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Abstract

An inverse algorithm is developed in this paper to reconstruct boundary
tractions from internal strains in three-dimensional elasticity using the boundary
element method. The numerical instability problem associated with the solution
of the inverse elasticity problem is overcome by employing a polynomial
approximation of the unknown traction. Introduction of the polynomial
approximation has the combined effect of enforcing smoothing conditions and
reducing the number of unknowns. Further, global equilibrium conditions are
also enforced to reduce the error in the computed tractions. As a result, stable
solutions are obtained even for input strains with significant amount of random
errors. Numerical examples are given to validate the proposed inverse
algorithm.

1 Introduction

This paper addresses the three-dimensional traction reconstruction problem in
which tractions are incompletely specified and need to be reconstructed using
strain data provided by experimental measurements at a number of points inside
the solid body. In practice, subsurface strains can be measured using fiber optic
strain sensors*. However, in this study, input strains are simulated by
numerically calculated strains. Measurement errors in experiments are
considered by introducing random errors to the numerically calculated strains.
The solution of the inverse traction reconstruction problem finds application in
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14 Boundary Elements

evaluation of residual stress and contact stress from experimental
Previous research of the boundary traction reconstruction problem has been
concentrated on two-dimensional caseŝ . This study shows that the numerical
instability problem becomes more severe in three dimensions. Consequently,
solution schemes for two dimensional problems such as the one proposed
previously by the authorŝ  cannot be directly extended to the three-dimensional
case. This difficulty is overcome by employing a global polynomial traction
approximation and by introducing additional constraints in the form of overall
equilibrium conditions. In contrast to the regularization method^ and SVD\
these constraints have clear physical meaning. Numerical examples reveal good
tolerance to input error for the algorithm.

2 Inverse traction reconstruction and BEM solution algorithm

The inverse problem considered in this paper is defined through an example
illustrated in Fig. 1 . The boundary F of a solid body fi consists of three parts
with prescribed displacements u\ on FI, prescribed tractions t^ on F2, and both
displacements u$ and tractions £3 as unknowns on Fg . The unknown traction £3
is defined as the primary unknown, and all other unknown boundary conditions
are secondary unknowns. Strains are measured at several internal points close to
FS. The objective is to determine £3 from measured strains. The governing field
equations are the same as in a forward problem.

Figure 1. Definition of the inverse traction reconstruction problem.

The first step of the solution is to express internal strains in terms of primary
unknown £3 and other known quantities. In linear elasticity, displacement and
stresses are completely determined by boundary conditions and body forces.
Thus, internal strains can be expressed as:

(1)
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where L denotes a linear operator, £ denotes an internal strain measuring point,
X denotes any boundary point, and X denotes any point in the domain. If
secondary unknowns t\,U2 and 1/3 are expressed as a linear function of primary
unknown £3 and prescribed boundary conditions, then Eq. (1) can be written as:

where L' is a linear operator. A discretized form of the above relation is given in
the following matrix form:

Here, vector {e} is the computed strain vector and [C] is the sensitivity matrix.
Vector {b} accounts for internal strains due to prescribed displacements u\ on
FI and prescribed tractions ti on ̂  Vector {d} accounts for internal strains
due to body forces. Once matrix [C] and vectors {b} and {d} are formulated,
{£3} can be determined by matching computed strains to measured strains. In
the following, Eq.(3) is derived using a BEM approach.

Following standard BEM discretization of the boundary and interpolation of the
displacements and tractions within each element, the boundary integral
equations for displacements and strains can be written as™:

nK nK

k=0 6=0
nK nK

% (5)
6=0 6=0

where K is the number of boundary nodes and n is the number of dimensions.
Here, u is the displacement, t is the traction, e is the strain, and / and g are
body force terms. Influence coefficients G;j, #̂ , J%j,and F;j are computed
via quadrature™. Collocating the first equations at all K boundary nodes and
the second equation at all M internal measuring points, Eqs. (4-5) become:

(6)

Matrices [H] and [G] have dimension nK x nK, and matrices [E] and [F] have
dimension M x nK. Accounting for specified boundary conditions leads to:

[Hi #2 Hs] U2 =[Gi Gj Gs] <2 +{/} (8)

{e} = - [Fi F2
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The primary unknown in the inverse problem is £3, and it must be distinguished
from other unknowns. Moving {tg} and all known boundary conditions to the
right hand side and all other unknowns to the left hand side in Eq.(8) leads to:

[-Gi #2 H3]\U2\=[-Hi G2 G3]|*2|+{/} (10)

rearranging,

[4{*} = [<?3]{t3} +{&!}+{/} (11)

