstrapped parameters from fMRI. Time courses come from voxels with best and least t-value 
in disjunct subsets S1–S3. S1, Significant magnitude, S2, Significant latency and magnitude, S3, Significant 
latency, magnitude, and magnitude gain over standard HRF. (a) Interleaved voxel time course with estimations 
from standard (black) and optimized HRF (color assignment according to subset, Fig. 4b). Numbers indicate 
optimized latency in seconds and signal-to-noise ratio, (b) Parameter histograms as in Fig. 2. One-peaked 
distributions for optimized parameters emerged when the search for the initial latency extended over the true 
latency.
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latency or an insignificant magnitude gain, specifically in the primary (BA 17, V1), secondary (BA 18, V2), and 
associative (BA 19, V3–V5) visual cortices, or fusiform gyrus (BA 37). These areas contained 77% of all voxels 
with significant magnitude. No such voxels belonged to primary motor (BA 4), primary auditory (BA 41), or 
secondary auditory (BA 42) cortices. Similar maps emerged from spatially smoothed data, Fig. S2.

Given the impact on peak and mass centers, Fig. S4, latency was smaller by about 0.5 s when the nonzero 
stimulus duration was considered by a block response31 (A32–A33). Maps therefore contained less voxels that 
had a significant latency or a significant gain in magnitude, Fig. S3. More voxels had a higher significant latency 
with impeded perception, Fig. S5.

Among the voxels with significant optimized magnitude at p< 0.001 uncorrected, significant optimized 
latency had time derivative counterparts of any latency and often was beyond the limits of the time derivative. 
Only few voxels with different latency persisted at p< 0.05 Bonferroni corrected, Fig. S6. All significant differ-
ences in magnitude were due to opposite sign and confined to voxels with significant latency that lacked a sig-
nificant magnitude gain. Apart from few exceptions that all had optimized latencies beyond the limits (and thus 
could give rise to large difference to another value of the same sign), the respective latencies had opposite sign, 
too. Also, the absolute optimized latency was between 3.92 s and 9.68 s, close to a limit and beyond. Taking the 
optimized latencies for the true latencies, this may support the confusions of latency by coefficient ratio, Fig. 1e, 
or noise, Fig. 2b2. The connection to negative magnitude is straightforward. Having the wrong sign, the retrieved 
latency is even further away from the true latency than the standard latency of zero. Hence at re-estimation the 
true latency remains outside limits where the HRF coefficient is negative, Fig. 1b.

A lower limit of significant latency is obtained from the voxel with smallest residual power, considering from 
(9) that the t-value for latency is a multiple of the t-value for magnitude, then resolving the t-threshold of the 
specific significance level for latency. From that, significant absolute latencies at p< 0.05 Bonferroni corrected 
could not be smaller than 0.59 s, Fig. 5.

The time derivative approach retrieved known induced latencies within the limits of the ratio–latency func-
tion. Because of the latency confusions and associated negative magnitudes, Fig. 5, the latencies changed drasti-
cally at the limits and beyond, and the statistical maps of magnitude thinned out. The decomposition (1) takes 
place irrespective of a ratio–latency function which for a given ratio returns what it has been assigned to at 
calibration. Systematically squeezed latencies therefore resulted from distorted HRF15 while the induced latencies 
resulted from shifted HRF, Fig. 6. The squeezing reflects the functional relation between true shift and maximum 
position in distorted HRF.

Discussion
The decomposition of a shifted HRF into standard HRF and time derivative does not fulfill an addition theorem32 
as do trigonometric functions, instead for nonzero time shift leaves a nonzero deterministic residual function 
which adds onto residuals from noise and introduces positive bias into residual power, then leads to overesti-
mated residual and coefficient variances. Voxels with nonzero latencies thus become penalized twice in their 
t-value, by smaller absolute coefficient in the nominator and larger variance in the denominator.

The residual function explains why the function space spanned by the HRF and derivative basis functions does 
not include undistorted shifted HRFs, as these would require the deterministic residual function as another basis 
function. Since this is a function of unknown time shift, knowing the extra function means knowing the result of 
HRF reconstruction. Further time derivatives would not help, Fig. S1, but reduce the robustness of the estimates.

