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Reconstruction of transform -coded images by entropy methods

Nicolaos S. Tzannes, MEMBER SPIE

University of Central Florida
Department of Electrical Engineering

and Communication Sciences
Orlando, Florida 32816

Michael A. Tzannes
Signatron, Inc.
Lexington, Massachusetts 02173

John Bodenschatz II
National Security Agency
Washington, D.C. 20755

Abstract. A new, universal approach to reconstructing transform -coded
images is proposed. The method views the images as a probability mass
function (pmf), allowing the retained coefficients of a transform (Karhunen-
Loeve, discrete cosine, slant, etc.) to be thought of as averages of the basis
functions over the pmf. This sets the stage for reconstructing the original
images by using the maximum entropy principle (MEP) and the minimum
relative entropy principle (MREP) with the retained coefficients as constraints in
the extremizations. A formulation combining the two methods is also proposed,
resulting in a reconstruction algorithm that is fast, proceeding in an iterative
way using the estimate from each coefficient as a prior pmf for the next one via
the MREP. The proposed approaches are illustrated with images compressed by
discrete cosine transform coding, and the results are compared with standard
reconstruction using the inverse discrete cosine transform.

Subject terms: image reconstruction; transform coding; relative entropy minimization.
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1. BACKGROUND

The proposed method of reconstructing images from their
transform -coded from is based on the minimum relative
entropy principle (MREP) and its subcase, the maximum
entropy principle (MEP). Let us briefly outline these two
principles.

Given two probability mass functions (pmf's) f(j) and p(j),
their relative entropy (RE) is given by

X f(j)log
PÚ)

(1)

This functional, introduced by Kullback,t represents a "dis-
tance" between the two pmf's. It was originally named "dis-
crimination of information or divergence," later "cross
entropy" or "Kullback- Leibler number," and most recently
"relative entropy." It can also be defined for probability den-
sity functions by replacing the sum with an integral.

In 1980 Shore and Johnson2 proposed that one could use
the RE functional for estimating an unknown pmf f(j), by
minimizing it with respect to f(j) and using a prior estimate or
guess in place of p(j). In applying this method, called the
MREP, one usually has prior knowledge about f(j) in the
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1. BACKGROUND

The proposed method of reconstructing images from their 
transform-coded from is based on the minimum relative 
entropy principle (MREP) and its subcase, the maximum 
entropy principle (MEP). Let us briefly outline these two 
principles.

Given two probability mass functions (pmfs) f(j) and p(j), 
their relative entropy (RE) is given by

f(j)log  (0

This functional, introduced by Kullback, 1 represents a "dis 
tance" between the two pmf s. It was originally named "dis 
crimination of information or divergence," later "cross 
entropy" or "Kullback-Leibler number," and most recently 
"relative entropy." It can also be defined for probability den 
sity functions by replacing the sum with an integral.

In 1980 Shore and Johnson 2 proposed that one could use 
the RE functional for estimating an unknown pmf f(j), by 
minimizing it with respect to f (j) and using a prior estimate or 
guess in place of p(j). In applying this method, called the 
MREP, one usually has prior knowledge about f(j) in the

232 / OPTICAL ENGINEERING / March 1989 / Vol. 28 No. 3

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 14 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



RECONSTRUCTION OF TRANSFORM -CODED IMAGES BY ENTROPY METHODS

form of averages of functions gn(j) of the underlying random
variable (rv) J. Such prior knowledge can be written as

8n(l)R1) = mn (n = 0, 1,...,N) (2)

and can be incorporated into the minimization in the form of
constraints. In most cases the functions are powers of j and
thus the averages are moments of the ry J.

It should be noted that if p(j) is a constant (uniform pmf),
then the RE becomes equivalent to the entropy of J and the
MREP reduces to the well -known MEP due to Jaynes.3

The mathematics of the minimization are straightforward
and lead to the solution

f(i) = P(i)eXPL-Xo - X181(1) - ... -Angn(i)] , (3)

where the X's are Lagrangian multipliers evaluated by insert-
ing this solution into the constraints of Eq. (2) and solving
simlutaneously the resulting equations. If p(j) is uniform, then
the above solution reduces to the well -known MEP solution.

Both MREP and MEP enjoy the characteristic that their
solutions satisfy the prior constraints but are unconstrained
by information not explicitly present in the data.

Aside from pmf estimation, the above principles have been
used in other areas, most notably in spectral estimation.
Shore4 used the MREP in an indirect manner and Tzannes et
al.5 in a direct one. Burgh was the first to employ the MEP in
spectral estimation and others, too numerous to record here,
followed.

The MREP and MEP have immediate extensions to two -
dimensional pmf's f(j , k). The RE functional is

f(j,k)X
i
f(j,k)log

P(j,k)j k

whereas the constraints have the form

(4)

X, X f(j,k)g(j,k) = Mn (5)
j k

The MREP solution in terms of the Lagrangian multipliers is

f(j ,k) = PU,k)exp[ -À - (j k) - ... -Xngn(j,k)] , (6)

whereas the MEP solution is

f(j ,k) = exp[ -À - X1g1(j,k) - ... -ÀgnU,k)] (7)

2. MEP AND MREP RECONSTRUCTION
In most cases images are modeled deterministically, or taken
to be a realization of a random field7The method we are about
to present is based on the assumption that images can be
modeled as a pmf of an underlying ry whose nature is of no
consequence to the problem. Mathematically, a sampled
image is indistinguishable from a two -dimensional pmf, since
it is an everywhere positive function, and it can be easily
normalized so that the sum of its pixel values becomes unity.
References 8 and 9 advance even physical arguments for this
idea, so there is no hesitation in adopting it here.

Let us consider an image whose uncompressed form is
denoted by f(j , k) for 0 < j, k < N -1. Since this image is a pmf
of a two -dimensional ry J X K, then the expression

H(f) = - XX f(j,k)logf(j,k) (8)

j k

represents its entropy, and

H(f,p) = XX f(j,k)log
f(j,k)

i k
p(j,k) (9)

represents the relative entropy of f(j , k) and p(j , k) (another
image). Let us compress this image by evaluating its discrete
cosine transform (DCT) and retaining only a few of its terms
for eventual transmission or storage. It should be remarked,
however, that the DCT is taken only as an illustration and that
the method is applicable to other types of compression
schemes as well.

