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Abstract

Human metabolism involves thousands of reactions and metabolites. To interpret this com-

plexity, computational modeling becomes an essential experimental tool. One of the most

popular techniques to study human metabolism as a whole is genome scale modeling. A

key challenge to applying genome scale modeling is identifying critical metabolic reactions

across diverse human tissues. Here we introduce a novel algorithm called Cost Optimiza-

tion Reaction Dependency Assessment (CORDA) to build genome scale models in a tis-

sue-specific manner. CORDA performs more efficiently computationally, shows better

agreement to experimental data, and displays better model functionality and capacity when

compared to previous algorithms. CORDA also returns reaction associations that can

greatly assist in any manual curation to be performed following the automated reconstruc-

tion process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-spe-

cific reconstructions. These reconstructions identified which metabolic pathways are

shared across diverse human tissues. Moreover, we identified changes in reactions and

pathways that are differentially included and present different capacity profiles in cancer

compared to healthy tissues, including up-regulation of folate metabolism, the down-regula-

tion of thiamine metabolism, and tight regulation of oxidative phosphorylation.

Author Summary

Cellular metabolism is defined by a large, intricate network of thousands of components,

and plays a fundamental role in many diseases. To study this network in its entirety, meta-

bolic models have been built which encompass all known biochemical reactions in the

human metabolism. However, since not all metabolic reactions take place in any given tis-

sue, these generalized models need to be tailored to study specific cell types. Algorithms

developed to date to perform this tailoring process have focused on keeping tissue-specific

models as concise as possible. This approach, however, can remove essential reactions

from the model and hamper subsequent analysis. Here we present CORDA, a tissue-spe-

cific building algorithm that yields concise, but not minimalistic, tissue-specific models.

CORDA has many advantages over previous methods, including better agreement with

experimental data and better model functionality. Using CORDA, we developed a library

of 76 healthy and 20 cancer-specific models of metabolism, which we used to identify
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similarities between healthy and cancerous tissues, as well as metabolic pathways that are

unique to cancer. Results of this work provide a broadly applicable tool to model cell- and

tissue-specific metabolism, while highlighting potential new pathway targets for cancer

therapies.

Introduction

Genome-wide Metabolic Reconstructions (GEMs) computationally model the molecules and

reactions responsible for metabolism in any given organism, and have been applied across a

variety of fields including metabolic engineering and evolutionary analysis [1]. Computational

methods developed to study GEMs [2] have generated novel hypotheses about the structure of

metabolic networks in microorganisms, and helped elucidate gaps in our knowledge of metab-

olism [3, 4]. Since the publication of the comprehensive human metabolic reconstruction

Recon1 [5], human GEMs have enabled the study of human metabolism at a genome level [6].

These studies include the prediction of novel metabolic functions [7], prediction of metabolic

biomarkers for congenital genetic disorders [8, 9], context analysis of omics data [10–12], com-

parison between humans and other mammals through gene homolog mapping [13, 14], and

prediction of suitable cancer drugs [15, 16] and drug targets [17–19].

A particularly prolific subfield of human GEMs is the development of tissue-specific recon-

structions. Different groups of metabolic reactions occur in different cell types. Hence, numer-

ous studies have been dedicated to generating tissue specific or cell specific models of

metabolism [20, 21]. These tissue-specific reconstructions can be built by piecing together the

model based on previously established biological evidence obtained by reviewing the literature

[22–26], through the integration of omics data and computational methods in order to tailor

generic, published human reconstructions [5, 9, 27–29] to the desired cell type [15, 16, 30–33],

or through a combination of computational algorithms and manual curation [27, 28, 34–36].

Automated tissue-specific reconstruction algorithms developed to date can be broadly cate-

gorized into two groups [20]: “flux-dependent” and “pruning”methods. Flux dependent meth-

ods find an optimal flux distribution through the general reconstruction which contains the

maximum number of high confidence reactions (i.e. reactions whose presence is supported by

significant experimental data) [15, 31, 32, 37–39]. These algorithms have been successfully used

to predict gene essentiality in cancer tissues [19, 33], cancer specific metabolic pathways [31],

metabolic biomarkers for congenital genetic disorders [8, 9], and cancer specific anti-growth

factors [15, 16]. One of the main advantages of flux-dependent methods is the fact that they pre-

dict a flux distribution along with the tissue-specific model [20]. While this characteristic can be

desirable, it also renders flux-dependent reconstructions “snapshots” of the metabolic state

defined by the data, as opposed to comprehensive, functional metabolic models [15, 20].

The second category of tissue-specific reconstruction methods are pruning algorithms,

which include MBA [34], mCADRE [30] and fastCORE [40]. Models generated using these

algorithms have been used to calculate metabolic flux values in hepatocytes [34], identify path-

ways specific to cancer [30], and predict cancer drug targets [17, 18]. These algorithms start

with a core set of reactions, obtained through literature review or experimental data, and pro-

ceed by removing the remaining reactions in the generalized human reconstruction while

maintaining functionality in the core set. In these algorithms, a tradeoff can be defined between

maintaining the model as concise as possible and including all core reactions. That is, if a core

reaction requires too many undesirable reactions to carry flux, the algorithm may remove this

core reaction from the tissue model, a tradeoff referred to as flexible core.

Reconstruction of Tissue-Specific Metabolic Networks Using CORDA

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004808 March 4, 2016 2 / 33

ID=1150645&HistoricalAwards=false) grant number

1150645 (AAQ). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1150645&HistoricalAwards�=�false


There are two main advantages to defining a core set of reactions before performing the tis-

sue-specific algorithm. The first advantage is the possible inclusion of multiple sources of data

and biochemical information [20, 34]. The definition of the reactions core is left to the user’s

discretion, allowing for both the combination of data sources and the manual inclusion of reac-

tions. Secondly, reactions with overwhelming evidence are always included in the final tissue

model, since a non-flexible set of high confidence reactions can be defined [20]. This pruning

approach then allows for the construction of comprehensive tissue models, containing all reac-

tions that may be in a tissue’s metabolism, as opposed to a snapshot of the metabolic state

returned by the flux-dependent methods [15, 20].

Current pruning methods are also accompanied by two major limitations, however. First,

the order in which reactions are removed from the model plays a major role in the final recon-

struction. Second, similar to flux-dependent methods, current algorithms aim to keep the final

tissue-reconstruction as concise as possible, an approach referred to as parsimonious. These

algorithms aim to remove from the tissue-specific model all reactions for which experimental

data is unsupportive or unavailable, such as reactions with low levels of gene expression or

non-gene associated reactions. While a concise tissue-specific reconstruction is desirable, keep-

ing the reconstruction as parsimonious as possible may lead to the removal of fundamental

reactions and physiologically unlikely flux distributions. In Recon 1, for instance, oxygen and

H2O exchange reactions can be removed from the reconstruction with no effect on model func-

tionality (Fig 1A). During simulations, however, these would be replaced by the uptake of the

toxic metabolites superoxide anion and hydrogen peroxide respectively, leading to the predic-

tion of physiologically inaccurate flux distributions (Fig 1A). The oxygen exchange reaction is

in fact not present in the MBA and mCADRE liver reconstructions, and the water exchange

reaction is not present in the mCADRE liver reconstruction.

Hence, in order to ensure our algorithm did not rely on alternative, physiologically unlikely

pathways, and that it was independent of any ordering assignments, we chose to take an

approach which was not parsimonious. Here we introduce a novel tissue-specific reconstruc-

tion algorithm based on Cost Optimization Reaction Dependency Assessment (CORDA).

CORDA returns a concise, functional tissue-specific reconstruction, and features a flexible

reactions core. CORDA does not depend on Flux Variability Analysis [41] or Mixed Integer

Linear Programming (MILP) problems, but only on Flux Balance Analysis [42] (FBA), which

is dependent on Linear Programming (LP). This characteristic renders CORDA considerably

faster than previous, similar methods. Finally, the CORDA algorithm returns reaction associa-

tions that assist in any manual curation to be performed following the automated reconstruc-

tion process.

In line with previous studies [43], we apply CORDA to generate a library of 76 healthy and

20 cancer-specific metabolic reconstructions. These reconstructions enabled us to identify met-

abolic similarities amongst healthy tissues as well as key differences between healthy and

cancerous tissues. Furthermore, by sampling the feasible solution space in cancer and healthy

models, this library can be used to predict the up- and down-regulation of cancer-specific path-

ways in cancer metabolism.