Figure 4.   Optimized latency in a native brain. (a) Latency map for voxels from the subsets S1–S3 as defined 
in Fig. 3. The color bar shows latency in seconds, (b) Subset map. Pixels were dilated by a disk with a radius of 
4 mm, for better visibility.
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The HRF decomposition has symmetric and anti-symmetric coefficient functions, therefore has an anti-
symmetric coefficient ratio–latency function, Fig. 1f. In contrast to Henson et al.15 but same as in Liao et al.23, the 
same displacement to earlier and later time thus results in the same absolute ratio. Calibrations of ratio–latency 
transfer on regressors of usual experimental designs may have no part in common with the calibration from 
single HRF which then would return wrong latency. Regressor correlation as one source of deviation15 can 
be minimized by outsourcing correlated regressors to a preceding regression and working on residuals19, at a 
potential cost of destroying measured HRFs.

Smaller range of latency as well as asymmetry in Henson et al.15 are due to a definition of latency based on the 
maximum position in distorted HRF. Asymmetry also comes from a large step size in finite difference approxima-
tion; degenerated time derivatives remain distorted and correlated with the constant regressor after orthogonali-
zation to the HRF. The smaller step size used with the dispersion derivative in the SPM software could produce 
sufficiently orthogonal regressors and make unnecessary an investigation into variants of orthogonalization24, 
to either the HRF regressor alone, or to HRF and constant regressors.

Shape distortion has been misleading and is not an issue with the time derivative. Instead, latency retrieval 
is limited by experimental design and noise. Limit latencies are given by the zero crossings of the HRF coef-
ficient function or by the monotoneous section of the central ratio–latency function when the zero crossings 
have disappeared because of small inter-stimulus time. Noise may induce a sign flip when latencies approach 
the limits, and ambiguous coefficient ratio would map latencies beyond limits to small latencies of opposite sign 
within limits. Restriction to small latencies thus may eliminate correct latencies and protect wrong ones. Use of 
the signs of HRF and derivative coefficients together with the full ratio function can avoid part of the confusions 
but must preclude deactivation. When by sign flip the HRF moves into the wrong direction, the magnitudes by 
re-estimation will become negative and disappear from maps of brain activation.

In the HRF decomposition, Gamma PDFs of time within the regressors reappear as functions of shift in the 
correlation integrals and subsequently in the coefficient functions, along with their mutual relations. Apart from 
a factor, the coefficient functions to singular vectors23 arise from time-shifted coefficient functions, by the same 
linear combinations that produce the singular vectors from time-shifted HRFs. The full set of these vectors can 
retrieve latencies from within the covered time interval, Fig. S1.

Immediate transfer of regression coefficients into magnitude must consider their respective regressors16. 
Same as distance and velocity, samples of HRF and derivative are different physical quantities with their own 

Figure 5.   Confusions of latency. Latencies close to the limits of the central ratio–latency function and 
beyond appear as within-limit latencies of opposite sign. The plots show voxels with optimized magnitude 
at significance level p< 0.001 uncorrected, sorted by ascending t-value. Top, t-value of magnitude, Bottom, 
Latency. (a) Optimized latency within ±5.5 s, (b) Subset of (a), voxels with positive latency and sign flip, (c) 
Optimized latency outside limits, (d) Subset of (c), voxels with positive latency. In the plots of t-value, markers 
for the subsets S1–S3 from Fig. 3 are attached to data points from standard HRF. In the plots of latency, they are 
attached to data points from optimization. Pairs of black lines connect the threshold latencies for significance 
at p< 0.05 Bonferroni corrected (solid), p< 0.001 uncorrected (dashed), and p< 0.01 uncorrected (dotted). 
Close ordinate values show lowest (right) and highest (left) thresholds at Bonferroni corrected p< 0.05. 
There, an absolute latency must have been larger than 0.59 s (0.37 s at p< 0.001 uncorrected, 0.28 s at p< 0.01 
uncorrected).
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units of measure. Because they must compensate towards identical unit in all terms of the decomposition, the 
HRF and derivative coefficients have different units of measure. The improper addition of values with different 
units alone can explain the implausible enhanced and reduced magnitudes for the same amount of displacement 
to later and earlier time24.

Enhancement of HRF coefficients16, 21 is grounded in preserved signal power under shift but requires norms 
of mean-corrected regressors which would not additionally underestimate the magnitudes; inclusion of residual 
power overestimates them. Another sign definition by HRF and derivative coefficients33 would be effective only 
in parts of latencies beyond the limits and produce a wrong positive sign at all shifts to later time when true 
magnitude is negative. Distributions of magnitude by calibration are skewed, therefore not assessable by statisti-
cal tests that rely on normal distributions.