The DCT coefficients of f(j , k) are given by 10

U
L(2j + 1)aml r(2k + 1)anl

F(m,n) = 4 f' k cos
2N

cos IL

j k

(10)

Since the image is a pmf, these cofficients F(m,n) can be
thought of as averages of the functions

BmnU,k) = cos I
(2j + 1)irm

cos
r(2k + 1)an

]L 2N L 2N

Viewing the coefficients as averages of the above functions is,
of course, the result of viewing the image as a pmf, and it is the
key to what follows.

The reconstruction problem at the receiver (or upon recall,
if stored) is to use the few retained F(m , n) and estimate an
approximation to the original image f(j , k). The existing
approach is to do so by using the inverse DCT (IDCT), setting
all of the unknown coefficients equal to zero.

The proposed method, based on the above modeling of the
image and interpretation of the coefficients, is to use the MEP
and MREP as described in the following subsections.

2.1. MEP
Reconstruct the image by maximizing the entropy of f(j ,k)
subject to constraints that reflect the known, retained coeffi-
cients. The general solution will yield an estimate of the form
of Eq. (7), with the g's given by Eq. (11). If, for example, only
one coefficient, the F(1 , 1), is available, then the maximiza-
tion is subject to the single constraint

4 I f(j,k)cos L(2 2N1)Jcos L(2k2N1)j = F(1,1) , (12)
j k

and thus the solution will y eld the estimate

I 2+1 1 r
lfU,k) = exp j-1cos ( )J cos

C(2k2N1)al

' (13)

with XI being a Lagrangian multiplier calculated by substitut-
ing the above solution into Eq. (12).
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form of averages of functions ^(j) of the underlying random 
variable (rv) J. Such prior knowledge can be written as

2 
j

= mn (n = 0, 1.....N) (2)

and can be incorporated into the minimization in the form of 
constraints. In most cases the functions are powers of j and 
thus the averages are moments of the rv J.

It should be noted that if p(j) is a constant (uniform pmf), 
then the RE becomes equivalent to the entropy of J and the 
MREP reduces to the well-known MEP due to Jaynes.3

The mathematics of the minimization are straightforward 
and lead to the solution

(j) - p(j)exp[-Ao - (3)

where the X's are Lagrangian multipliers evaluated by insert 
ing this solution into the constraints of Eq. (2) and solving 
simlutaneously the resulting equations. If p(j) is uniform, then 
the above solution reduces to the well-known MEP solution.

Both MREP and MEP enjoy the characteristic that their 
solutions satisfy the prior constraints but are unconstrained 
by information not explicitly present in the data.

Aside from pmf estimation, the above principles have been 
used in other areas, most notably in spectral estimation. 
Shore 4 used the MREP in an indirect manner and Tzannes et 
al.5 in a direct one. Burg 6 was the first to employ the MEP in 
spectral estimation and others, too numerous to record here, 
followed.

The MREP and MEP have immediate extensions to two- 
dimensional pmfs f(j, k). The RE functional is

(4)

whereas the constraints have the form

2 2f(i,k)gn G,k) = Mn . (5)

The MREP solution in terms of the Lagrangian multipliers is 

f(j,k) = pO^^cxpE-Ao-X^O.^-...-^^^)] , (6) 

whereas the MEP solution is

Xo - A,g,(j,k) - ... -Xngn (j,k)] . (7)

2. MEP AND MREP RECONSTRUCTION
In most cases images are modeled deterministically, or taken 
to be a realization of a random field.7 The method we are about 
to present is based on the assumption that images can be 
modeled as a pmf of an underlying rv whose nature is of no 
consequence to the problem. Mathematically, a sampled 
image is indistinguishable from a two-dimensional pmf, since 
it is an everywhere positive function, and it can be easily 
normalized so that the sum of its pixel values becomes unity. 
References 8 and 9 advance even physical arguments for this 
idea, so there is no hesitation in adopting it here.

Let us consider an image whose uncompressed form is 
denoted by f (j, k) f or 0 < j, k < N   1. Since this image is a pmf 
of a two-dimensional rv JXK, then the expression

H(0 = - 22fG,k)logfG,k)
j k

(8)

represents its entropy, and

H(f,p) =
fp.k) 
P0,k)

(9)

represents the relative entropy of f (j , k) and p(j , k) (another 
image). Let us compress this image by evaluating its discrete 
cosine transform (DCT) and retaining only a few of its terms 
for eventual transmission or storage. It should be remarked, 
however, that the DCT is taken only as an illustration and that 
the method is applicable to other types of compression 
schemes as well.

The DCT coefficients of f (j , k) are given by 10

i?/ x A W*r ^ [( F(m,n) = 4 22 f0.k)cos| cos
(2k+l)7rn

"|

J •

(10)

Since the image is a pmf, these cofficients F(m,n) can be 
thought of as averages of the functions

[(2j + l)7rm1 r(2k+l)7rn"| = COS [  2S  J C°S [  2N  J ' (11)

Viewing the coefficients as averages of the above functions is, 
of course, the result of viewing the image as a pmf, and it is the 
key to what follows.

The reconstruction problem at the receiver (or upon recall, 
if stored) is to use the few retained F(m, n) and estimate an 
approximation to the original image f(j,k). The existing 
approach is to do so by using the inverse DCT (IDCT), setting 
all of the unknown coefficients equal to zero.

The proposed method, based on the above modeling of the 
image and interpretation of the coefficients, is to use the MEP 
and MREP as described in the following subsections.

2.1. MEP

Reconstruct the image by maximizing the entropy of f (j, k) 
subject to constraints that reflect the known, retained coeffi 
cients. The general solution will yield an estimate of the form 
of Eq. (7), with the g's given by Eq. (11). If, for example, only 
one coefficient, the F(l, 1), is available, then the maximiza 
tion is subject to the single constraint

  VV ,,- ^ 4 22 '0.k)cos

and thus the solution will yield the estimate

TT] r(2k+l)7rl-\~[-sr-\-

f(j,k) = exp  X cos

, (12)

(13)

with X, being a Lagrangian multiplier calculated by substitut 
ing the above solution into Eq. (12).
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TZANNES, TZANNES, BODENSCHATZ

In most practical problems the retained coefficients are
numerous, although fewer than the original number of pixels
in the image. The Lagrangian multipliers will be as many as
the retained coefficients and will be calculated by solving the
constraints simultaneously.