Results

The CORDA algorithm

The CORDA algorithm is based on a novel approach to identify the dependency of desirable

reactions (i.e. reactions with high experimental evidence) on undesirable reactions (i.e. reac-

tions with no experimental evidence), a method referred to here as dependency assessment. In

the dependency assessment approach, the metabolic network is modified in four ways (Fig 1B).
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First, reversible reactions are split into forward and backward components. Second, a pseudo-

metabolite is added as a product for every reaction in the model. At this point, undesirable

reactions will carry a higher stoichiometric coefficient for this added metabolite, assigning

these reactions a higher “cost”. Third, a reaction consuming this pseudo-metabolite is added to

the model. Finally, a positive lower bound is set for the reaction being tested in order to force

that reaction to carry flux. After modifying the network, FBA (Materials and Methods) is per-

formed while minimizing the flux through the cost-consuming reaction (Fig 1B). The flux dis-

tribution returned will then use high cost, undesirable reactions only as necessary for the

reaction being tested to carry flux. Throughout the manuscript, we will refer to high cost

Fig 1. Overview of the CORDA algorithm. (A) Recon1 subnetwork involving water (h2o), oxygen (o2), hydrogen peroxide (h2o2) and superoxide anion
(o2s) illustrating how standard oxygen (blue) and water (green) import pathways can be substituted by alternative, physiologically unlikely pathways (red and
orange respectively). All metabolites and reactions are labeled as in Recon1. (B) Overview of the dependency assessmentmethod. Each reaction in the
reconstruction is associated with a specific cost through the addition of a pseudo-metabolite to the model. FBA is then performed while minimizing the cost
production in order to identify high cost reactions which are favorable to the reaction being tested. (C) The CORDA tissue-specific algorithm. During each
step, reaction groups being tested are outlined in blue, while reaction groups associated with a high cost are outlined in red.

doi:10.1371/journal.pcbi.1004808.g001
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reactions predicted to carry flux as associated with the reaction being tested. In order to identify

pathways with the same cost (i.e. same number of undesirable reactions), multiple dependency

assessment can be performed while adding a small amount of noise to the cost of each reaction.

Using this dependency assessment, we have developed the CORDA algorithm for the recon-

struction of tissue-specific models (Fig 1C). CORDA takes as input the reactions in the general-

ized human reconstruction separated into high (HC), medium (MC), and negative (NC)

confidence groups (see Materials and Methods section for a detailed description). All remain-

ing reactions in the reconstruction (i.e. non gene associated reactions or reactions for which no

data is available) are designated as others (OT). All HC reactions are included in the model,

and the maximum number of MC reactions is included while minimizing the inclusion of NC

reactions. While the definition of these four reaction groups are left to the user’s discretion,

here we categorize them according to proteomics data from the Human Protein Atlas (HPA)

[44, 45] and a methodology used in previous studies [30, 32, 37] (Materials and Methods). To

begin the algorithm, all HC reactions are moved into the tissue reconstruction (RE). In a first

step, MC and NC reactions associated with each RE reaction (which are the same as the HC

group at this point) are identified using the dependency assessment and moved into the RE

group. In a second step, NC reactions associated with a high number of MC reactions are iden-

tified and moved into the tissue model, and all remaining NC reactions are blocked (upper and

lower bounds set to zero). Next, all MC reactions still able to carry flux are also moved to the

RE group. Finally, in the final step of the algorithm, all OT reactions associated with any RE

reaction are moved to the RE group for the final tissue-specific model. A detailed description

of the CORDA method, including detailed steps, algorithm parameters, and categorization of

model reactions is available in the Materials and Methods section.

Validation of the CORDA algorithm

Parameter sensitivity analysis. As a first step in the validation of the CORDA algorithm,

we generated 108 hepatocyte specific models using a wide range of algorithm parameters

(Materials and Methods). The data used in this step, as well as the generalized human recon-

struction, were the same used during the mCADRE liver reconstruction to allow for a fair and

direct comparison between models. The 108 calculated models have an average of 1,857.3

(±21.0) reactions, 1,760 (94.8%) of which are present in all models. Also, 98.3% of all MC reac-

tions are present in all models, and 96.2% of the flexible MC and NC reactions core is unani-

mously determined as either present or not present in all 108 models. A small number of NC

reactions (20.25%) was also present in all reconstructions. Interestingly, the protein or expres-

sion evidence for half of those NC reactions has changed in the HPA since the publication of

the mCADRE model, and they are no longer considered not detected. This demonstrates the

ability of CORDA to include essential, significant NC reactions in the tissue-specific model, as

well as the importance of a flexible core.

The main difference between the 108 calculated models stems from the number of OT reac-

tions included. Reconstructions calculated using multiple dependency assessments, in order to

identify pathways with the same cost, led to the inclusion of more OT reactions during the

final step, defining a tradeoff between model size and robustness. No other parameter gener-

ated significantly different reconstructions, and all reconstructions demonstrated significant

robustness to parameter values. More information on this analysis is available in the supple-

mental information (S1 Text).

Cross-validation. In order to assess CORDA’s ability to include relevant reactions in the

tissue-specific model, we performed an additional 100 cross validation reconstructions using

randomly sampled subsets of each reaction group. For each reconstruction performed in this
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analysis, a subset of 80% of each reaction group used to calculate the previous 108 reconstruc-

tions was sampled and used in the same reconstruction process. For each model generated, a

hypergeometric p-value was calculated for each reaction group based on how many of the reac-

tions randomly left out during the reconstruction process were ultimately included in the tissue

model. The 100 p-values obtained were then combined using Fisher’s method, showing that

the tissue-specific models generated here were enriched in a statistically significant manner

with the HC and MC reactions left out of the reconstruction process, but not with the NC reac-

tions. This analysis demonstrates the ability of CORDA to selectively include reactions with

supportive experimental data. Further information on the cross-validation analysis is available

in S1 Text.

Comparison to previous models. As further validation, the CORDA algorithm was com-

pared to two previously published methods: MBA [34] and mCADRE [30]. MBA and

mCADRE were selected for comparison because they both contain a flexible core feature, and

are both pruning algorithms, returning a comprehensive tissue-specific reconstruction like

CORDA. Since both of these models were generated using the generalized human reconstruc-

tion Recon1 [5], here we use one of the 108 reconstructions generated during the parameter

sensitivity analysis to allow for a direct comparison.

As a first step, the size and composition of the different hepatocyte specific reconstructions

were compared (Table 1). We find that all three reconstructions have similar size and composi-

tion when considering reactions, metabolites, and genes. The mCADRE reconstruction has

considerably fewer reactions, the difference stemming mostly from exchange reactions (i.e. the

mCADRE reconstruction has 63 fewer reactions than the MBA reconstruction, but 50 fewer

exchange reactions). The CORDA reconstruction contains only 6% more reactions than the

mCADRE reconstruction and 2.4% more than MBA, which is surprising considering this algo-

rithm does not take a parsimonious approach. This fact is even more significant considering

the CORDA reconstructions performed using a single dependency assessment have an average

size of 1,828.7 reactions (S1 Text), 3.7% larger than mCADRE and 0.15% larger than MBA,

demonstrating the ability of CORDA to perform nearly as concise reconstructions despite not

being parsimonious.

The difference in number of reactions between CORDA and other reconstructions stems

mostly from a larger number of transport reactions. CORDA contains only 43 more reactions

than the MBA reconstruction, but 79 more transport reactions. Similarly, CORDA contains

106 more reactions than the mCADRE reconstruction, but 140 more transport and exchange

reactions. This discrepancy indicates that the parsimonious pruning methods are more likely

than CORDA to exclude exchange and transport reactions.

When considering the similarity between models, there are 1,231 reactions present in all

three reconstructions, accounting for 67.4% of MBA, 69.8% of mCADRE, and 65.86% of

Table 1. Comparison between CORDA, MBA andmCADRE hepatocyte specific reconstructions.

MBA mCADRE CORDA

Reactions 1,826 1,763 1,869

Exchange reactions 247 197 249

Transport reactions 539 530 618

Metabolites 1,360 1,402 1,334

Unique metabolites 729 762 722

Genes 1,333 1,267 1,242

Unique genes 1,051 994 972

doi:10.1371/journal.pcbi.1004808.t001
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CORDA reactions (Fig 2A). Despite this relatively low overlap, no two models seem to be more

similar than the other possible pairs. Furthermore, a higher level of similarity between models

is observed when considering unique genes and metabolites, with at least 77% of genes and at

least 84% of metabolites in each model shared across all models (S1 Text). Further comparison

between the models is available in S1 Text.

Next, the number of HC, MC and NC reactions included in each of the models was ana-

lyzed. Here, Not Detected, Low, Medium and High corresponds to the experimental evidence

associated with each reaction (Materials and Methods). The CORDA reconstruction showed

better agreement with experimental data in all reaction categories (Fig 2B). Particularly,

CORDA contained a significantly higher number of medium confidence reactions, 264 as

opposed to 229 in mCADRE and 212 in MBA, while including significantly fewer negative con-

fidence reactions, 17 as opposed to 51 in mCADRE and 65 in MBA. It is worth noting that the

MBA reactions core was chosen manually and based on data sources different than the one

used for the mCADRE and CORDA reconstructions. The difference in reactions core used dur-

ing the reconstruction process could explain the much lower agreement of MBA with this par-

ticular data set.

As a final validation of the CORDA algorithm, the ability of each of the models to perform a

series of metabolic tasks was analyzed. These metabolic functions were divided into three cate-

gories: (1) amino-acid and ammonium recycling, (2) glucogenic production, and (3) nucleotide

production. Briefly, during each test the model was allowed to freely exchange basic metabo-

lites (i.e. water and oxygen), while the remaining exchange reactions were set to mirror the par-

ticular test (i.e. uptake of ammonium and release of urea during ammonium recycling test).