Evidence for region-specific HRF delay from task fMRI remains vague, as long as the neuronal event that 
underlies a measured BOLD response remains unspecified, and when reaction time is involved. When accept-
ing functional segregation, a BOLD response in a motor area must have come from the requested subject motor 
response, rather than a preceding stimulation in another modality. Temporal order of BOLD response alone, 
Mohamed et al.34 opposed to Kruggel and von Cramon28, would not proof region-specific HRF delay.

As with regression coefficients, a single retrieved latency is meaningless without a statistical evaluation. A 
minimum significant absolute latency of about 0.6 s from the variance relation exceeds usual slice time differ-
ences between neighboring slices which therefore cannot be detected. The observed longer latencies for impeded 
perception, alternatively the shorter latencies for repetition, require further substantiation.

Figure 6.   Retrieval of known response latencies. Modeled stimulus onset times were shifted within [−10, 10] s 
in steps of 1 s in the voxels of the bottom left slice of Fig. 4 that had insignificant optimized latency between 
−0.72 and 2.08 s and signal-to-noise ratio between 0.34 and 0.84. Negative onset shift moved the modelled 
HRF to earlier time, thus introduced an additional positive response latency in a voxel time course. Because 
latency is a difference between true and modeled responses, it persists in another frame where the onset is left 
untouched and the voxel time course is shifted to later time. Numbers indicate introduced shift in seconds. (a) 
Maps of retrieved latency. Top, Time derivative with ratio–latency function from distorted HRF15 with latency 
limits of ±2.2 s, Middle, Time derivative with ratio–latency function from shifted HRF, Fig. 1f D6, with limits of 
±5.5 s, Bottom, Optimization, (b) Maps of t-value of estimated magnitude above a significance level of p< 0.05 
Bonferroni corrected, (c) Latency and t-value as functions of known latency in 30 randomly selected voxels, 
using the ratio–latency function from distorted HRF. Retrieved latencies are squeezed versions of the true 
latencies; a known latency of 5 s is retrieved as a latency of 2 s, (d) As (c), using the ratio–latency function from 
shifted HRF.
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For shallow minima of residual power as a function of time shift, even a significant latency would not yield a 
significant gain in magnitude as an indicator of a more exactly reconstructed response. Motor or auditory brain 
areas did not respond in the passive viewing experiment, and no magnitude gain occurred in visual areas. How-
ever, it occurred in the precuneus which is involved in recollection, memory, integration of information towards 
perceived gestalt, cue reactivity, mental imagery, episodic memory retrieval, and affective response to pain35. 
While any of these could have been among the subject’s actions or perceptual experiences, including her reported 
afterimages, the experiment is far from claiming any precuneus involvement in the sole task of passive viewing, 
investigating just one subject. If large delay outside areas that are served by large draining veins is not generally 
artifactual36, the obtained latency may have come from some self-initiated neural activity after stimulation.

The time derivative approach is complicated by latency confusion. Gain in magnitude at re-estimation with 
shifted HRFs can resolve confusion and give reason to accept a latency.

Methods
Implementation.  Environment.  All computation including figure generation ran under MATLAB® 
9.7.0.1216025 (R2019b, The MathWorks Inc., Natick, MA, USA); part of figures came from version 9.11.0.1809720 
(R2021b) Update 1. MRI data were processed with SPM12 r7219 (The Wellcome Centre for Human Neuroimag-
ing, UCL Queen Square Institute of Neurology, London, UK) modified for explicit functions and optimization. 
Calibration of ratio–latency curves, translation of ratio into latency, model re-estimation with voxel-specific 
latency, and the bootstrap were done with an in-house toolbox hosted under SPM. Parameters of the HRF (2) 
were p1 = 6 , p2 = 16 , q1 = q2 = 1s−1 , and c= 1/620.

Monte‑Carlo simulations.  Each histogram in Fig. 2 was based on 5000 noise time courses sampled from a nor-
mal distribution. That number is the allowed maximum with the applied tests of composite normality37. Noise 
time courses were overlaid on the same signal, a shifted unfiltered HRF without mean correction and onset at 
0 s. Signal-to-noise ratio was the root power ratio of signal and noise time courses. HRFs were sampled within 
[−12, 44] s in steps of 0.02 s. Parameter distributions were identified as normal or normal ratio by Shapiro-Wilk 
or Shapiro-Francia tests which rejected the null hypothesis of composite normality at significance level p= 0.01 . 
Envelopes for ratio distribution were computed for uncorrelated noncentral normal ratio38.