Here {x} = (t\ u<± u$f is the secondary unknown vector,
[,A]=[-Gi EI HI], and {6%} is a known vector. The secondary unknown
vector {x} can then be expressed in terms of primary unknown vector {£3} and
known quantities as follows:
{x} = [A? [G3]{*3> + W{M + [A]-'{/» - [G'sKts} + {&',} + {/'} (12)
The expression of internal strains, Eq. (9), can also be rearranged similarly:

03)

where [F'] = [- E\ F% FS], {6%} is a known vector. Substituting Eq.(12)
into (13), we arrive at the desired relation in the same form as Eq. (3):

{e} = ([Es] - [F'}[G',}){t3} + ({62} - (F']{b(}) + ({g} - [F']{/'»
(14)

where

[C] = [Es] - (F'](G',}

(15)

{d} = {9} - {F'}{f}

The above relations provide explicit expressions for the matrix [C] and the
vectors {b} and {d} with minimal effort required to implement this formulation
in a typical BEM code. The sensitivity matrix [G] and the vectors {b} and {d}
can be formed simultaneously with computational effort comparable to a single
BEM forward analysis. This is in sharp contrast to the common practice of
calculating [C] by the "unit load" method^ which requires a series of forward
problem solutions.

Once matrix [C] and the vectors {6} and {d} in Eq. (3) are formulated, the
primary unknowns {£3} can be solved from measured strains. However, the
difficulty is that matrix [C] in Eq. (3) is normally ill-conditioned as a result of
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the ill-posedness of the inverse problem. This indicates that a small amount of
errors in the measured strains will cause a large amount of error in the
computed tractions by directly solving Eq. (3). In previous studieŝ , global
equilibrium conditions were introduced to effectively stabilize the inverse
solution process for two-dimensional cases. However, numerical studies
showed that the same solution scheme does not provide a stabilized solution for
three-dimensional case. In this study, a global approximation of the unknown
surface traction for three-dimensional problems is introduced in an effort to
reduce the number of the unknowns and to enforce smoothing conditions on the
computed tractions. The importance of enforcing smoothing conditions has also
been discussed by Tikhonov and Arsinin**, and Schnur and Zabaraŝ .

Surface traction distributions can always be parameterized using only two
parameters defining a body-fitted coordinate system. For example, in the case of
flat surfaces parallel to a Cartesian coordinate system, a surface traction can be
approximated globally as follows: L

t'=i

Here, /» is the basis function, L is the number of basis functions used in the
approximation, and ^ are unknown coefficients to be determined. The
following polynomial sets are chosen as basis functions (members of the Pascal
triangle):

, 2 2 3 2 2 3 2 2fi = {l,x,y,x ,zy,y ,x ,x y,xy ,y ,x y ,

z\y\̂ ŷ y\̂ \y\̂ ŷ y\̂ y\̂ y\

zY,̂ ,2/̂ ^̂ V̂̂ Yr"} (17)

The unknown parameters are now changed from the traction values at the
boundary nodes {£3} to the polynomial coefficients {a}. The sensitivity matrix
must be modified accordingly. The traction values at the boundary nodes can be
expressed in terms of the polynomial coefficients as follows:

(18)

Here, [Q] is a transformation matrix and is given as

A (19)

where Xi and y; are the coordinates of the i-th boundary node on Pg, N is the
number of boundary nodes with unknown traction, and L is the number of
terms used in the polynomial approximation. Substituting Eq. (18) into Eq. (3)
gives the expression for the modified sensitivity matrix:

                                                             Transactions on Modelling and Simulation vol 18, © 1997 WIT Press, www.witpress.com, ISSN 1743-355X 
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(20)

The amount of computation required to obtain the sensitivity matrix for the
polynomial traction representation is basically the same as for the piecewise
traction representation. It is straightforward to choose the number of terms of
the polynomial, in Eq. (17), for some special cases where prior information on
the traction distribution is available. Generally, there should be enough terms to
closely approximate the unknown function without losing numerical stability.
Numerical experiments can usually give some guidance in determining the
number of terms to be used in the polynomial.

Unlike a forward problem, in an inverse problem, due to error in measurements,
resolved boundary tractions do not strictly satisfy the overall equilibrium
conditions. It is thus desirable to explicitly enforce equilibrium conditions as
additional constraints. It has been shown that the introduction of these physical
constraints has the effect of stabilizing the inverse solution process^. To satisfy
global equilibrium conditions, the resultant of tractions and moments acting on
the boundary must be balanced by body forces. When there is no body force,
tractions should be self-balanced. For instance, in the special case of a 3-D
problem, in which Pg is parallel to x-y plane, global equilibrium conditions are:

/
- ' '^3" 'is (21)

Here, the I/s are constants and determined from the nature of each individual
problem under consideration. The discretized form of global equilibrium
constraints can be written in the following matrix form:

MW = {1} (22)