The model was then forced to produce (1) urea, (2) glucose, or (3) specific nucleotides. If the

model was able to do so, the test was considered passed, otherwise, the test was considered

failed. If the appropriate exchange reactions were not present to perform the test, the result was

Fig 2. Comparison betweenMBA, mCADRE and CORDA hepatocyte-specific reconstructions. (A) Venn diagram of reactions included in each model.
A total of 1,231 reactions are present in all models. (B) Number of reactions included in each model according to the protein expression data associated with
each reaction. The CORDA algorithm includes more low and medium confidence reactions, while including considerably fewer reactions with no protein
evidence.

doi:10.1371/journal.pcbi.1004808.g002
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considered inconsistent. Further details on how these metabolic tasks were calculated are avail-

able in the Materials and Methods section. Test results are summarized in Table 2, and addi-

tional information is provided in S1 Text.

The MBA reconstruction passed all of the amino-acid recycling and glucogenic tests, which

is not surprising given the core set of MBA reactions, and therefore the necessary pathways for

these tasks, were manually included in the reconstruction. The mCADRE reconstruction

passed all eight nucleotide production tests, since these were included in the model building

process. Where the tests were not manually included, however, MBA passed only 50% of the

nucleotide production tests, and mCADRE passed only 13 of the amino-acid recycling and glu-

cogenic tests, with an additional 17 tests being inconclusive. On the other hand, CORDA

passed a total of 43 of the combined 48 metabolic tests (89.6%). This result is significant con-

sidering none of these tests were included in the reconstruction process.

Metabolic tests were also performed for all 108 hepatocyte specific reconstructions gener-

ated during the parameter sensitivy analysis section. All reconstructions had the same results

for all amino-acid recycling, glucogenic, and five of the nucleotide production tests, demon-

strating that task results are not heavily dependent on the CORDA parameters or noise (S1

Text). The inability of 39 of the 108 models (36.1%) to produce three of the nucleotides was

traced back to the reaction TRDR, an MC reaction dependent on the NC reaction RNDR1,

which was included in some but not all models. This reaction dependency, however, was

returned by the CORDA algorithm, and hence the reactions needed to produce all the nucleo-

tides can be easily included upon manual curation.

These analyses demonstrate that the CORDA algorithm provides a reconstruction with bet-

ter agreement to experimental data and better metabolic functionality when compared to pre-

vious, similar methods. Furthermore, the analysis of the 108 models to perform metabolic

tasks highlights the importance of the reaction dependencies returned by CORDA in subse-

quent manual curation, indicating which NC reaction needs to be added back into the model

for the desired MC reaction to carry flux.

Monte-Carlo sampling. Monte-Carlo Sampling can be used to find a uniform distribution

of steady-state flux vectors throughout the metabolic model, providing insight into the shape

and size of the model’s solution space [46, 47]. This uniform random sampling technique

allows for the unbiased estimation of probability distributions of flux values for each reaction

in the model. While the sampled flux values do not necessarily correlate with physiological

metabolic fluxes, the sampled distribution can estimate the capability and flexibility of each

reaction in the model given the network constraints [46]. This technique has been used to

study pathological states in the human red blood cell [46, 47] and mitochondria [48], as well as

the interaction between cell types in the human brain [49] and betweenM. tuberculosis and

macrophages [25].

Table 2. Metabolic test results.

MBA mCADRE CORDA

Amino-acid recycling 21/0/0 8/5/8 19/1/1

Glucogenic 19/0/0 5/5/9 18/1/0

Nucleotide production 4/4/- 8/0/- 6/2/-

Test results are reported as number of tests passed/ tests failed/ and inconsistent test results, meaning the

appropriate exchange reactions were not included in the model. Test-specific exchange reactions are not

required for nucleotide production tests.

doi:10.1371/journal.pcbi.1004808.t002
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Here we performed Monte-Carlo sampling on the CORDA, MBA and mCADRE hepato-

cyte models, as well as the generalized human reconstruction Recon1. We also introduce a sec-

ond CORDA reconstruction (CORDA2), calculated using the latest, most up-to-date data from

the HPA. To allow for a direct comparison between CORDA and previous algorithms, the

CORDA reconstruction used in the previous sections (referred in this section as CORDA1)

was calculated using the same data used in the mCADRE reconstruction. This was done to

ensure that differences in model functionality, capacity, and differential inclusion of high confi-

dence reactions stemmed from the difference in algorithms used in the reconstruction process,

and not from different datasets used to calculate each model. The CORDA2 model, on the

other hand, has been calculated to exemplify how the most recent HPA data leads to better

model capacity predictions. The protein expression data and reaction groups used in the recon-

struction of both CORDA models is available in S1 Table, and both models are available in S1

File. Details of how the flux values were sampled are outlined in the Materials and Methods

section.

The distribution of sampled flux values for reactions representing several hepatocyte specific

functions, including production of urea from arginine, production of bilirubin, production of

pyruvate from lactate (Cahill cycle), gluconeogenesis, and cholesterol production are plotted in

Fig 3. CORDA1 showed a higher capacity than all other reconstructions for bilirubin produc-

tion and lactate recycling, and a similar capacity for gluconeogenesis and cholesterol efflux.

This model only shows a lesser capacity than MBA and Recon1 in the production of urea.

Overall, however, these results show that the CORDA algorithm better captures model capabil-

ity for hepatocyte specific functions when compared to previous models and the generalized

human reconstruction. In other words, the subset of Recon1 defined by the CORDA model

better represents hepatocyte functions than the subset defined by the MBA and mCADRE

reconstructions.

In addition, the sampled fluxes for all reactions considered here showed a significant shift

towards higher values in the CORDA2 model when compared to MBA, mCADRE, and the

generalized human reconstruction Recon1 (p<10−20), including in the production of urea.

While CORDA1 showed better functionality in bilirubin production and lactate recycling than

CORDA2, CORDA2 outperformed CORDA1 in gluconeogenesis and cholesterol efflux capa-

bility. These results suggest that the most recent data from the HPA captures a wider range of

tissue-specific functionalities. It is also worth noting that the CORDA models were the only

models where the flux through lactate dehydrogenase was highly biased towards positive val-

ues, converting lactate to pyruvate (Cahill cycle). All other models considered here showed

either an even distribution between positive and negative values, or mostly negative values

leading to the production of lactate.

Another interesting result of this analysis is the flux values sampled for HMG-CoA reduc-

tase in the MBA reconstruction. This enzyme represents the rate-limiting step in the de novo

synthesis of cholesterol and other isoprenoids. Flux values sampled for this reaction using the

MBA reconstruction are extremely high when compared to other models, and they were never

close to or equal to zero. This distribution suggests that this reaction might also be used in

other cellular processes, and thus carries a higher flux more frequently during sampling. To

investigate this possibility, we analyzed which reactions are dependent on the HMG-CoA

reductase reaction (HMGCOARx) in each of the hepatocyte models. This was done by evaluat-

ing which reactions lose their ability to carry flux upon setting the upper and lower bounds of

HMGCOARx to zero. While in the CORDA models only reactions in the cholesterol metabo-

lism, endoplasmic reticulum transport, and peroxisomal transport pathways are blocked, a

much larger number of reactions are blocked in the MBA and mCADRE reconstructions. In

both of these models, a high number of bile acid biosynthesis reactions lose functionality upon
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blockage of HMGCOARx. Reactions in other sub-systems, such as Lysine metabolism and

purine catabolism in MBA, and taurine and hypotaurine metabolism, vitamin D metabolism,

and CoA biosynthesis in mCADRE, also have a loss of function (S1 Text). Overall, upon block-

age of HMGCOARx, 188 additional reactions in the MBA model, and 156 in the mCADRE

model lose function, compared to 30 in CORDA1 and 33 in the CORDA2 model (S1 Text).

This analysis demonstrates how parsimonious algorithms are likely to remove alternative path-

ways from the model, conferring very high levels of influence over the network to particular

reactions.

Fig 3. Monte-Carlo sampling of Recon1 and hepatocyte specific models.Distribution of flux values sampled for selected reactions representing
hepatocyte specific functions in each of the hepatocyte models and the generalized human reconstruction Recon1. The name of each reaction plotted, as
defined in the Recon1 reconstruction, is presented in parenthesis.

doi:10.1371/journal.pcbi.1004808.g003
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Generation of multiple healthy and cancer tissue-specific models

Following the algorithm validation, we generated a library of 76 healthy and 20 cancer tissue-

specific models using CORDA. In order to generate the most comprehensive models possible,

we used the generalized human reconstruction Recon2 [9] in the calculation of this library.

Recon2 is one of the most comprehensive human reconstructions performed to date, contain-

ing approximately twice the amount of reactions than Recon1, 1.7 times more unique metabo-

lites, and 1.2 times more unique genes. Details of how the reconstructions were calculated can

be found in the Materials and Methods section.