Calibration.  According to decomposition (1), calibration stepped through given shifts (within [−20, 20]  s, 
Fig. 1), for each of these built a shifted HRF with β = 1 , then estimated the coefficients to the unshifted regres-
sors, computed the required parameter value, finally assigned that value to the given shift. Inverse functions were 
interpolated from cubic splines.

Optimization.  Latency was optimized by unconstrained Nelder-Mead nonlinear minimization (MATLAB 
function fminsearch) of residual power in a model without a time derivative. Optimization started with an 
initial latency, built a shifted HRF regressor, estimated the coefficients, computed residual power, then continued 
with a newly determined latency until minimum residual power, then continued with the next voxel. Intended to 
mitigate the problem of local minima, the initial value was the discrete latency at least residual power upon shift-
ing HRF regressors with step size 0.1 s within the latency limits from the time derivative, for fair comparison.

Bootstrap.  Latency from ratio–latency transfer (6) and magnitudes by calibration (7) or power (8) involve non-
linear functions of regression coefficients, therefore their variance cannot be approximated from residual vari-
ance and must be bootstrapped. 5000 bootstrap samples were used with the residuals method30. One bootstrap 
sample had as many samples as the time course and contained repeated samples.

Regressors.  Superimposed explicit functions for HRF (2) or time derivative (A27) replaced convolution in the 
SPM software. One function was placed at each stimulus onset time and the sum sampled at fMRI repetition 
time (TR). Impulse response was exchanged for block response (A32–A33) when the model considered the 
nonzero stimulus duration. Same as high microtime resolution and sufficiently small step size, explicit functions 
allow for exact timing and avoid regressor correlations from finite difference approximation of time derivatives. 
As a main advantage not ensured with microtime, explicit functions provide differing function values for arbi-
trarily small shift differences during optimization. They so avoid an early stop of gradient-based search, when 
a new tested shift falls into the same time bin, is thus associated with the same function value, and no direction 
of improvement is detected. For consistency with SPM, the derivative regressors were still orthogonalized to the 
HRF regressor of the same experimental condition, and division by 1/TR times the theoretical integral over the 
HRF (A25) scaled the regressors as done by the inverse sum over HRF samples. Since the vector dot product of 
sampled orthogonal functions is nonzero, orthogonalization took a slight effect on the derivative.

Shifting.  Time shift applied to the HRF rather than the data. Only the regressors of experimental conditions 
were shifted, by regressor rebuild, after a shift of the underlying time vector. Alternatively, modification of HRF 
onset parameter would have cut off the initial part of HRFs when the onset was negative, and interpolation 
would have produced smaller deformation throughout. Shifts involved both the latency in question and the time 
of the reference slice from slice-time correction.

Application.  Subject.  One female 29-year-old healthy subject without metallic or electric implants and no 
known visual or neurological deficits took part in the experiment for no payment, after giving informed consent. 
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The experiment was approved by the Ethics committee of Ulm University (447/20) and conducted in accordance 
with the Declaration of Helsinki; it has not been registered in a publicly accessible database.

MR imaging.  Instructed to look at the screen all the time, and head padded to minimize motion artifact, 
the subject underwent whole-brain gradient echo echo-planar functional imaging during two series of visual 
stimulation (TR 2000 ms, echo time 33 ms, flip angle 90°, 32 axial-coronar slices, matrix 90×90 pixels, voxel size 
2.44×2.44×4 mm3, identical image position and axial-coronar orientation), on Siemens MAGNETOM Prisma 
(Siemens, Erlangen, Germany), using the standard 64-channel head/neck coil. The subject’s structural T1 image 
was taken from a previous independent study. No subject response was requested or recorded. The first series 
was the experimental series. The second series served as an independent visual localizer for the slice with maxi-
mum visual activation, only to become the reference for slice-time correction of the experimental series and 
ensure minimum correction of voxel time course in visually activated voxels. Both series involved 15 repetitions 
of a visual stimulus within a central disk comprising 9.8 visual degrees on a black background, preceded by 8 s 
of background display awaiting MR equilibration. Stimuli contained a central white fixation cross. The stimula-
tion part of the experimental series was preceded and followed by another 12 s of background display, providing 
fMRI volumes for time shift. Stimuli of the localizer series (93 volumes) were a black and white checkerboard 
reversing at 3.75  Hz, displayed for 4  s. Time between onsets was 12  s. The fixation cross appeared between 
stimulations. Stimuli of the experimental series (257 volumes) were a static image of random pixel value as black 
or white, displayed for 1 s. Time between onsets as 32 s plus TR/15 yielded equidistant samples (sampling time 
TR/15)  of the one common HRF from interleaved  individual responses39, with benefit for delay estimates27. 
No fixation cross appeared between stimulations. While risking loss of eye fixation, this avoided permanent 
visual stimulation and may have circumvented potential effects from habituation, saturation, or saccades away 
from the stimulus, in relevant voxels. Presentation (Version 18.1. Build 05.12.15, Neurobehavioral Systems, Inc., 
Berkeley, CA, USA, https://​www.​neuro​bs.​com) provided stimuli and collected all timing information, including 
the times of MR volume triggers. Stimuli appeared on a monitor (NordicNeuroLab AS, Bergen, Norway, https://​
nordi​cneur​olab.​com) and a mirror on the MR head cage. The experimental series had to be repeated because of 
mirror fogging. The subject reported strong experience of afterimages in all functional series.

