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RECONSTRUCTION TECHNIQUES FOR CLASSICAL
INVERSE STURM-LIOUVILLE PROBLEMS

WILLIAM RUNDELL AND PAUL E. SACKS

Abstract. This paper gives constructive algorithms for the classical inverse
Sturm-Liouville problem. It is shown that many of the formulations of this
problem are equivalent to solving an overdetermined boundary value problem
for a certain hyperbolic operator. Two methods of solving this latter problem
are then provided, and numerical examples are presented.

1. Introduction
The classical inverse Sturm-Liouville problem consists of recovering the po-

tential function q(x) from

(1.1) -y" + q(x)y = ky,
(1.2) y'(0)-hy(0) = 0,
(1.3) y'(l) + tfy(l) = 0,
and a knowledge of spectral data. This data can take various forms, and this
leads to a family of inverse problems. In each of these, one assumes that a
complete spectrum, {¿j}Jix, for (1.1)—( 1.3) is given. It is well known that this
is insufficient for recovery of q, and thus some additional information must be
provided. Some of the better known versions are:

The two-spectrum case. Here, in addition to the eigenvalues {kj}Jix for (1.1 )-
(1.3), we assume that a second set of eigenvalues {ßj}JLx is given, where the
value of H in (1.3) is replaced by H, H ^ H. Borg [4] showed that q(x) is
uniquely determined from the spectra {A,}^ and {ßj}JLx. This result was
extended by Levinson [13] to show that two spectra uniquely determine q(x)
and the boundary conditions, that is, the values h, H, and H.

Spectral function data. Here one seeks to reconstruct q(x) from its spectral
function. This is tantamount to providing the eigenvalues {kj}JLx and the
values of the ratios (norming constants) pj := ||^|||2/^(0)2 for finite h, or
else pj := ||0;||22/<^(O)2 when h = oo.  Once again (Gel'fand and Levitan
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162 WILLIAM RUNDELL AND P. E. SACKS

[5]), the spectral data {^j}°Zx and {pj}JLx are sufficient to determine the set
q(x),h, H, and II.
Endpoint data. Recently (see Pöschel and Trubowitz [20] for example), it has
been shown that in addition to a complete set of eigenvalues the spectral data
could consist of certain information about the eigenfunctions at the endpoints
of the interval. For example, if h = H = ce, set /c, := log(|<^(l)|/|(/^(0)|). In
[20] it is shown that the two sequences {¿.j}^ and {k,}^ determine q(x)
uniquely. If h = oo and H < oo, we define instead kj := log(|07-(l)|/|<^(O)|),
and so forth for other possible combinations of h and H.

The symmetric case. If it is known a priori that q(x) is symmetric about the
midpoint of the interval, q(x) = q(X - x), and the boundary conditions obey
the symmetry condition h = H, then knowledge of a single spectrum {A/}^
is sufficient to recover q(x). This result is an old one, and was noted by Borg
in his original paper.

Partially known q(x). If the values of q are given over at least a half of the
interval, say for j < x < X, then again a specification of a single spectrum
suffices to recover the potential (Hochstadt and Lieberman [10]).

It is often the case that there are explicit formulas relating the data for one
problem to that for another one. However, these often involve infinite product
expansions, and unfortunately a finite amount of spectral data of one type does
not usually correspond to a finite amount of spectral data of another type. For
example, knowledge of p¡ for 0 < j < N for some fixed N does not allow
one to determine p¡ for X < j < N.

Questions of existence and uniqueness for the inverse spectral problem have
been studied rather thoroughly. In contrast, there seems to be a need for fur-
ther investigation of numerical reconstruction techniques. The purpose of this
article is to describe a class of such methods and to analyze their behavior. In
comparison with previously developed computational methods, our approach
has several advantages. First, there is a relatively low operation count, namely
0(N3) + 0(M2), where M is the number of grid points on which q(x) is to
be represented. Second, there is great flexibility in passing from one version of
the inverse spectral problem to another. In particular, all of the formulations
described above can be handled without too much difficulty in a unified manner.
In §5 we will comment further about the comparison of our method with other
reconstruction techniques.