Identification of essential metabolites. As an initial validation of this library, we analyzed

the reconstructions for the identification of essential metabolites specific to cancer. Essential

metabolites are necessary to carry out specific cellular functions, and can be used for the identifi-

cation of possible antimetabolites. Antimetabolites, in turn, are structurally similar to essential

metabolites but cannot be used by the cell, thus stalling enzymes consuming the essential metab-

olite through competitive inhibition [50]. By targeting cellular functions specific to cancer, anti-

metabolites have been widely used in the treatment of multiple types of cancer [51–53].

The identification of essential metabolites can be predicted computationally using GEMs [15,

16, 54]. Given a metabolite to be tested, all reactions consuming that metabolite are blocked in

the forward direction, and reactions producing the metabolite are blocked in the backwards

direction. An array of essential metabolic functions is then tested, and failure to complete any of

those functions renders the metabolite essential for that GEM. All 76 healthy and 20 cancer spe-

cific reconstructions calculated here were tested for all 271 unique metabolites present in all

models, using the 32 metabolic functions included in the reconstruction process (S1 Table).

Two metabolites selectively targeted cancer over healthy reconstructions: phosphatidylethanol-

amine (pe_hs), essential in 1.3% of healthy and 10% of cancer specific reconstructions, and tri-

glyceride (tag_hs), essential in 31.6% of healthy and 70% of cancer specific reconstructions.

Both of these metabolites are involved in fatty-acid and glycerophospholipid pathways, which

have been previously identified as specifically essential to cancer tissues [15, 16].

Composition analysis of cancer and healthy tissue models. Next, the 96 tissue-specific

models were clustered according to the reactions present in each of them (Materials and Meth-

ods). The clustering results are summarized in Fig 4. We find that the tissue-specific models

largely cluster according to tissue type, with most of the cancer models clustering together. The

only exception stems from the liver and prostate cancer models, which cluster with their

healthy counterparts (Fig 4).

Following the clustering results described above, we divided the models into seven catego-

ries according to the results presented in Fig 4. These categories are glandular (green), epithelial

(orange), lymphoid (cyan), cancer (blue), muscle (yellow), brain (magenta) and miscellaneous

(black), which includes all of the remaining models. The presence of reactions in 89 different

subsystems was then calculated and clustered for each of the model categories (Materials and

Methods). Results are summarized in Fig 5. Evidence for the up- or down-regulation of many

metabolic pathways differentially included or excluded from cancer models as opposed to

healthy tissues is available in the literature [55–82] and highlighted in the discussion section.

Overall, this clustering analysis further confirms the ability of CORDA to generate reconstruc-

tions in agreement with experimental data, and validates the library of healthy and cancer tis-

sue reconstructions generated here.

Single reactions that are present most often in cancer but not in healthy, and in healthy but

not in cancer tissue-specific reconstructions, were also analyzed (Table 3). All reactions that

are present most often in cancer tissues have been shown to be up-regulated in at least one type

of cancer. Reactions that are not gene-associated are part of sarcosine or folate metabolism
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pathways, both of which have been shown to be up-regulated in cancer [70–72, 83, 84]. Simi-

larly, reactions that are present most often in healthy tissue reconstructions, but not cancer,

have largely been shown to be down-regulated in cancer (Table 3). Many of these reactions are

part of D-glucosamine and n-3 polyunsaturated fatty acids metabolisms, both of which have

been shown to selectively target and kill cancer cells [58–61, 85–87]. An additional three

Fig 4. Clustering of tissue specific models.Healthy- and cancer-specific models clustered according to reactions present in each model. Highlighted
clusters indicate epithelial and myoepithelial like tissues (orange), glandular like tissues (green), muscle tissues (yellow), lymphoid like tissues (cyan), brain
cells (magenta), cancer tissues (blue), and cancers clustered with their healthy counterpart (red). Red squares indicate reactions present in the model and
blue squares indicate reactions that are absent.

doi:10.1371/journal.pcbi.1004808.g004
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Fig 5. Clustering of subsystems for eachmodel category. The presence of reactions in each subsystem, for each model category, was calculated and
clustered. Heat map represents the fraction of reactions in each subsystem included on average in models of the specific category. Number of reactions in
each subsystem considered is also included.

doi:10.1371/journal.pcbi.1004808.g005
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Table 3. Reactions differentially included in healthy versus cancer tissuemodels.

Reaction Subsystem Associated Genes Cancer
Models

Healthy
Models

Literature Evidence

Reactions present in cancer tissue models most often:

DNDPt15m Transport,
mitochondrial

60386 95% 32.9% Breast Cancer [88]

EX_sarcs(e) Exchange/demand
reaction

- 85% 22.4% Prostate Cancer [83, 84]

H2O2syn Tyrosine metabolism 53905, 50506 90% 39.5% Prostate Cancer [89]

MTHFD2m Folate metabolism 10797 65% 7.9% Multiple [71, 73], Breast [70, 72]

SARCStex Transport, extracellular - 85% 22.4% Prostate Cancer [83, 84]

r0514 Folate metabolism 1719 85% 10.5% Multiple [71, 90]

r0961 Transport, extracellular 1356 70% 9.2% Multiple [91, 92]

r0962 Transport,
mitochondrial

- 85% 10.5% Multiple [71], Breast [70, 72]

r2085 Transport, extracellular 6566 70% 9.2% Neuroblastoma [93]

r2086 Transport, extracellular 6566 90% 35.5% Neuroblastoma [93]

Reactions present in healthy tissue models most often:

ACOAO7p Fatty acid oxidation 51 15% 97.4% -

ALCD22_D Pyruvate metabolism 124–128, 130, 131, 137872,
284273

25% 97.4% Colorectal Cancer [94, 95]

DADA Nucleotide
interconversion

100 5% 86.8% Multiple [96], Renal adenocarcinoma [97],
Gastric [98]

DADAe Nucleotide
interconversion

100 5% 86.8% Multiple [96], Renal adenocarcinoma [97],
Gastric [98]

DESAT24_1 Fatty acid synthesis 9415 5% 80.3% Multiple [99]

EX_gam(e) Exchange/demand
reaction

- 20% 94.7% Multiple [58–61]

EX_tethex3(e) Exchange/demand
reaction

- 5% 76.3% Multiple [85–87]

EX_tetpent3(e) Exchange/demand
reaction

- 5% 80.3% Multiple [85–87]

FACOAL245_2 Fatty acid oxidation 2180 5% 80.3% Hepatoma [100], Lung [101], Colon [102]

FACOAL246_1 Fatty acid oxidation 2180 5% 76.3% Hepatoma [100], Lung [101], Colon [102]

GAMt1r Transport, extracellular 6513, 6514, 6517 20% 94.7% Multiple [58–61]

HEX10 Aminosugar
metabolism

2645, 3098, 3099, 3101,
80201

20% 94.7% Multiple [58–61]

O2Stx Transport, peroxisomal - 25% 98.7% -

PNTK CoA synthesis 53354, 55229, 79646, 80025 20% 98.7% -

PPCDC CoA synthesis 60490 20% 98.7% -

PPDOx Pyruvate metabolism 8574 20% 97.4% Hepatocellular Carcinoma [103]

PPNCL3 CoA synthesis 79717 20% 98.7% -

SPODMx ROS detoxification 6647 25% 98.7% Multiple [104]

TETHEX3t Transport, extracellular - 5% 76.4% Multiple [85–87]

TETPENT3t Transport, extracellular - 5% 80.3% Multiple [85–87]

References for reactions largely present in cancer models refer to up-regulation in cancer metabolism, while references for reactions largely present in

healthy tissue models refer to their down regulation in cancer cells.

doi:10.1371/journal.pcbi.1004808.t003
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reactions, PNTK, PPCDC and PPNCL3 are part of coenzyme-A synthesis pathways, a pathway

also implicated as significantly excluded from cancer models during the clustering analysis (Fig

5). These reactions are largely excluded from cancer reconstructions due to the gene PPCS, the

only gene from these three reactions with supportive information in the HPA, and thus

included in the reconstruction process. PPCS is expressed in all healthy tissues, with medium

or high confidence in 33 of them, but is largely low or negatively expressed in most cancer tis-

sues. Similarly, the reaction ACOAO7p, dependent on the gene ACOX1, was largely included in

healthy tissues and not cancer tissues according to experimental data.

Finally, reactions that are present in three or fewer healthy models, and reactions that are

present in a single cancer model, were analyzed in order to assess CORDA’s ability to include

tissue specific reactions (S1 Table). We found that the inclusion of tissue specific reactions are

largely aligned with our knowledge of metabolism. Bile acid and urea cycle reactions are con-

centrated on the hepatocyte and intestinal mucosa reconstructions [105]; tyrosine metabolism,

a precursor to melanin, is highly active in skin melanocytes and epidermal models; the soft tis-

sue adipocyte model contains a specific vitamin D metabolic reaction, a pathway highly associ-

ated with this tissue [106, 107]; steroid metabolism reactions are concentrated in adrenal,

duodenum and prostate glandular, as well as testis Leydig cell reconstructions; and the iodine

exchange reaction is unique to the thyroid gland model. Similarly, bile acid synthesis and cho-

lesterol metabolic reactions are highly concentrated in the liver cancer reconstruction; chon-

droitin sulfate degradation reactions are highly concentrated in the prostate cancer model

[108–111]; and tyrosine metabolism reactions are largely present in the thyroid [112, 113] and

melanoma [114] cancer reconstructions (S1 Table).