The constraint matrix [D] is determined only by problem geometry and
discretization. The same BEM mesh and interpolation model used to obtain the
BEM influence matrices [G], [H], [E] and [F] can be used to evaluate the
matrix [D]. In light of the 3-D global polynomial approximation for {£3} in Eq.
(18), matrix [D] should be replaced by [DM] given as:

(23)

The constrained least-squares minimization is defined for the inverse problem:

Find '. {a}
fo mm/Wzc : ([CM] W + {6} + {d} - {e})? • ([6̂] W + {6} 4- {d} - {?})
subject to : [DM]{O} = {1}
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where vector {?} are measured strains. The least squares functional measures
the difference between computed and input strains in the 1/2 norm, while
constraints enforce global equilibrium. Lagrange multipliers are used to adjoin
these constraints to the functional. The augmented functional is introduced as

Differentiating F with respect to {a} and {A;} and setting the result to zero:

Mll^M] [%,]?! fW\ _/ [CM̂ M - {6} - {d}) A
[DM] 0 JLWJ-I {1} J

Numerical experimentation reveals that the matrix system of Eq. (25) is well-
conditioned. Introduction of the polynomial approximation and physical
constraints thus has the desired effect of stabilizing the inverse solution process.

3 Numerical results

In this section, we consider the case of a cube with unknown z-traction on its
top surface, see Fig. 1 . This cube is constrained at the bottom to prevent rigid
body motion. The layout of the sensor locations is shown in Fig. 2, and the
BEM mesh is given in Fig. 3. Bilinear isoparametric boundary elements are
used. Strain components e^ at 25 measuring points are used as the input to
recover the unknown tractions. The following steps are performed in the
simulation: (1) the exact traction distribution is assumed, (2) strain values at the
measuring locations are computed by a BEM analysis, (3) a level of random
error is added to these strain values to simulate input error, and (4) simulated
strain measurements are used as the input to the inverse solution. The following
conventions are used: (1) referring to strains with m% error means that a level
of ± ra% random error has been added to the exact strains (2) two numbers in
each traction plot stand for the maximum and minimum values of the tractions,
(3) a polynomial of n terms means that the first n terms in Eq. (17) are used. In
the first example, the exact traction is assumed to be uniform (̂ (x,y) = 1).
Figure 4 gives the solutions from input strains with 10% random errors. Stable
solutions are obtained for all cases, clearly showing that the polynomial
representation allows a wide range of error in the input. The overall error of the
computed traction is gauged by defining a global error defined as:

- M2 (24)

where 6 is the computed traction value at sample point "2" and t{ is the exact
traction value. Figure 5 shows maximum and global error variation versus error
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Figure 2. Sensor locations. Figure 3. BEM model for a cube.

(a) 6 terms, no constraint (b) 6 terms, with constraints

(c) 11 terms, no constraint (d) 11 terms, with constraints
Figure 4. Results of 6 terms and 11 terms with 10% random error in input.

m inn* soar (percent)

(a) (b)
Figure 5. Error of the computed traction vs. input error (11 terms).
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level in input strain. While the difference between the maximum errors with and
without constraints is not obvious, the global error with constraints is always
lower than the one without constraints. This indicates that constraints
effectively improve the computed traction in 3-D problems

The first example represents a special case in which the actual traction
distribution is included in the polynomial set. In general, the actual traction
distribution can only be approximated by the polynomial. In the second
example, the traction is assumed as: t,(%,2/) = sm(j|)sm(ŷ ). Figure 6 (a)-(d)
compares the exact and computed traction using 6,11 and 15 term polynomials
given exact strain input. A six term polynomial is apparently not enough to
approximate the actual traction. With 11 or 15 terms, very accurate results are
obtained. However, the global error of the 15 term polynomial is smaller than
the 11 term polynomial. This is due to the fact that 15 term polynomial is better
suited for approximating a higher order unknown function than the 11 term
polynomial. The results from input strains with 10% random error are plotted in
Fig. 6 (e) and (f), showing that even for 10% error in strain input, the 11 term
polynomial gives accurate results. The 15 term solution is more sensitive to
input error and its global error is much higher than for the 11 term polynomial.

(a) exact distribution (b) 6 terms, Rt= 1.449 (c) 11 terms, Rt=0.276

(d) 15 terms, Rt=0.248 (e) 11 terms, Rt=0.274 (f) 15 terms, Rt=0.668

Figure 6. Traction: exact input strains(a)-(d) and 10% input error (e) and (f).
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4 Conclusion

A 3-D BEM solution of the inverse traction reconstruction problem is
developed. Calculation of the sensitivity matrix is embedded in the BEM,
effectively reducing the computational effort involved in its construction. An
important step in successfully solving the 3-D inverse problem is the global
polynomial approximation for the traction distribution. A constrained least-
squares minimization is formulated for the inverse problem. Numerical results
demonstrate the method is capable of reconstructing unknown boundary
tractions using simulated noisy data.
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