The idea of viewing the image as a pmf and using the MEP
for its reconstruction has also been applied successfully to
moment -coded images by Tzannes and Jonnard.11 Other
investigations have also used the pmf modeling and MEP for
other problems, such as, for example, Frieden9 and Daniell
and Gull12 in problems of image enhancement in the presence
of noise.

2.2. MREP
Let us now assume that besides the F(m , n)'s, a prior estimate
(or guess) p(j , k) is available for the image f(j , k). In this case
the image can be reconstructed by minimizing the RE of f(j , k)
and p(j , k) subject to the same constraints as in the MEP. The
general MREP solution yields an estimate of the form of Eq.
(6), with the g's given by Eq. (11). The MREP yields a better
estimate than the MEP since it takes into account the addi-
tional information provided by the prior estimate p(j , k).

The MREP has also been used by Shore13 in problems of
image enhancement. However, to the best of the author's
knowledge, the present paper represents the first use of MEP
and MREP in problems of reconstructing transform -coded
images.

The proposed MEP and MREP methods are applicable, of
course, to all types of transform coding (Karhunen -Loeve,
discrete Fourier, Walsh -Hadamar, slant, Haar, etc.) since the
retained coefficients in all of these transforms can be viewed as
averages of the basis functions over the image (a pmf). They
are also applicable to other types of compression methods
(pyramid, for example) as long as the retained or reduced
values can be viewed as averages or weighted averages of the
whole or a portion of the image.

Both methods involve the solution of a system of many
nonlinear equations for the Lagrangian multipliers. Non-
trivial numerical methods such as Newton -Raphson proce-
dures, which are usually employed, often become inefficient
and numerically sensitive as the number of constraints is
increased. For these reasons a new iterative algorithm for the
solution of MEP and MREP is proposed below. It is theoreti-
cally justified in the appendix.

3. ITERATIVE ALGORITHM FOR MEP AND MREP
Since the MEP is a special case of the MREP [with p(j , k)
equal to unity], we present the proposed algorithm in the
context of the MREP.

The whole idea behind the algorithm is to use one con-
straint at a time, arrive at an estimate, and then use this
estimate as a prior pa , k) for the use of the next constraint.

Denoting the original image by f(j , k) and the retained
coefficients by F(m,n), the algorithm proceeds as follows:

Step 1. The RE between f(j ,k) and p (j , k) is minimized
with only the first coefficient F(0 , 0) as a constraint. This leads
to the solution

foo(J,k) = PG,k)exp( -Xo) , (14)

with the single Lagrangian multiplier easily calculable from
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the single constraint. This solution is thought of as the first
reconstruction to the original image f(j , k).

Step 2. The above first reconstruction is next used as a
prior estimate for the unknown image f(j , k), and a second
reconstruction is obtained by minimizing the RE between
f(j , k) and foo (j , k), subject to the constraint

f k cos[2k2 1)n]
F(0, 1) , (15)

j k

which reflects knowledge of the second coefficient F(0 , 1).
The solution and second reconstruction is given by

r(2k + 1)a
fin = fco(j,k)exp -XI cos I

2N ] (16)

with the single Lagrangian multiplier easily calculable from
the single constraint of Eq. (15).

Step 3. The solution Eq. (16) is used as a prior in minimiz-
ing the RE of f(j , k) and the second reconstruction, subject to
the third constraint reflecting the coefficient F(1,0). This
leads to the third reconstruction, given by

f,oG,k) = fol G,k)exp -X2cos
[(2j

2N1)j
(17)

with the single Lagrangian multiplier easily calculable from
the third constraint.

Step 4. Repeat the procedure until all of the constraints are
used up. The last reconstruction is taken as the solution of the
MREP method.

The general solution of this algorithm can be written as

f(°)(j,k) = f(n-1)0 k)exp[-t`r,g(J,k)), (18)

where f( °)(j, k) is the nth reconstruction, f(n- 1)(j,k) is the
(n -1)th reconstruction, g(j , k) is the nth basis element whose
average over the image is used as a constraint, and À is the
Lagrangian multiplier that goes with the nth constraint.

The solution obtained by this algorithm is only an approxi-
mation to the solution obtained by the regular use of the MREP
(or the MEP if no initial guess is available). Only the final
constraint is certain to be satisfied; the others are reflected in the
form of priors. For this reason the solution obtained by a first
sweep through the constraints is taken to be the first "iteration"
to the desired MREP (or MEP) solution. Further passages
through the constraints are usually necessary, although in the
attempted examples two passages seem to suffice. However,
even if more than two passages are necessary, much less com-
puter time is needed than for the regular MREP.

The passage is, of course, stopped when successive itera-
tions lead to solutions whose distance (mean- squared error) is
small. In many cases this occurs much faster than in the
normal MREP approach.

The above iterative method is also applicable to other areas
in which MEP or MREP can be employed. It has recently
been applied with good results to pmf 14 and power spectrum
estimation.» It can also be applied to any other single or
multidimensional data that are nonnegative or where the
addition of a bias to make them nonnegative does not alter the
nature of the problem. It appears to be also well suited for
problems of "progressive" image reconstruction,16 especially

TZANNES, TZANNES, BODENSCHATZ

In most practical problems the retained coefficients are 
numerous, although fewer than the original number of pixels 
in the image. The Lagrangian multipliers will be as many as 
the retained coefficients and will be calculated by solving the 
constraints simultaneously.

The idea of viewing the image as a pmf and using the MEP 
for its reconstruction has also been applied successfully to 
moment-coded images by Tzannes and Jonnard. 11 Other 
investigations have also used the pmf modeling and MEP for 
other problems, such as, for example, Frieden 9 and Daniell 
and Gull 12 in problems of image enhancement in the presence 
of noise.

2.2. MREP
Let us now assume that besides the F(m, n)'s, a prior estimate 
(or guess) p(j, k) is available for the image f (j, k). In this case 
the image can be reconstructed by minimizing the RE of f (j, k) 
and p(j, k) subject to the same constraints as in the MEP. The 
general MREP solution yields an estimate of the form of Eq. 
(6), with the g's given by Eq. (11). The MREP yields a better 
estimate than the MEP since it takes into account the addi 
tional information provided by the prior estimate p(j>k).