We now briefly discuss previous work on numerical techniques for the inverse
spectral problem, referring the reader to the survey article [17] for analytic
methods. In the original paper by Gel'fand and Levitan a formula is developed
that at face value leads to a numerical scheme. This requires that one solve the
integral equation

(1.4) K(x,t)+ ( K(x,s)f(s,t)ds = f(x,t),        0<t<x,
Jo

for the function K(x, t) at each fixed x e [0, 1]. Here the function f(x, t)
is obtained from spectral function data. The potential is then recovered from
q(x) = 2^K(x, x). Assuming a discretization of the form x^ = k/M, one
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must solve M integral equations in order to recover K, and in addition to
the high operation count associated with the method, there are several other
difficulties that limit its effectiveness. Not the least of these is computation
of the data function f(x, t). Another type of solution method based on the
Gel'fand-Levitan integral equation is studied by McLaughlin and Handelman
[16]. Sacks [21] has given an iteration method that is based on some properties
of the mapping from K(x, x) to Kt(x, 0). This method significantly reduces
the operation count from the Gel'fand-Levitan technique and leads to an effi-
cient reconstruction of q(x). In 1973, Hochstadt [9] proposed an algorithm for
solving both the symmetric and the two-spectrum case. The main idea is to re-
duce the problem to a finite system of nonlinear ordinary differential equations.
Hald [6] showed that a revised version of this algorithm will always provide a so-
lution of the inverse problem in the symmetric case, and illustrated his method
by some numerical examples. More recently [1], Andersson has extended these
techniques to the so-called "impedance case," the recovery of the function p(x)
in -(pu')1 = Xpu. An iterative method for the case of symmetric potentials has
also been suggested by Barcilon [2]. For this same case, Hald [7] developed a
procedure based on a finite element approach. This reduces the inverse problem
for the differential equation to a nonstandard discrete inverse eigenvalue prob-
lem; a convergence and a stability result are proven. In the book [20], Pöschel
and Trubowitz, based on earlier work by Isaacson, McKean, and Trubowitz
[11, 12], show that one can characterize the isospectral sets corresponding to
Dirichlet data, that is, the set of potentials q(x) that have a given (Dirichlet)
spectrum. This information is then used to solve the endpoint-data version of
the inverse Sturm-Liouville problem, and numerical examples are presented for
this case. Finally, we should mention a version of the inverse Sturm-Liouville
problem that lies outside of the scope of the present work. In [18], McLaugh-
lin has shown that the potential can be uniquely determined from nodal data,
that is, information on the zeros of the eigenfunctions of the operator given by
(1.1)—(1.3). Hald and McLaughlin [8] have provided an efficient algorithm to
reconstruct the potential q(x) from this type of data.

The plan of the paper is as follows. In the next section we will give an
overview of our method in the two-spectrum case with particular boundary con-
ditions. We will show how to translate the eigenvalue sequences into Cauchy
data for a certain hyperbolic equation. We then show that the resulting over-
posed boundary value problem can be solved by an iterative method for the
function q(x). This method can be of either a quasi-Newton or of a succes-
sive approximation type. In §3 we show what modifications should be made for
other versions of the inverse spectral problem. The fourth section takes on some
of the issues connected with the numerical implementation of this procedure,
and we will show some numerical reconstructions of the function q(x) from
spectral data. Section 5 discusses the question of stability of the reconstruction
with errors in the data. The final section will provide an analysis of the two
iteration schemes, and a convergence result will be proven.

2. An overview of the method
We begin with a description of the reconstruction method, assuming the spec-

tral data is known completely. For definiteness let us consider the two-spectrum
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case with h = oo, H = oo, and H = 0. Thus, the spectral data are the
two sequences {A;} and {fij}, respectively the Dirichlet eigenvalues and the
Dirichlet-Neumann eigenvalues. Let us recall the asymptotic forms for these
two sequences [5]:

(2.1) kj = j2n2+ [ q(s)ds + aj,
Jo

(2.2) fij = (; - 1J  n2 + J q(s) ds + bj,
where the sequences {af}, {bj} belong to I2.

From the fundamental paper of Gel'fand and Levitan [5], we know that for
a given q e L2(0, 1) there exists a function K(x, t) = K(x, t; q) defined on
the triangle 0 < \t\ < x < 1 with the following properties. First, if <j)(x, A)
satisfies

(2.3) <p" + (k-q(x))<p = 0,
(2.4) 4>(0,X) = 0,        <t>'(0,X) = X,
then
,.., ,,     ,,     sinx/Xx      fx ,sin\/Äi .(2.5) <p(x,k) = —-=—+ I   K(x,t)      -    dt.

The key point here is that K does not depend on A. Furthermore, K is also
the solution of the characteristic boundary value problem

(2.6) Ktt - Kxx + q(x)K = 0,        0 < \t\ < x < X,

(2.7) K(
i rx

x,±x) = ±-      q(s)ds,       0<x<l.
2 Jo

Note that the condition on the lower characteristic {i = -x} could be replaced
by K(x, 0) = 0. However it will simplify the appearance of some formulas
below if we can regard K(x, t) as being defined for -x < t < x.

Recovery of Cauchy data for K. The first step in our reconstruction procedure
is to use the given spectral data to determine Cauchy data for K on {x = X},
that is, the pair of functions {K(\, t), KX(X, t)} for -1 < t < 1. Since they
are both odd functions of t, we only need to consider 0 < t < 1.