Monte-Carlo sampling of cancer and healthy tissue models. Monte-Carlo Sampling was

also performed on each of the 96 cancer and healthy tissue models. Due to the heterogeneity

between cell types, flux values were analyzed between all cancer and healthy tissue models

together (Materials and Methods). The distribution of sampled flux values for selected reac-

tions or group of reactions are plotted in Fig 6. Plots for individual healthy and cancer models

are available in S1 Text. Similar to the hepatocyte specific analysis, the sampled values showed

good agreement with experimental data and our understanding of cancer metabolism. Cancer

models showed an overall greater capacity for lactate secretion (in accordance with the War-

burg effect [115, 116]), glycolysis [71], the pentose phosphate pathway [116] (particularly

through the up-regulation of TKT1 [71]), and through methylene-THF dehydrogenase

(MTHFD2) in the conversion of 5,10-methylene-THF to 5,10-methenyl-THF (positive direc-

tion)[71]. On the other hand, pathways that have been shown to be down-regulated in cancer

demonstrate a decreased capacity in cancer models when compared to healthy tissue models,

including mitochondrial respiration (Complex IV)[115] and superoxide dismutase [71, 104].

These results demonstrate the ability of Monte Carlo sampling to predict the capacity of

cancer versus healthy tissue models beyond simple topological analysis (i.e., simply looking at

the presence or absence of certain reactions or pathways in the model). For instance, this analy-

sis is able to capture a higher capability of cancer models for lactate secretion, and a lower

capacity through superoxide dismutase, based on model topology alone, even though these

reactions are present in all the models in the library. This analysis is made possible by the faster,

high throughput capability of the CORDA algorithm, allowing for the generation of a library of

tissue-specific models based solely on experimental data. While mCADRE allows for a rela-

tively fast and high throughput generation of tissue-specific models, results shown in Fig 3 sug-

gest that these reconstructions show poor functionality predictions. MBA, on the other hand,

yields much better predictions of model functionality than mCADRE, but still falls short of the

CORDA reconstructions according to our hepatocyte specific analysis (Fig 3). The computa-

tional cost of the MBA algorithm also renders the generation of a library of models extremely
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expensive and time consuming, especially if the core set of reactions were to be selected manu-

ally. In sum, CORDA resulted in direct comparisons of cancer versus healthy tissue metabo-

lism, as well as more accurate reconstructions of hepatocyte function compared to prior tissue-

specific metabolic models, in a computationally efficient manner.

Discussion

Here we introduced a novel tissue-specific algorithm based on Cost Optimization Reaction

Dependency Assessment (CORDA). CORDA relies solely on FBA, rendering it more computa-

tionally efficient than previous methods. CORDA takes a non-parsimonious approach to the

reconstruction process, based on the addition of valuable reactions to the reconstruction as

opposed to the removal of non-essential reactions. We showed that the CORDA algorithm

provides reconstructions that agree better with experimental data, and that demonstrate better

metabolic functionality than prior methods like MBA and mCADRE. Furthermore, CORDA

provides reaction associations that can greatly assist subsequent manual curation, while main-

taining the reconstructions only slightly larger than previous parsimonious approaches.

Fig 6. Monte-Carlo sampling of cancer and healthy tissuemodels. Flux values sampled from all cancer and healthy tissue models. Recon2 reactions
plotted in each boxplot are indicated in parenthesis. Asterisk indicates groups of reactions taking place in different cellular compartments. According to
general cancer metabolism, cancer models showed a higher capacity through lactate production, pentose phosphate pathway, MTHFD2, and glycine
hydroxymethyltransferase, while showing a lower capacity through oxidative phosphorylation and superoxide dismutase.

doi:10.1371/journal.pcbi.1004808.g006
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Monte-Carlo sampling analysis also demonstrates that the CORDA generated models provide

better predictions of tissue-specific functionality.

In addition to the algorithm validation, we generated a library of 76 healthy and 20 cancer

tissue-specific reconstructions, which show considerable agreement with our current knowl-

edge of healthy tissue and cancer metabolism. First, as an initial validation of our cancer and

healthy tissue models, we computationally predicted metabolites that are more frequently

essential in cancer models than healthy tissues [15, 16, 54]. Two metabolites were implicated in

this analysis: phosphatidylethanolamine (pe_hs) and triglyceride (tag_hs), both of which are

part of metabolic pathways previously implicated as cancer specific [15, 16]. While future work

is merited to identify more specific essential metabolites (e.g. through the inclusion of more

comprehensive metabolic tasks in the tissue reconstruction process, and more metabolites in

the essential metabolite identification algorithm), these results help validate the cancer and

healthy tissue reconstructions presented here.

Following this analysis, we demonstrated that the tissue models calculated by CORDA clus-

ter largely according to tissue type. Similar clustering patterns, based on gene expression and

proteomics data, have been observed experimentally. In particular, based on the expression of

over 30,000 genes across multiple individuals and tissues, one study found that brain, muscle,

and liver tissues, as well as Epstein-Barr virus-transformed lymphocytes, form well defined

groups, while skin, adipocytes, and nerve tissues cluster closely together [117]. A separate

study used in the generation of the HPA, based on protein evidence from almost 17,000 pro-

tein-coding genes in 44 major tissues and organs, also showed that tonsils, spleen, appendix,

and lymph node tissues cluster closely together, and that bone marrow clusters separately, but

close to these lymphoid tissues [45].

Evidence supporting many of the apparent exceptions identified by our clustering analysis

is also available. For instance, Uhlén et. al. found that brain and liver tissues, along with testis,

cluster considerably separate from other tissues and closer to each other, which is what we

observed by clustering the CORDA models. The same study found that prostate tissue clusters

closely with salivary glands [45]. It is worth noting that good agreement with the data by Uhlén

et. al. is expected, given that a subset of this data was used to generate the tissue-specific mod-

els. This agreement, however, suggests that the similarities between tissues shown by Uhlén et.

al.[45] and Melé et. al.[117] at the gene expression and protein level are also present in the met-

abolic enzymes level.

Additionally, breast and salivary glands are known to share many morphological features,

and studies have shown that both can give rise to tumors with similar morphology [118, 119]

and myoepithelial differentiation [120]. These finding can explain why breast and salivary

glands clustered with epithelial and myoepithelial cells, as opposed to glandular cells. Finally,

skin cancer and non-Hodgkin’s lymphoma appear frequently as secondary cancers in immu-

nosuppressed individuals [121, 122]. This could lead to cancers with significantly different

metabolic profiles, supporting their separation from the remaining cancer models.

Clustering of tissue-specific models according to subsystems has also highlighted many dif-

ferences between healthy and cancerous tissues at the pathway level (Fig 5). Evidence for many

of these differences are also available in the literature, including:

• Thiamine metabolism: Thiamine deficiency is common in advanced cancer patients [55,

56]. Thiamine supplementation has been shown to increase tumor proliferation in vitro

through transketolase activation [55], and multiple studies have linked thiamine metabolism

to cancer through numerous mechanisms [57].

• Aminosugar metabolism: D-glucosamine, the most abundant aminosugar and an important

precursor in many biological pathways, has been shown to reduce tumor proliferation [58].
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Although the mechanism of this inhibition is unknown, studies have suggested it may be

through the targeting of cellular membranes [59], protein synthesis through p70S6K regula-

tion [60], or protein N-glycosylation [61].

• Pyruvate metabolism: Pyruvate connects many metabolic pathways, and alterations in these

pathways play an important role in cancer metabolism [62, 63]. Recent studies have shown

that mitochondrial pyruvate carrier function is lost in cancer, and low expression of this pro-

tein is associated with poor survival [64]. This loss of function was also shown to induce the

Warburg effect, a hallmark of cancer [64]. Additionally, the pyruvate kinase isoenzyme

PKM2 has been shown to play a key role in cancer metabolism, diverting glucose to anaero-

bic pathways [65].

• Glycosaminoglycans degradation: The accumulation of glycosaminoglycans in cancer cells

has been widely established, and therapies targeting these polysaccharides have been pro-

posed [66, 67]. In particular, chondroitin sulfate proteoglycans have been shown to accumu-

late in cancer cells and promote tumorigenesis by interacting with surface receptors [68].

Furthermore, keratan sulfate has been shown to accumulate in the serum of patients with

cartilage tumors, and serum levels were shown to decrease upon tumor removal [69]. Our

results suggest that this accumulation is coupled with a down-regulation of glycosaminogly-

cans degradation.

• Folate Metabolism: Folate metabolism, in particular the enzyme methylenetetrahydrofolate

dehydrogenase (MTHFD2), has been shown to be up-regulated in cancer cells [70–73], and

it has been shown to contribute to energy and purine requirements in cancer [73]. Folate

pathways have also been associated with poor prognosis [71, 72] and increased cell prolifera-

tion in vitro[73]. Also, anti-folate agents have been shown to reduce cancer proliferation, and

have been proposed as anti-cancer agents [73, 74]. Monte-Carlo sampling analysis has also

shown a more positive flux distribution through the reactionsMTHFD2 andMTHFD2r in

cancer over healthy tissue models (Fig 6), in accordance with our knowledge of cancer

metabolism [71].