The MREP has also been used by Shore 13 in problems of 
image enhancement. However, to the best of the author's 
knowledge, the present paper represents the first use of MEP 
and MREP in problems of reconstructing transform-coded 
images.

The proposed MEP and MREP methods are applicable, of 
course, to all types of transform coding (Karhunen-Loeve, 
discrete Fourier, Walsh-Hadamar, slant, Haar, etc.) since the 
retained coefficients in all of these transforms can be viewed as 
averages of the basis functions over the image (a pmf). They 
are also applicable to other types of compression methods 
(pyramid, for example) as long as the retained or reduced 
values can be viewed as averages or weighted averages of the 
whole or a portion of the image.

Both methods involve the solution of a system of many 
nonlinear equations for the Lagrangian multipliers. Non- 
trivial numerical methods such as Newton-Raphson proce 
dures, which are usually employed, often become inefficient 
and numerically sensitive as the number of constraints is 
increased. For these reasons a new iterative algorithm for the 
solution of MEP and MREP is proposed below. It is theoreti 
cally justified in the appendix.

3. ITERATIVE ALGORITHM FOR MEP AND MREP
Since the MEP is a special case of the MREP [with p(j,k) 
equal to unity], we present the proposed algorithm in the 
context of the MREP.

The whole idea behind the algorithm is to use one con 
straint at a time, arrive at an estimate, and then use this 
estimate as a prior p(j ,k) for the use of the next constraint.

Denoting the original image by f (j, k) and the retained 
coefficients by F(m,n), the algorithm proceeds as follows:

Step 1. The RE between f(j,k) and p(j>k) is minimized 
with only the first coefficient F(0,0) as a constraint. This leads 
to the solution

foo(i,k) = p(j,k)exp(-Ao) , (14) 

with the single Lagrangian multiplier easily calculable from

the single constraint. This solution is thought of as the first 
reconstruction to the original image f(j ,k).

Step 2. The above first reconstruction is next used as a 
prior estimate for the unknown image f (j, k), and a second 
reconstruction is obtained by minimizing the RE between 
f(j ,k) and ^(j, k), subject to the constraint

(2k
2N

(15)

which reflects knowledge of the second coefficient F(0,l). 
The solution and second reconstruction is given by

f01 (j,k) = —X, cos
(2k+l)7T

2N
(16)

with the single Lagrangian multiplier easily calculable from 
the single constraint of Eq. (15).

Step 3. The solution Eq. (16) is used as a prior in minimiz 
ing the RE of f(j, k) and the second reconstruction, subject to 
the third constraint reflecting the coefficient F(l,0). This 
leads to the third reconstruction, given by

f, 0 (j,k) = f01 (j,k)exp —A2 cos
l)7T

2N
(17)

with the single Lagrangian multiplier easily calculable from 
the third constraint.

Step 4. Repeat the procedure until all of the constraints are 
used up. The last reconstruction is taken as the solution of the 
MREP method.

The general solution of this algorithm can be written as

(18)

where f (n) (j,k) is the nth reconstruction, f (n~ !) (j,k) is the 
(n l)th reconstruction, g(j, k) is the nth basis element whose 
average over the image is used as a constraint, and ^ is the 
Lagrangian multiplier that goes with the nth constraint.

The solution obtained by this algorithm is only an approxi 
mation to the solution obtained by the regular use of the MREP 
(or the MEP if no initial guess is available). Only the final 
constraint is certain to be satisfied; the others are reflected in the 
form of priors. For this reason the solution obtained by a first 
sweep through the constraints is taken to be the first "iteration" 
to the desired MREP (or MEP) solution. Further passages 
through the constraints are usually necessary, although in the 
attempted examples two passages seem to suffice. However, 
even if more than two passages are necessary, much less com 
puter time is needed than for the regular MREP.

The passage is, of course, stopped when successive itera 
tions lead to solutions whose distance (mean-squared error) is 
small. In many cases this occurs much faster than in the 
normal MREP approach.

The above iterative method is also applicable to other areas 
in which MEP or MREP can be employed. It has recently 
been applied with good results to pmf 14 and power spectrum 
estimation. 15 It can also be applied to any other single or 
multidimensional data that are nonnegative or where the 
addition of a bias to make them nonnegative does not alter the 
nature of the problem. It appears to be also well suited for 
problems of "progressive" image reconstruction, 16 especially

234 / OPTICAL ENGINEERING / March 1989 / Vol. 28 No. 3

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 14 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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Fig. 1. Reconstructions of the letter O with 5 X5 coefficients retained.
(a) Original image. (b) IDCT. (c) Regular MEP. (d) First iteration of
MEP -MREP. (e) Second iteration of MEP -MREP.

when such reconstruction is performed in remote terminals
with weak computing capabilities.

4. APPLICATIONS
In this section we present three examples of reconstructing
DCT -coded images: by the use of the IDCT, the regular MEP,
and the iterative MEP algorithm, which uses MREP. This
third algorithm is referred to as the MEP -MREP.

4.1. Example 1: the letter O

The original image, shown in Fig. 1(a), is a 16 X 16 pixel image
with values of one (dashes) and two (x's), representing a
noncentered letter O.

The DCT was calculated for this image, a 16 X 16 matrix of
coefficients. Next, subsets n X n of this matrix were retained,
and reconstructions were obtained using the IDCT, the regu-
lar MEP, and the iterative MEP -MREP. Selected examples
of nXn retained coefficients are discussed below. The recon-
structions resembled the O after the retained set reached 5 X 5.

4.1.1. Coefficients retained: 5X5

This represents a data compression ratio of 10.24. Figure 1(b)
shows the reconstruction by IDCT after the values were
thresholded at 1.5 (i.e., values higher than or equal to 1.5 were
made 2). The mean -squared error (MSE) (before threshold -
ing) between the original and the reconstruction was 4.127.
Figure 1(c) shows the reconstruction using the regular MEP,
solving 25 constraint equations simultaneously. The MSE
was 4.117. Visually, the reconstruction is better than that
obtained by IDCT.