Evaluate equation (2.5) with A = A7 and x = 1 to get

(2.8) ( K(X,t)ùr\sJk~jtdt = -ùn-JXj.
Next differentiate both sides of (2.5) with respect to x and evaluate at A = fij
and x = 1 to obtain

(2.9) /   KX(X, t)siny/^tdt = -^cosy/Ji]-^siny/p]      q(s)ds.

From (2.1) or (2.2) we may clearly obtain /0 q(s)ds from either sequence,
hence unique recovery of the Cauchy data for K follows immediately from the
following completeness property.
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Lemma 1 (Levinson [14]). The sequences {smyfXjt} and {sin^/fljt} are com-
plete in L2(0, 1).
Recovery of q from Cauchy data. Equations (2.6) and (2.7) together with the
Cauchy data for K on the line {x = 1} may be regarded as an overposed
boundary value problem for K, which we expect may be used to determine
q(x) uniquely. That this is indeed the case is indicated by the work of Suzuki
[22], who has proved some uniqueness theorems by relating spectral data to
the Cauchy data for a hyperbolic boundary value problem in a slightly different
way.

It is also possible to regard q(x) as the solution of a certain integral equa-
tion. From the usual d'Alembert solution formula for the inhomogeneous wave
equation subject to the Cauchy data {K(X, t), KX(X, t)} on the line x=l we
have

K(x,x) = \[K(X, 2x - 1) + K(X, 1)] + \ f J    KX(X, s)ds
(2-10) j     ,,    f2x-y lk

~2j   j       Qiy)K(y,s)dsdy.

Differentiating with respect to x and using (2.7) gives
q(x) = 2[Kt(X,2x-X) + Kx(X,2x-X)]

(2.11) -2 [ q(y)K(y,2x-y)dy,
Jx

which we emphasize is a nonlinear equation, since K = K(x, t ; q). It will be
shown later (Theorem 1 of §6) that the function q is uniquely determined from
the Cauchy data for K using equation (2.11).

Now set

Gx(t) = Kt(X,t;q),        G2(t) = KX(X, t ; q),
G(x) = 2[Gx(2x - 1) + G2(2x - 1)],

so that (2.11) is the same as

(2.12) q(x) = G(x)-2¡ q(y)K(y, 2x - y) dy.
Jx

For the purpose of computing the solution q from the Cauchy data we con-
sider two iterative procedures.

Successive approximation method. For a given q(x), let u = u(x, t ; q) solve

(2.13) Uu - uxx + q(x)u = 0,        0 < \t\ < x < X,
(2.14) u(X,t) = K(X,t),    ux(X,t) = Kx(X,t),        -X<t<X.
Now pick an initial guess <?o and set

(2.15) qn+x(x) = 2j^u(x,x;qn).

It is not difficult to check that (2.15) is equivalent to

(2.16) qn+x(x) = G(x) - 2 I  qn(y)u(y, 2x - y ; qn) dy.
Jx
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Quasi-Newton method. For a given q(x), define the mapping

F(q) = {vt(X,t;q),vx(X,t;q)},

where v = v(x, t; q) solves the characteristic initial value problem

(2.17) vtt-vxx + q(x)v = 0,        0 < \t\ < x < 1,
i rx

(2.18) v(x,±x) = ±=      q(s)ds,       0<x<X.
2 Jo

The solution q satisfies F(q) = {Kt(X, t), KX(X, t)} = {Gx, G2} , and if New-
ton's method is applied to this equation we obtain the approximating sequence
{q„} defined by

(2.19) qn+x = qn-DF(qn)-x(F(qn) - {Gx, G2}),

where DF(q) denotes the Fréchet derivative of F at q . This is unsuitable for
computational purposes because DF(q„)~l may be too complicated to com-
pute. However, we will argue later that DF(0) is an adequate approximation
to DF(q„), and furthermore DF(0)~x can be expressed analytically. Thus the
quasi-Newton method we will use is

(2.20) qn+x =q„- DF(0)-x(F(qn) -{Gx, G2}).

Computing DF(0)oq amounts simply to solving (2.17) and (2.18) with the
q(x)v term in (2.17) dropped, and q replaced by ôq in (2.18). The inverse
operator DF(0)~' is then easily obtained. The resulting formula is

(2.21) qn+x(x) = qn(x) + G(x) -vt(X,2x-X;qn)-vx(X,2x-X; qn).