Preprocessing.  SPM default settings applied to all preprocessing except reslicing (trilinear interpolation avoided 
influence of distant voxels) and realignment (acuity increased to 1). For minimum alteration of time course, vol-
umes of the experimental time series were neither coregistered to any other volume, nor spatially normalized. 
Time courses were corrected for slice time, in order to exclude it as source of delay. In both series the first four 
volumes until MR equilibrium were discarded and onsets of stimulation defined with respect to the volume 
trigger of volume 5. Slice 22 contained the strongest response in the aligned localizer series and served as the 
reference in slice time correction. The correction assumed equal spacing of slice time and considered the buffer 
time of 20 ms prior to the next volume scan. The number of microtime bins was set to the TR in milliseconds; 
temporal acuity was thus 1 ms. After spatial realignment (based on six-parameter rigid body transformation) 
and reslicing, the brain-masked T1 volume was coregistered to the mean volume of the time series, then normal-
ized to MNI space via segmentation and deformation. Normalization parameters were applied only to statistical 
maps; anatomic area came from SPM Neuromorphometrics40 and MRICroN, https://​www.​nitrc.​org/​proje​cts/​
mricr​on. The EPI series remained unsmoothed for the main analyses, and was smoothed by a 6 mm Gaussian 
kernel for a separate analysis. The brain mask was built after two runs of segmentation (the first on T1 volume 
towards bias corrected volume, the second on bias corrected volume). The sum of tissue probability maps for 
white matter, gray matter and cerebrospinal fluid passed a threshold of 0.1, and a sequence of one dilation, two 
erosions, and another dilation per slice, each by a 3×3 matrix of ones as the structuring element, filled the gaps. 
Spatial normalization worked on separate volumes that contained just one peak voxel, used pullback and tri-
linear interpolation, and usually delivered more than one voxel in standard space from which the first voxel of 
maximum value was selected. Voxels per subset (S1–S3) or anatomic area were counted in native space. Native 
anatomic area came from inversely normalized standard atlases and required prior reslicing of the MRICroN 
Brodmann atlas into the space of the SPM Neuromorphometrics atlas. Inverse normalization used pullback and 
nearest-neighbour interpolation.

Analysis.  Stimuli were modeled by blocks of 4  s with the functional localizer, otherwise by impulses with 
onsets at the ascending flank. Blocks of 1 s were considered as a variant. No additional regressors were included. 
Voxel time courses and regressors were highpass-filtered with cutoff time 128 s and the models estimated by 
ordinary least-squares estimation which avoided computations of  shift-dependent weighting matrices. Dur-
ing optimization of autoregressive models, different sets of voxels might have entered the underlying sample 
covariance matrix and required new hyperparameter estimation for combining variance components with each 
tested latency. Magnitude was not reconstructed by less computationally demanding calibration (7) or power (8) 
because of non-normal distribution or bias, Fig. 2. All results came from within a mask of significant positive 
optimized magnitude; deactivation was not a focus. The voxel subsets were defined on optimized latency and 
magnitude. One-sided one-sample t-tests considered absolute parameter value or difference, with larger-than-
zero value or difference as the alternative hypothesis, and used the small residual variance from optimization 
(A18). The voxels with significant magnitude gain were a proper subset of the voxels with significant magnitude.

Data availibility
The MRI dataset is available from the author upon request.

https://www.neurobs.com
https://nordicneurolab.com
https://nordicneurolab.com
https://www.nitrc.org/projects/mricron
https://www.nitrc.org/projects/mricron
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