Figure 1(d) shows the result of reconstructing the image
with one iteration of the MEP -MREP. This is defined as one
passage through the 25 constraints, plus a single passage
through the F(0 , 0) coefficient for renormalization purposes.
The MSE was 4.121. Interestingly, this reconstruction is the
best visually (so far), and it has lower MSE than the IDCT.
Figure 1(e) is the reconstruction by iterative MEP -MREP
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Fig. 2. Letter O. Graph of MEP -MREP /IDCT MSE vs number of
iterations with 5 X5 coefficients retained.

TABLE I. Results of reconstruction of the letter O.

Coefficients
retained
(nXn) Method MSE

3X3 IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

5X5 IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

7X7 IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

9X9 IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

11X11

13X13

IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

4.479
4.459
4.459
4.459
4.459

4.127
4.117
4.121
4.117
4.117

3.398
3.211
3.236
3.211
3.211

3.026
2.758
2.803
2.754
2.754

2.008
1.655
1.807
1.655
1.655

1.703
1.351
1.578
1.354
1.351

with two iterations. The MSE is reduced to 4.117, i.e., equal to
the MSE of the regular MEP.

Figure 2 is a graph of the ratio of the iterative MEP -MREP
MSE to the IDCT MSE versus the number of iterations. It is
clear that two iterations are sufficient.

The inevitable conclusions are that, in this case, the IDCT
is inferior to both MEP methods and that the MEP -MREP
converges rapidly.

The results of these reconstructions as well as reconstruc-
tions by other nXn sets (not discussed) are summarized in
Table I.

4.1.2. Coefficients retained: 7X 7

This represents a data compression ratio of 5.22. Figure 3(a)
shows the IDCT reconstruction after the values were thresh -
olded at 1.5. The MSE was 3.398. Figure 3(b) shows the
regular MEP reconstruction with the same threshold. The
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Fig. 1. Reconstructions of the letter O with 5X5 coefficients retained, 
(a) Original image, (b) IDCT. (c) Regular MEP. (d) First iteration of 
MEP-MREP. (e) Second iteration of MEP-MREP.

when such reconstruction is performed in remote terminals 
with weak computing capabilities.

4. APPLICATIONS
In this section we present three examples of reconstructing 

?s: by the use of the IDCT, the regular MEP,
MFP fllanrithm whirh IISPC MRFP This

DCT-coded images: by the use of the IDCT, the regular ^ 
and the iterative MEP algorithm, which uses MREP. 
third algorithm is referred to as the MEP-MREP.

4.1. Example 1: the letter O
The original image, shown in Fig. 1 (a), is a 16 X16 pixel image 
with values of one (dashes) and two (x's), representing a 
noncentered letter O.

The DCT was calculated for this image, a 16 X16 matrix of 
coefficients. Next, subsets nXn of this matrix were retained, 
and reconstructions were obtained using the IDCT, the regu 
lar MEP, and the iterative MEP-MREP. Selected examples 
of nXn retained coefficients are discussed below. The recon 
structions resembled the O after the retained set reached 5X5.

4.1.1. Coefficients retained: 5X5

This represents a data compression ratio of 10.24. Figure l(b) 
shows the reconstruction by IDCT after the values were 
thresholded at 1.5 (i.e., values higher than or equal to 1.5 were 
made 2). The mean-squared error (MSE) (before threshold 
ing) between the original and the reconstruction was 4.127. 
Figure l(c) shows the reconstruction using the regular MEP, 
solving 25 constraint equations simultaneously. The MSE 
was 4.117. Visually, the reconstruction is better than that 
obtained by IDCT.

Figure l(d) shows the result of reconstructing the image 
with one iteration of the MEP-MREP. This is defined as one 
passage through the 25 constraints, plus a single passage 
through the F(0,0) coefficient for renormalization purposes. 
The MSE was 4.121. Interestingly, this reconstruction is the 
best visually (so far), and it has lower MSE than the IDCT. 
Figure l(e) is the reconstruction by iterative MEP-MREP
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4567 
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Fig. 2. Letter O. Graph of MEP-MREP/IDCT MSE vs number of 
iterations with 5X5 coefficients retained.

TABLE I. Results of reconstruction of the letter O.

Coefficients
retained
(nXn)

3X3

5X5

7X7

9X9

11X11

13X13

Method

IDCT
Regular MEP 
MEP-MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP 
MEP-MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP 
MEP-MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP 
MEP-MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP 
MEP-MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP 
MEP-MREP 1 iteration

2 iterations
3 iterations

MSE

4.479
4.459 
4.459
4.459
4.459
4.127
4.117 
4.121
4.117
4.117
3.398
3.211 
3.236
3.211
3.211
3.026
2.758 
2.803
2.754
2.754
2.008
1.655 
1.807
1.655
1.655
1.703
1.351 
1.578
1.354
1.351

with two iterations. The MSE is reduced to 4.117, i.e., equal to 
the MSE of the regular MEP.

Figure 2 is a graph of the ratio of the iterative MEP-MREP 
MSE to the IDCT MSE versus the number of iterations. It is 
clear that two iterations are sufficient.

The inevitable conclusions are that, in this case, the IDCT 
is inferior to both MEP methods and that the MEP-MREP 
converges rapidly.

The results of these reconstructions as well as reconstruc 
tions by other nXn sets (not discussed) are summarized in 
Table I.

4.1.2. Coefficients retained: 7X7
This represents a data compression ratio of 5.22. Figure 3(a) 
shows the IDCT reconstruction after the values were thresh- 
olded at 1.5. The MSE was 3.398. Figure 3(b) shows the 
regular MEP reconstruction with the same threshold. The
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Fig. 3. Reconstructions of the letter O with 7X7 coefficients
retained. (a) IDCT. (b) Regular MEP. (c) First iteration of MEP-MR EP.
(d) Second iteration of MEP -MREP.
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Fig. 4. Letter O. Graph of MEP-MR EP/IDCT MSE vs number of
iterations with 7X7 coefficients retained.

MSE was 3.211. This reconstruction is visually better than the
IDCT reconstruction.

Figure 3(c) shows the first iteration obtained with the
iterative MEP -MREP algorithm. The MSE was 3.236. This
reconstruction is also visually better than the IDCT recon-
struction. Figure 3(d) shows the second iteration of the pro-
posed algorithm. The MSE was reduced to 3.211, i.e., equal to
the regular MEP. There is no visual improvement.

Figure 4 is a graph of the ratio of the iterative MEP-M REP
MSE to the IDCT MSE versus the number of iterations. The
iterative algorithm converges with two passes through the
constraints.