• Squalene and cholesterol synthesis: Squalene is an important precursor of cholesterol. Squa-

lene synthase expression has been shown to be increased in prostate cancer [76], and inhibi-

tion of this enzyme has been demonstrated to cause cell death in prostate cancer [75, 76].

Furthermore, squalene oxidase has been indicated as an oncogene in both pancreatic [77]

and breast [78] cancer.

• Oxidative phosphorylation:Oxidative phosphorylation pathways have long been consid-

ered down-regulated in cancer tissues. Recent studies have found, however, that these path-

ways remain intact [79] or even increase during metastasis [80–82]. The activity of this

pathway in cancer versus healthy tissue models is further discussed during the Monte-Carlo

sampling analysis discussion.

Single reactions included most often in cancer or healthy tissue models were also analyzed,

and again literature evidence has been found to support many of them (Table 3). Two surpris-

ing findings stemmed from this analysis. First is the predicted down-regulation of CoA synthe-

sis reactions, implicated in both the subsystem and single reaction analyses. Upon further

inspection, we traced this differential inclusion to the gene PPCS, the only gene related to this

pathway included in the reconstruction process, which is significantly down-regulated in can-

cer cells [44, 45]. Second, the exclusion of ACOAO7p from most cancer models is also unex-

pected, since this reaction is part of the fatty-acid oxidation pathway, which has been shown to

be up-regulated in cancer tissues [123, 124]. Protein evidence of this reaction’s associated gene,
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ACOX1, supports this exclusion from cancer models [44, 45], suggesting an alternate pathway

for palmitoyl-CoA oxidation in cancer tissues.

Finally, Monte-Carlo sampling was also performed in all healthy and cancer tissue models.

Sampling results demonstrate that cancer models show an increased capacity through path-

ways that are largely up-regulated in cancer metabolism, and a reduced capacity through path-

ways previously shown to be down-regulated. Interestingly, mitochondrial respiration showed

a slightly reduced and tightly constrained capacity in cancer over healthy tissue models, despite

the presence of a larger number of oxidative phosphorylation reactions in cancer models (Fig

5). For decades, the role of mitochondrial respiration was thought to be decreased in cancer tis-

sues due to their high glycolytic capacity. In recent years, however, researchers have shown

that this pathway actually plays an important role in cancer metabolism [125, 126]. Our results

suggest that although a larger number of oxidative phosphorylation reactions are present in

cancer models, the activity of this pathway is tightly regulated by cancer metabolism topology

(Fig 6). On one hand, the low probability of cancer models reaching high cytochrome c oxidase

flux values compared to healthy tissues is in line with cancer’s high glycolytic potential. At the

other extreme, the low probability of cancer models reaching relatively low cytochrome c oxi-

dase sampled fluxes is in line with the key role played by mitochondrial respiration in cancer

metabolism uncovered in recent years.

We have also investigated the differences in glycine hydroxymethyltransferase capacity in

cancer versus healthy tissue models (S1 Text). This reaction is dependent on two proteins,

SHMT1 and SHMT2, which correspond the cytosolic and mitochondrial isozymes respectively.

Both these proteins have been shown to be up-regulated in cancer over healthy tissue models

[127], although SHMT2 has been so to a greater extent [71, 127]. The over expression of these

proteins, however, has been shown to be heavily dependent on cancer type [127]. This claim is

supported by the protein expression of SHMT2 in the HPA, where half the cancer types consid-

ered have samples with both high and not detected SHMT2 expression. This variability could

explain why the distribution of reactions associated with these genes is similar between cancer

and healthy tissue models (S1 Text). Some cancer types, however, show a considerable increase

in SHMT2 expression when compared to their healthy counterparts, including breast, glioma,

head and neck, lung, stomach, testicular, and thyroid cancer. In all but one of these models (gli-

oma), the flux distribution of glycine hydroxymethyltransferase was shown to be considerably

shifted towards higher values when compared to their healthy counterparts (S1 Text). These

results demonstrate CORDA’s ability to predict cancer type specific functionality, and not only

differences between all cancer and healthy tissues taken together.

The CORDA tissue-specific reconstruction algorithm, as well as the healthy and cancer tis-

sue-specific reconstructions presented here, introduce a new approach for the development of

comprehensive tissue-specific metabolic reconstructions. These reconstructions can generate

novel insights into both healthy and diseased human metabolic behavior. Furthermore, the

ability of CORDA to generate models based solely on experimental data, along with the

computational efficiency of this algorithm, allows for continuous updates of this library of tis-

sue-specific models, both as more experimental data is updated and made available, and as

more comprehensive human metabolic reconstructions are developed.

Materials and Methods

The Cost Optimization Reaction Dependency Assessment (CORDA)
algorithm

While previous methods determined reaction dependencies using Flux Variability Analysis

(FVA), the CORDA algorithm takes a different approach, referred here as dependency
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assessment. The novelty of this method lies not in the LP formulation itself, which is the same

as the widely established Flux Balance Analysis (FBA), but in the model modifications per-

formed prior to the application of FBA, as well as the interpretation of the flux distribution

returned. Assuming we want to test whether a given reaction, x, is dependent on the presence

of a group of reactions, Y, to carry flux, CORDA proceeds in five steps. The parameters

required for the CORDA algorithm are summarized in Table 4:

1. As a first step, x is constrained to carry a strictly positive or strictly negative flux ±�, depend-

ing on whether the reaction is reversible or not, and which direction we wish to test. The

magnitude of � can be arbitrarily small.

2. Each reaction in Y is associated with a high “cost” γ. This cost is added to each reaction as a

pseudo metabolite, while splitting reversible reactions into forward and backwards reac-

tions. That is, a reaction “A, B” is split into “A) B+cost” and “B) A+cost”. This way,

the cost is positively produced whether the reaction is taking place in the forward or back-

wards direction. At this step, reactions not in Y are assigned a cost of zero.

3. Each reaction cost is increased by a small random value sampled uniformly between zero

and κ. The parameter κ is several orders of magnitude lower than γ. This noise is added to

account for multiple pathways which allow x to carry a flux �, and are associated with the

same cost. With the added noise, these pathways will have slightly different costs.

4. A reaction consuming this pseudo metabolite is added to the reconstruction and set as the

model objective. This added reaction is then the only mean of cost consumption, while all

other model reactions produce the pseudo metabolite regardless of directionality.

5. FBA is performed while minimizing the flux through the cost consuming reaction. The flux

distribution obtained is then the flux distribution with minimal cost needed to maintain the

strictly positive or strictly negative flux ±� of x. Any reaction in Y predicted to carry a flux in

this flux distribution will be referred to as associated with x.

It is worth noting that the high cost reactions implicated in step five are not necessarily

essential for x to carry a flux ±�, but are the set of reactions in Y that combined carry the mini-

mal amount of flux. That is, no flux distribution through the metabolic network allows for the

predefined flux through x with a lower combined flux through the reactions of Y. For instance,

if one of the reactions in Y deemed associated with x were to be removed from the reconstruc-

tion, x could still be able to carry a flux ±�, but the combined flux through the reactions in Y

would be larger than before. This way, this dependency assessment does not minimize the

number of undesirable reactions to allow x to carry flux, but instead the combined flux through

Table 4. Parameters required for the dependency assessment and CORDA tissue-building algorithm.

Parameter Parameter Use

γ Cost associated with undesirable reactions (Y).

κ Order of magnitude of noise added to reaction costs. Each reaction cost is increased by a
value sampled uniformly between zero and κ.

� Magnitude of flux value by which the reaction being tested (x) is constrained.

n Number of times each reaction dependency is assessed in order to sample from pathways
with equivalent costs.

p Threshold for the inclusion of Negative Confidence reactions in step 2 of the tissue-specific
algorithm.

doi:10.1371/journal.pcbi.1004808.t004
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them. Naturally, however, a lower number of reactions would more easily allow for a lower

combined flux. It is also for this reason that throughout the manuscript we use the term associ-

ate instead of dependent. Throughout the literature, referring to one reaction as dependent on

another means the removal of the later from the model negates the former’s ability to carry

flux, which is not necessarily the case for the reaction associations defined here.

Another significant advantage of this dependency assessment over previous pruning algo-

rithms is that it requires only the LP problem solved during FBA, rendering it much faster than

previous methods. While MBA and mCADRE used a much faster variation of FVA, it is still

considerably more computationally expensive than LP. Although mCADRE is up to three

orders of magnitude faster than MBA [30], the mCADREmodel used in this study took about 4

hours to be calculated in a 2.34 GHz CPU with 4G RAM using the IBM CPLEX solver [30]. The

CORDA reconstruction, on the other hand, using the same data and general human reconstruc-

tion, took under 30 minutes in a 2.66 GHz CPU with 4G RAM using the Gurobi solver [128].