The conclusions are that the regular MEP and the iterative
MEP -MREP algorithm perform better than the IDCT and
that the MEP -MREP converges with two iterations.

The results are summarized in Table I. The situation was
same with other sets of retained coefficients, as can be seen in
this table.

4.2. Example 2: the letters OE

The original image of "ones" and "twos" (dashes and x's,
respectively) is shown in Fig. 5(a). The reconstructed images
did not resemble the original image until the set of retained
coefficients became 7X7. Figure 5(b) shows the IDCT recon-
struction for this set of retained coefficients. Figure 5(c) shows
the regular MEP reconstruction, and Figs. 5(d) and 5(e) show
the reconstructions of the MEP -MREP with 1 and 2 itera-
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Fig. 5. Reconstructions of letters OE with 7 X7 coefficients retained.
(a) Original image. (b) IDCT. (c) Regular MEP. (d) First iteration of
MEP -MREP. (e) Second iteration of MEP -MREP.
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Fig. 6. Letters 0E. Graph of MEP -MREP /IDCT MSE vs number of
iterations with 7X7 coefficients retained.

tions, respectively. Figure 6 is a graph of the ratio of the
iterative MEP -MREP MSE to the IDCT MSE versus the
number of iterations. Table II summarizes the results for these
and several other sets of n X n retained coefficients.

In this example the results were visually similar to each
other. However, the MSEs followed the same pattern as in the
previous example. The iterative algorithm converges with two
iterations.

4.3. Example 3: the Golden Gate Bridge

A Gould 84000 image processor was employed for this
example. The results were printed out on an HP Laserjet
printer.

The original picture of the Golden Gate bridge, shown in
Fig. 7, has 512 X 512 pixels and 256 gray levels. The DCT was
performed on various sizes of blocks of pixels, as were the
reconstructions.

4.3.1. Block size: 8X8; coefficients retained: 2X2

The compression ratio in this case is 16. Figure 8(a) shows the
IDCT reconstruction. The MSE was 3419.339. Figure 8(b)
shows the regular MEP reconstruction. The MSE was
3409.142. Figure 8(c) shows the first iteration of the MEP -
MREP algorithm. The MSE was 3414.039. Figure 8(d) shows
the second iteration of the MEP -MREP algorithm. The MSE
was 3409.157. The third iteration was the same.
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Fig. 3. Reconstructions of the letter O with 7X7 coefficients 
retained, (a) IDCT. (b) Regular MEP. (c) First iteration of MEP-MREP. 
(d) Second iteration of MEP-MREP.
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Fig. 5. Reconstructions of letters OE with 7X7 coefficients retained, 
(a) Original image, (b) IDCT. (c) Regular MEP. (d) First iteration of 
MEP-MREP. (e) Second iteration of MEP-MREP.
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Fig. 4. Letter O. Graph of MEP-MREP/IDCT MSE vs number of 
iterations with 7X7 coefficients retained.

Fig. 6. Letters OE. Graph of MEP-MREP/IDCT MSE vs number of 
iterations with 7X7 coefficients retained.

MSE was 3.211. This reconstruction is visually better than the 
IDCT reconstruction.

Figure 3(c) shows the first iteration obtained with the 
iterative MEP-MREP algorithm. The MSE was 3.236. This 
reconstruction is also visually better than the IDCT recon 
struction. Figure 3(d) shows the second iteration of the pro 
posed algorithm. The MSE was reduced to 3.211, i.e., equal to 
the regular MEP. There is no visual improvement.

Figure 4 is a graph of the ratio of the iterative MEP-MREP 
MSE to the IDCT MSE versus the number of iterations. The 
iterative algorithm converges with two passes through the 
constraints.

The conclusions are that the regular MEP and the iterative 
MEP-MREP algorithm perform better than the IDCT and 
that the MEP-MREP converges with two iterations.

The results are summarized in Table I. The situation was 
same with other sets of retained coefficients, as can be seen in 
this table.

4.2. Example 2: the letters OE
The original image of "ones" and "twos" (dashes and x's, 
respectively) is shown in Fig. 5(a). The reconstructed images 
did not resemble the original image until the set of retained 
coefficients became 7X7. Figure 5(b) shows the IDCT recon 
struction for this set of retained coefficients. Figure 5(c) shows 
the regular MEP reconstruction, and Figs. 5(d) and 5(e) show 
the reconstructions of the MEP-MREP with 1 and 2 itera

tions, respectively. Figure 6 is a graph of the ratio of the 
iterative MEP-MREP MSE to the IDCT MSE versus the 
number of iterations. Table II summarizes the results for these 
and several other sets of nXn retained coefficients.

In this example the results were visually similar to each 
other. However, the MSEs followed the same pattern as in the 
previous example. The iterative algorithm converges with two 
iterations.

4.3. Example 3: the Golden Gate Bridge
A Gould 84000 image processor was employed for this 
example. The results were printed out on an HP LaserJet 
printer.

The original picture of the Golden Gate bridge, shown in 
Fig. 7, has 512 X 512 pixels and 256 gray levels. The DCT was 
performed on various sizes of blocks of pixels, as were the 
reconstructions.

43.1. Block size: 8X8; coefficients retained: 2X2
The compression ratio in this case is 16. Figure 8(a) shows the 
IDCT reconstruction. The MSE was 3419.339. Figure 8(b) 
shows the regular MEP reconstruction. The MSE was 
3409.142. Figure 8(c) shows the first iteration of the MEP- 
MREP algorithm. The MSE was 3414.039. Figure 8(d) shows 
the second iteration of the MEP-MREP algorithm. The MSE 
was 3409.157. The third iteration was the same.
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Fig. 7. The original picture of the Golden Gate Bridge.

TABLE II. Results of reconstruction of the letter 0E.

Coefficients
retained
(nXn)

3X3

Method MSE

IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

5X5 IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

7X7 IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

9X9 IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

11 X11

13X13

IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP
MEP -MREP 1 iteration

2 iterations
3 iterations

6.268
6.267
6.270
6.267
6.267

5.469
5.468
5.475
5.469
5.468
4.880
4.840
4.856
4.840
4.840
3.299
3.053
3.144
3.052
3.052
2.428
2.198
2.338
2.199
2.198
1.857
1.645
1.865
1.650
1.646

4.3.2. Block size: 16X16; coefficients retained 2X2

The compression ratio in this case is 64. Figure 9(a) shows the
IDCT reconstruction. The MSE was 5300.152. Figure 9(b)
shows the regular MEP reconstruction. The MSE was
5280.852. Figure 9(c) shows the first iteration of the MEP-

MREP algorithm. The MSE was 5285.891. Figure 9(d) shows
the second iteration of the MEP -MREP algorithm. The MSE
was 5281.043. The third iteration was the same as the regular
MEP.

Other combinations of block sizes and retained coefficient
sizes produced similar results. Visually, the differences between
the IDCT and the proposed methods were unnoticeable. The
MSEs were slightly less for the proposed methods. The itera-
tive MEP -MREP algorithm appeared to converge with two
passes and in some cases, with three.

5. CONCLUSIONS
The proposed MEP and MREP methodologies for recon-
structing transform -coded images seem legitimate and mathe-
matically universal, i.e., applicable to all transform coding. In
this paper they were compared with DCT coding since such
coding is approximately close to the ideal (Karhunen -Loeve)
and not data dependent. In the examples attempted, the regu-
lar MEP approach performed better than (or as well as) the
IDCT with respect to MSEs.

The proposed MEP -MREP iterative algorithm appears to
converge very rapidly. Even the first iteration was usually
better than the IDCT reconstruction. It is free of the slowness
and convergency problems encountered in the regular MEP
or MREP.
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7. APPENDIX: CONVERGENCE OF THE MEP -MREP
ALGORITHM
Let us consider a MREP problem with prior p(j) and only two
constraints,

go(i)f(j) = mo

giG)fG) = mi ,

(19)

(20)

where f(j) is the true pmf being sought. The consideration of
only two constraints makes the concepts clearer.

Under the proposed MEP -MREP algorithm the con-
straints are treated one at a time.

Considering only the constraint of Eq. (19), the minimiza-
tion of the RE between fo) and p(j) leads to the solution

foG) = PG)eXP[-XogoG)] (21)

The single Lagrangian multiplier Ào is next calculated from
the constraint of Eq. (19), and this fo(j) is considered the new
prior.

The RE between f(j) and this new prior fo(j) is next mini-
mized, subject to the second constraint, Eq. (20). The solution
is denoted by fl (j) and has the form

fl G) = fo(i)eXP[-X10.1)]

= P(j)eXP[-Xogo(j)-Xigi(j)] (22)

OPTICAL ENGINEERING / March 1989 / Vol. 28 No. 3 / 237

RECONSTRUCTION OF TRANSFORM-CODED IMAGES BY ENTROPY METHODS

Fig, 7. The original picture of the Golden Gate Bridge.

TABLE II. Results of reconstruction of the letter OE.

Coefficients
retained
(nXn)

3X3

5X5

7X7

9X9

11X11

13X13

Method

IDCT
Regular MEP
MEP-MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP
MEP-MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP
MEP-MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP
MEP-MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP
MEP-MREP 1 iteration

2 iterations
3 iterations

IDCT
Regular MEP
MEP-MREP 1 iteration

2 iterations
3 iterations

MSE

6.268
6.267
6.270
6.267
6.267
5.469
5468
5.475
5.469
5.468
4,880
4.840
4,856
4.840
4.840
3.299
3.053
3.144
3.052
3.052
2.428
2.198
2.338
2.199
2.198
1 .857
1 .645
1.865
1.650
1 .646

432. Block size: 16X16; coefficients retained: 2X2
The compression ratio in this case is 64. Figure 9(a) shows the 
IDCT reconstruction. The MSE was 5300.152. Figure 9(b) 
shows the regular MEP reconstruction. The MSE was 
5280.852. Figure 9(c) shows the first iteration of the MEP-

MREP algorithm. The MSE was 5285.891. Figure 9(d) shows 
the second iteration of the MEP-MREP algorithm. The MSE 
was 5281.043. The third iteration was the same as the regular 
MEP.

Other combinations of block sizes and retained coefficient 
sizes produced similar results. Visually, the differences between 
the IDCT and the proposed methods were unnoticeable. The 
MSEs were slightly less for the proposed methods. The itera 
tive MEP-MREP algorithm appeared to converge with two 
passes and in some cases, with three.

5. CONCLUSIONS
The proposed MEP and MREP methodologies for recon 
structing transform-coded images seem legitimate and mathe 
matically universal, i.e., applicable to all transform coding. In 
this paper they were compared with DCT coding since such 
coding is approximately close to the ideal (Karhunen-Loeve) 
and not data dependent. In the examples attempted, the regu 
lar MEP approach performed better than (or as well as) the 
IDCT with respect to MSEs.

The proposed MEP-MREP iterative algorithm appears to 
converge very rapidly. Even the first iteration was usually 
better than the IDCT reconstruction. It is free of the slowness 
and convergency problems encountered in the regular MEP 
or MREP.
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7. APPENDIX: CONVERGENCE OF THE MEP-MREP 
ALGORITHM
Let us consider a MREP problem with prior p(j) and only two 
constraints,

(M)

(20)

where f(j) is the true pmf being sought. The consideration of 
only two constraints makes the concepts clearer.

Under the proposed MEP-MREP algorithm the con 
straints are treated one at a time.

Considering only the constraint of Eq. (19), the minimiza 
tion of the RE between f (j) and p(j) leads to the solution

(2!)

The single Lagrangian multiplier X$ is next calculated from 
the constraint of Eq. (19), and this f0 (j) is considered the new 
prior.

The RE between f(j) and this new prior f0 (j) is next mini 
mized, subject to the second constraint, Eq. (20). The solution 
is denoted by f, (j) and has the form

fbO)exp[-X|g| G)]

P(i)exp[-A0g0 (j)~A 1 g,(j)] (22)
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Fig. 8. Reconstructions of the picture of the Golden Gate Bridge. Block size: 8X8. Coefficients retained: 2X2. (a) IDCT reconstruction.
(b) Regular MEP reconstruction. (c) First iteration of MEP -MREP reconstruction. (d) Second iteration of MEP -MREP reconstruction.

This is the first "iteration" of the proposed iterative algorithm.
This solution has the proper form of the regular MREP
solution of Eq. (3), and it satisfies the constraint of Eq. (20),
but Xo may not be the proper value that satisfies the constraint
of Eq. (19). (In the practical examples it was close.)