In order to obtain a tissue-specific metabolic reconstruction using this dependency assess-

ment, we define the Cost Optimization Reaction Dependency Assessment (CORDA) algo-

rithm. This algorithm takes as input the reactions in the generalized human reconstruction

divided into four categories:

• High Confidence (HC) reactions: Reactions that are sure to be included in the tissue-spe-

cific reconstruction.

• Medium Confidence (MC) reactions: These reactions will be included in the final recon-

struction if they are not dependent on negative confidence reactions associated with few MC

reactions.

• Negative Confidence (NC) reactions: Reactions not to be included in the final tissue-specific

reconstruction. These will only be included if they are associated with any HC or a high num-

ber of MC reactions. The NC and MC reactions core is then flexible, while the HC core is

not.

• Other (OT) reactions: All remaining reactions in the generalized human reconstruction not

included in the HC, MC or NC groups.

Here, we also allow for the inclusion of metabolic tasks in the HC group. That is, during the

CORDA algorithm, sinks can be specified for given metabolites, and added to the model when

tested to ensure the final tissue model can produce these metabolites. These reactions are

added when being tested then immediately removed from the model, so that none of these met-

abolic task reactions are present when other reactions are being tested, and no two test reac-

tions are present in the model at the same time. The 32 metabolic tasks included in all CORDA

reconstructions in this manuscript are available in S1 Table.

While the definition of these reaction groups can be left to the user’s discretion, here we

defined the four groups according to proteomics data from the HPA [44, 45], and boolean

gene-reaction rules included in the generalized reconstructions Recon1 and Recon2. In the

HPA, each protein is classified as being Not Detected, or present at Low, Medium or High lev-

els in each tissue. The gene-reaction association rules are composed of gene names and “AND”

and “OR” boolean associations. For instance, the reaction r0634 in Recon2 has the boolean rule

“HADHB AND (ACAA2 OR ACAA1)”, and can therefore be considered active if the gene

HADHB, as well as ACAA2 or ACAA1, are active.

Using this boolean mapping, gene IDs were first replaced by the numerical values -1, 1, 2,

and 3, corresponding to Not detected, Low, Medium and High protein expression levels respec-

tively. Genes not included in the dataset were assigned a numerical value of zero. Next, AND
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boolean associations were replaced by the function MIN; OR boolean associations were

replaced by the function MAX; and the expression was evaluated. Reactions with a final score

of 3 were assigned to the HC group; reactions with scores of 1 or 2 were assigned to the MC

group; and reactions with a score of -1 were assigned to the NC group. Reaction scores of -1, 1,

2, and 3 also correspond to Not Detected, Low, Medium, and High expression levels expressed

in Fig 2.

As an example, HADHB is expressed at low levels in cerebellum Purkinje cells; ACAA2 is

not detected; and ACAA1 is expressed at high levels. The r0634 gene-reaction rule mentioned

above was then be replaced by “MIN(1,MAX(-1,3))”, which evaluates to 1. During the Purkinje

cells reconstruction, this reaction was then placed in the MC group. Similar approaches have

been used by previous studies to assign reaction confidence scores [30, 32, 37].

Aside from the four reaction groups, the CORDA algorithm also requires 5 parameters to

operate, which are summarized in Table 4. To begin the algorithm, all HC reactions are moved

into the tissue-specific reconstruction (RE), since these are sure to be included in the final

model. Given the remaining three reaction groups, the CORDA algorithm proceeds in three

steps:

1. MC and NC reactions associated with each RE reaction (which are the same as HC reactions

at this point) are obtained using the dependency assessment n times. Here, each NC reac-

tion is given a cost of γ and each MC reaction a cost of
ffiffiffi

g
p

, in order to favor the inclusion of

MC over NC reactions. Any MC or NC reaction associated with any RE reaction, during

any of the n dependency assessments, is then moved from the MC and NC groups to the RE

group. These reaction associations are returned by the algorithm in order to assist in any

subsequent manual curation.

2. NC reactions associated with each MC reaction are obtained using the dependency assess-

ment n times. At this point, in order to maximize the inclusion of MC reactions and mini-

mize the inclusion of NC reactions, we take a different approach than simply moving MC

reactions and their associated NC reactions to RE. Instead, any NC reaction associated with

p or more MC reactions is first moved from the NC group to the RE group. Subsequently,

all remaining NC reactions are blocked (upper and lower bounds set to zero) and any MC

reaction still able to carry flux in any direction, thus not depending on the blocked NC reac-

tions, is moved from the MC to the RE group. This is done since, as described above, the

blockage of NC reactions associated with a particular MC reaction does not necessarily

remove that reaction’s ability to carry flux. All MC reactions not included in the reconstruc-

tion, as well as their associated NC reactions, are then returned by the algorithm to assist in

any subsequent manual curation.

3. Lastly, all MC and NC reactions not yet added to the RE group are blocked. OT reactions

associated with each RE reaction are then obtained, again using the dependency assessment

n times. Any OT reaction associated with any RE reaction during any of the n dependency

assessments is then moved from the OT to the RE group. This final RE group then defines

the tissue-specific reconstruction.

It is worth noting that one of the main advantages of CORDA over pruning algorithms is

the fact that it is independent of how reactions are ordered. This is due to the fact that reaction

associations are calculated for each step, and at the end of each step a decision is made as to

which reactions are added to the tissue reconstruction. This way, the order in which reaction

dependencies are calculated does not affect the final tissue reconstruction.

The CORDA reconstructions used for comparison to previous methods were generated

using γ = 105, the highest cost value tested, κ = 10-2, the lowest noise value tested, � = 1, a
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threshold similar to a previous study [32], n = 5, to allow for the inclusion of a larger number

of OT reactions, and p = 2.

For a direct comparison to previous methods, the CORDA reconstructions used during the

parameter sensitivity analysis, cross-validation, and comparison to previous methods were per-

formed using the same data used for the mCADRE hepatocyte reconstruction. For the Monte-

Carlo sampling analysis, a new reconstruction was generated using the most up-to-date data

from the HPA. Both of these reconstructions are available in the supplemental material (S1

File). All calculations in this study were performed using the COBRA toolbox [129] and the

Gurobi optimizer [128]. The MATLAB function file used for CORDA reconstructions is also

available in the supplemental material (S2 File). Finally, an example of the CORDA algorithm,

applied to small sample networks, is available in S2 Text.

Parameter sensitivity analysis

While CORDA requires a number of different parameters, many of these values can be arbi-

trarily assigned. For instance, γ can be arbitrarily large, while � and κ can be arbitrarily small.

In order to demonstrate that the CORDA algorithm is robust to a wide range of parameters, we

performed 108 hepatocyte specific reconstructions varying all parameters but p (which was set

to be equal to two) to a wide range of values. A separate sensitivity analysis of p was performed

and is included in S1 Text. The parameter p can be set in order to define a more or less flexible

MC and NC core, and can be set to the user’s discretion.

These 108 reconstructions were based on the generalized human reconstruction Recon1 [5],

using the same set of protein expression data (total of 560) and 32 of the metabolic tests used in

the mCADRE hepatocyte specific reconstruction [30]. The data used in this step, as well as the

metabolic tests and calculated reaction groups, are available in the supplemental information

(S1 Table). Metabolic tests were included as single reactions in the reconstruction in order to

assure the model was able to produce certain metabolites. Each metabolic test was added to the

model when being tested then immediately removed, so that no two tests were present in the

model at the same time, and no metabolic test reaction was included when other reactions

were being assessed. Details of this analysis are available in S1 Text.

Metabolic tests analysis

During the metabolic tasks validation analysis, the exchange rate of the basal inputs carbon

dioxide (co2[e]), water (h2o[e]), protons (h[e]), oxygen (o2[e]), phosphate (pi[e]), hydrogen

peroxide (h2o2[e]), superoxide anion (o2s[e]), bicarbonate (hco3[e]) and carbon monoxide

(co[e]) were unconstrained. All other uptake reactions were blocked unless otherwise specified.

For each of the 20 amino-acid recycling tests, the uptake rate of the given amino acid and

glucose were set to an arbitrary value, so that the amino-acid being tested was the only source

or nitrogen. Next, the production of urea was set to a strictly positive value, and FBA was per-

formed while optimizing the production of urea. The same test was also performed for ammo-

nium. For each of the 21 glucogenic tests, the uptake rate of the given metabolite was set to an

arbitrary value, and the production of glucose was optimized. For both the amino-acid and glu-

cogenic tests, if the model returned a feasible flux distribution the test was considered passed,

otherwise it was considered failed. If the exchange reaction of the given metabolite was not

present in the model, the result was considered inconsistent. The generalized Recon1 recon-

struction failed two of the glucogenic tests, so the results of the remaining 19 tests are reported

in the main text.

For the eight nucleotide production tests, a sink consuming the given nucleotide was added

to the cytosolic compartment. The model was allowed to uptake glucose and ammonium (as a
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source of nitrogen), and the flux through the sink was optimized. If the model was able to pro-

duce the given nucleotide, the test was considered passed.

Generation of healthy and cancer tissue models

Following the validation of the CORDA algorithm, we generated a library of 76 healthy and 20

cancer tissue-specific reconstructions using the generalized human reconstruction Recon2 [9]

and the most recent proteomics data from the HPA [44, 45]. All reactions used to generate the

tissue-specific models are available in S1 Table, and tissue-specific models are available in SBML

andMATLAB format at [130]. The healthy tissue models were calculated using the same classi-

fication as described in the algorithm description section, since data for each protein was catego-

rized as not detected, low, medium or highly expressed in each cell type. For cancer models, the

same classification was available for any number of samples for each protein in each cancer

type. In this case, values of -1, 1, 2 and 3 were assigned to each sample according to not detected,

low, medium or high expression levels respectively, and these values were averaged for a final

protein score in that particular cancer type. These protein values were then used in the gene-

reaction boolean association as described in the algorithm description for a final reaction score.

Reactions with a score equal to or greater than 2.5 were assigned to the HC group, less than 2.5

but greater than 1 to the MC group, and less than or equal to -0.5 to the NC group.

For instance, in renal cancer samples, protein HADHB has been analyzed in 12 different

samples in the HPA, and was found to be expressed in high levels in 2 of them, medium levels

in 8, and in low levels in 2. The protein score associated with HADHB in renal cancer is then

calculated as ð2�3Þþð8�2Þþð2�1Þ
12

¼ 2. Similarly, ACAA1 expression was calculated as medium in 5

samples, low in two samples, and not detected in four samples of renal cancer, yielding a score

of ð5�2Þþð2�1Þþð4�ð�1ÞÞ
11

¼ 0:73. Finally, ACAA2 is present in high levels in one sample, medium level

in 5 samples, low levels in one sample and not detected in 3 samples of renal cancer, giving this

protein a score of ð1�3Þþð5�2Þþð1�1Þþð3�ð�1ÞÞ
10

¼ 1:1. With that, the score for r0634 is calculated as “MIN

(2,MAX(0.73,1.1))”, which is 1.1, putting this reaction in the MC group during the renal cancer

reconstruction. Data and reaction distributions used during these calculations can be found in

S1 Text.

Clustering of healthy and cancer tissue models

Healthy and cancer specific models were clustered according to reactions present in each

model. For that, 4,205 reactions present in at least one, but not all models were obtained. A

binary vector was then calculated for each model indicating whether reactions were present (1)

or not present (-1). These vectors were then clustered using hierarchical clustering with Ham-

ming distance as the similarity metric, and average linkage. Leaf orders were also calculated in

order to maximize the similarity between neighbors in the hierarchical binary cluster tree den-

drogram. These results are summarized in Fig 4.

Next, in order to divide the clusters according to subsystem expression, a total of 4,751 reac-

tions present in any of the models was obtained. These reactions were then divided by subsys-

tem according to their classification in the Recon2 reconstruction. For each of the clusters of

models calculated in the previous step, the average number of reactions from each subsystem

included in the cluster’s models was then calculated. Finally, this number was divided by the

total number of reactions in that subsystem which were included in any of the models for a

final score between zero and one. These values were then clustered using hierarchical clustering

with Euclidean distance as the similarity metric, and average linkage. Leaf orders were again

organized to maximize similarity between neighbors to yield Fig 5.
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Flux Balance Analysis

Perhaps the most widely used method to analyze GEMs is Flux Balance Analysis (FBA) [42].

FBA predicts a flux distribution through the metabolic network which optimizes (maximizes

or minimizes) a given objective function, defined as a single reaction or group of reactions in

the network. This flux distribution is subject to upper- and lower-bound constraints, which

include exchange reactions, and a steady state assumption for all model metabolites, so that no

metabolite has a net production or consumption rate.

The mathematical formulation of GEMs are defined at the core by a stoichiometric matrix

S, where each row defines a metabolite, each column defines a reactions, and each entry the

stoichiometric coefficient of that metabolite in that particular reaction. Vectors defining lower

(lb) and upper (ub) bounds for each reaction, as well as an objective vector (c) of the same

length, are also defined. Given this model, FBA finds a flux vector v through all reactions in the

GEM such that:

S � v ¼ 0

lbi � vi � ubi

optimize : v � cT

During the dependency assessment described here, the stoichiometric matrix S is altered to

reflect the changes described above. Given a reaction j being tested, a group of undesirable reac-

tions Y, and a matrix S of sizem by n, let €k denote a random number drawn uniformly between

0 and κ. The GEM is modified in the following ways:

1. Split all reversible reactions: if (lbi � 0 & i 6¼ j)!S(:, n+1) = −S(:, i), lbn+1 = 0, ubn+1 = −lbi
and lbi = 0, where S(:, n+1) denotes the addition of a column (reaction) to S.

2. Add cost to reactions: if ði 2 Y Þ ! Sðmþ 1; iÞ ¼ gþ €k; else ! Sðmþ 1; iÞ ¼ €k, where

S(m+1, :) is the row denoting the cost pseudo-metabolite.

3. Add cost consuming reaction: S(:, n+1) = [0 0 0 . . . 0 − 1]

4. Set bound of reaction j to desired value: if� > 0! lbj = �; else! ubj = �

5. Set objective to cost consumption: c = [0 0 0 . . . 0 1]

With these constraints in place, FBA is performed as described above while minimizing the

objective function. For each reaction in the reconstruction, if i 2 Y and vi 6¼ 0, the reaction i is

deemed associated with j.

Monte-Carlo sampling

Monte-Carlo sampling was performed in a manner similarly to Bordbar et. al.[25] and

Lewis et. al.[49]. This sampling method is a slight variation of the Artificially Centered Hit

and Run (ACHR) algorithm developed by Kaufman and Smith [131]. In this algorithm,

warmup points are initially generated at random corners of the solution space by solving an

LP problem with objective vectors containing randomly generated ones and negative ones.

The center point between all points is then computed. Next, for each point sampled, a ran-

dom direction is selected as the difference between a randomly selected point and the center

point. By selecting the direction this way, the direction is biased in the longer direction of

the solution space, speeding up the rate of mixing while maintaining uniformity. After a

direction is chosen, the limit of how far the current point can travel in that direction is

calculated, and a new point is randomly chosen along that line. After several iterations, the
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set of generated points will be well mixed and approach a uniform sampling of the solution

space.

The termination condition imposed on the ACHR algorithm here is the same imposed by

Bordbar et. al.[25] and Lewis et. al.[49], introducing the concept of mixed fraction. For that, a

partition is created over the set of points by drawing a line at the median value, with half the

points on either side of the partition. The mixed fraction is the number of points that cross

this line during mixing. Initially, the mixed fraction is one as all the points are on their original

side of the line. As the sample solutions are mixed, the probability of each point crossing the

median line approaches 0.5 asymptotically. The sampled points were initially mixed using the

warmup points created as described above until the mixed fraction reached a particular

threshold. Following that, the samples were mixed two more times, using the previous itera-

tion’s final points as warmup points, until the same mixed fraction was reached. For the com-

parison between CORDA and other tissue-specific algorithms, a mixed fraction threshold of

0.52 was chosen as the termination condition. For the cancer and healthy tissue-specific mod-

els, a mixed fraction threshold of 0.6 was chosen to make the 96 sampling experiments com-

putationally feasible.

Due to the heterogeneity between tissue-specific models, sampled flux values were evaluated

between all cancer and healthy tissue models separately. That is, all sampled flux values for the

given reaction were obtained from all cancer models that contain that reaction, and compared

to all sampled values from healthy tissue models that contain the reaction. Results of this analy-

sis are presented in Fig 6. In some cases, two or more reactions were combined: MTHFD2�

combines reactions MTHFD2 and MTHFD2m, GHMT2r� combines reactions GHMT2r and

GHMT2rm, and SPODM� combines reactions SPODM, SPODMe, SPODMm, SPODMn and

SPODMx. These are the same reactions taking place in different cellular compartments. For

these, flux values from each of these groups of reactions were added within each sampled flux

distribution when plotting Fig 6.

Supporting Information

S1 Text. Supplementary Text 1. Supplementary text includes details of parameter sensitivity

analysis, hypergeometric p-value calculations, parameter p sensitivity analysis, comparison

between CORDA, MBA and mCADRE, healthy and cancer tissue reconstructions process, and

Monte-Carlo sampling analysis.

(PDF)

S2 Text. Supplementary Text 2. Example of application of CORDA to small sample networks.

(PDF)

S1 Table. Supplementary Tables. Table contains the proteomics data and reaction groups

used to calculate the Hepatocyte reconstructions, 32 metabolic tests used throughout the man-

uscript, reactions used to calculate tissue-specific models, reactions uniquely included in

healthy and cancer reconstructions, and essential metabolite results.

(XLSX)

S1 File. Liver CORDAmodels. Reference hepatocyte specific reconstructions calculated using

CORDA and Recon1. Two reconstructions are available, one using the same protein dataset

used in the mCADRE reconstruction, and one using the most recent protein data in the HPA

(S1 Table). The parameters used in this reconstruction are γ = 105, κ = 10-2, � = 1, p = 2, and

n = 5.

(ZIP)
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