The second iteration is obtained as follows: The first itera-
tion f1 (j) is used as the prior in minimizing the RE between f(j)
and f1(j). The solution is denoted as fo' (j) and is

fóÚ) = f1(j)exP[- Àog1G)]

= PÜ)eXp[-(Àó + 4)go G)] (23)

This is inserted into the constraint of Eq. (19) to calculate the
Ào. If at this point ñó = 0, then the first iteration satisfies both

238 / OPTICAL ENGINEERING / March 1989 / Vol. 28 No. 3

constraints and thus is the correct solution to the regular
MREP method. If not, the new X' is found, and fo(j) satisfies
the first constraint but its Xi may not satisfy the second.

Next, the fo(j) serves as a prior and a new minimization is
performed with Eq. (20) as a constraint. The new solution is

fíG) = fóG)eXP[-XíglG)]

= P(j)eXp[-(Xo + Xó)go(j) - (X1 + )g1 (j)] , (24)

and is calculated using the constraint of Eq. (20). This f ¡ (j)
represents the second "iteration" of the algorithm. It has the
form of the regular MREP solution, and it satisfies the second
constraint. However, the first constraint may not be satisfied,

TZANNES, TZANNES, BODENSCHATZ

lc) (d)

Fig. 8. Reconstructions of the picture of the Golden Gate Bridge. Block size: 8X8. Coefficients retained: 2X2. (a) IDCT reconstruction, 
(b) Regular MEP reconstruction, (c) First iteration of MEP-MREP reconstruction, (d) Second iteration of MEP-MREP reconstruction.

This is the first "iteration" of the proposed iterative algorithm. 
This solution has the proper form of the regular MREP 
solution of Eq. (3), and it satisfies the constraint of Eq. (20), 
but AQ may not be the proper value that satisfies the constraint 
of Eq. (19). (In the practical examples it was close.)

The second iteration is obtained as follows: The first itera 
tion fj (j) is used as the prior in minimizing the RE between f (j) 
and fj(j). The solution is denoted as f0(j) and is

fb(i) =

(23)

This is inserted into the constraint of Eq. (19) to calculate the 
A0. If at this point A^ = 0, then the first iteration satisfies both

constraints and thus is the correct solution to the regular 
MREP method. If not, the new X'Q is found, and f0 (j) satisfies 
the first constraint but its Aj may not satisfy the second.

Next, the f0 (j) serves as a prior and a new minimization is 
performed with Eq. (20) as a constraint. The new solution is

f',(i) = f0([)exP[-A'lg ,(j)]

= P(i)exp[-(Xo + XJ)go(j) - (A, + Xi)g,G)] , (24)

and Aj is calculated using the constraint of Eq. (20). This f'j (j) 
represents the second "iteration" of the algorithm. It has the 
form of the regular MREP solution, and it satisfies the second 
constraint. However, the first constraint may not be satisfied,
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RECONSTRUCTION OF TRANSFORM -CODED IMAGES BY ENTROPY METHODS

(a)

(c)

(b)

(d)

Fig. 9. Reconstructions of the picture of the Golden Gate Bridge. Block size: 16X16. Coefficients retained: 2X2. (a) IDCT reconstruction.
(b) Regular MEP reconstruction. (c) First iteration of MEP -MREP reconstruction. (d) Second iteration of MEP -MREP reconstruction.

so a new passage through the constraint is initiated, leading to
the third "iteration" of the algorithm, which will have the form

f¡(j) = p(j)exp[ -(X0 + Àó + Àp) (j)

- (À1 + À¡ + X1410)] (25)

It is clear from the above that if this solution converges (the X'
converge to zero), it will converge to the regular MREP
solution of Eq. (3).

This type of iterative process has been demonstrated to
converge for discrete distributions by Ireland and Kullback"
and for continuous distributions by Kullback.'$ A more
rigorous treatment of convergence, uniqueness, etc. appears
in Csiszar.19 Experimentally, there appears little doubt that

the algorithm converges and that it does so remarkably fast,
usually at the second iteration.

8. REFERENCES
i. S. Kullback, Information Theory and Statistics, Dover, New York (1969).
2. J. E. Shore and R. W. Johnson, "Axiomatic derivation of the principle of

maximum entropy and the principle of minimum cross -entropy," IEEE
Trans. Inf. Theory IT -26, 26-37 (1980).

3. E. T. Jaynes, "Prior probabilities," IEEE Trans. Syst. Sci. Cybernet.
SSC -4, 227 -241 (1958).

4. J. E. Shore, "Minimum cross -entropy spectral analysis," IEEE Trans.
Acoust. Speech Signal Proc. ASSP- 29(2), 230 -237 (1981).

5. M. A. Tzannes, D. Politis, and N. S. Tzannes, "A general method of
minimum cross -entropy spectral estimation," IEEE Trans. Acoust. Speech
Signal Proc. ASSP- 33(3), 748 -752 (1985).

6. J. P. Burg, "Maximum entropy spectral analysis," Ph.D. dissertation,
Stanford Univ., microfilms No. 75 -25, 499 (1975).

OPTICAL ENGINEERING / March 1989 / Vol. 28 No. 3 / 239

RECONSTRUCTION OF TRANSFORM-CODED IMAGES BY ENTROPY METHODS

(a)

Fig. 9. Reconstructions of the picture of the Golden Gate Bridge. Block size: 16X16. Coefficients retained: 2X2. (a) IDCT reconstruction, 
(b) Regular MEP reconstruction, (c) First iteration of MEP-MREP reconstruction, (d) Second iteration of MEP-MREP reconstruction.

so a new passage through the constraint is initiated, leading to 
the third "iteration" of the algorithm, which will have the form

(25)-(A, + X', + A (rl )g,(j)]

It is clear from the above that if this solution converges (the X' 
converge to zero), it will converge to the regular MREP 
solution of Eq. (3).

This type of iterative process has been demonstrated to 
converge for discrete distributions by Ireland and Kullback 17 
and for continuous distributions by Kullback. 18 A more 
rigorous treatment of convergence, uniqueness, etc. appears 
in Csiszar. 19 Experimentally, there appears little doubt that

the algorithm converges and that it does so remarkably fast, 
usually at the second iteration.
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