It may be verified that (2.21) is the same as

(2.22) qn+x(x) = G(x) - 2 ( q„(y)v(y ,2x - y; qn)dy .
Jx

Discussion. The two methods each require the solution of a boundary value
problem for equation (2.6) at each step of the iteration process. Note, however,
that if we make the reasonable choice #0 - 0, then the two methods clearly
both produce qx(x) = G(x), with no solution of (2.6) being necessary. As will
be seen in the numerical examples of §4, if the exact q(x) is not too large,
then qx(x) is often a very good approximation already. This is nothing but
the statement that linearization of the inverse problem at q = 0 may give a
good result, but the point we wish to make is that the region of validity of this
approximation is actually quite large.

To explain this, heuristically at least, consider the mapping q i-> F(q) defined
above. The value of F(q) depends on q in two ways; namely, it may be
regarded as a functional of q in the characteristic boundary condition (2.18),
which is a linear relation, and q in equation (2.17) which is nonlinear. It is not
hard to convince oneself that the latter dependence is small in comparison with
the former, that is to say, the mapping F is a small nonlinear perturbation of
the well-behaved linear mapping obtained by dropping the q(x)v term from
(2.17). Since neglecting this term amounts exactly to linearizing at q = 0, we
expect that F(q) « DF(0)q is a good approximation when q is of moderate
size. By the same token, an iterative scheme based on this linear approximation
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can be expected to converge quite rapidly, and without restriction on the size
of q - qo .

There is a further sense in which qx = G is always a good approximation
to q . If q 6 L°°(0, 1), then as in Sacks [21, Lemma 4.1], one can show that
K € W1'00 . From equation (2.12) it then follows that q-qx e C([0, 1]),which
is to say that all discontinuities of the exact solution q are already present in
the approximation qx. More generally one can show that q - qx has one degree
more smoothness than q itself has.

When further iteration is necessary, we have found there to be very little dif-
ference between the two update schemes. The successive approximation method
is somewhat easier to analyze (see §6), while the quasi-Newton scheme is more
easily adapted to other formulations of the inverse spectral problem (see §3).

3. Modification for other inverse problems
We now discuss how the method described in the last section can be modified

for other formulations of the inverse spectral problem mentioned at the begin-
ning of the paper. In some of the cases it is possible to derive Cauchy data for
K on {x = 1} directly from the spectral data, as was done for the particular
problem of §2. We may then continue the reconstruction procedure with either
of the iterative schemes. A second possibility is to transform the given problem
to one we have already considered by some less obvious device. Finally, it may
be that we can directly recover one of the two pieces of Cauchy data directly
from spectral data, and the lack of the other one is compensated for by a priori
restrictions on q.

Other boundary conditions at x = 1. Suppose the given spectral data are the
sequences {A;} and {fij} , where A; is the ;'th eigenvalue for (1.1 )—( 1.3) with
h = oo and a given value of H, while fi¡ is the same when H is replaced by
H. Then using (2.5) in the obvious way, we obtain the two equations

(3.1) J (Kx(X,t) + HK(X,t))sinfí~tdt = aj,

(3.2) / (KX(X, t) + HK(X,t))sin JfTjtdt = ßj,
Jo

where ctj and ßj are known from the spectral data. Lemma 1 applies to the
two sequences {A;} and {fij}, so for H ^ H the Cauchy data are uniquely
determined, and the reconstruction proceeds as above.

Endpoint data. We suppose that the spectral data consists of the Dirichlet eigen-
values {A;}  (h = H = oo) together with the numbers

#(1)(3.3) K7=log ^ô)   '       y = 1,2,...,

where <\>¡ is the ;'th eigenfunction. We still obtain K(X,t) from equation (2.8),
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/'Jo

and using (2.5), we also find

' KX(X, t) sin Jkjtdt = Jkj((-XyeK' - cos fij)

-^sin^jljj  q(s)ds.

Thus from Lemma 1 the Cauchy data {K(X, t), ^(1, t)} are again uniquely
determined by the spectral data, and so we may complete the recovery of q(x)
just as in §2.
The case of symmetric q(x). Here we suppose that q(x) = q(X - x) and only
Dirichlet eigenvalues {Xj} are given. There are at least three ways to proceed.
First, we clearly have Kj = 0 for all j, so that the method for the endpoint data
may be applied directly. Second, the sequence of Dirichlet eigenvalues is the
same as alternating Dirichlet eigenvalues for the interval [0, \] with Dirichlet-
Neumann eigenvalues for [0, \]. Thus, this is equivalent to the special case of
the two-spectrum problem studied in §2.

The third possibility is a modification of the quasi-Newton method. For a
given q(x) define the mapping F(q) = vt(X,t;q), where v(x, t;q) satisfies
(2.17) and (2.18). From the given spectral data we know Gx(t) = Kt(\,t;q),
and the quasi-Newton method analogous to (2.20) is

(3.4) q„+x=qn-DF(0)-x(F(qn)-Gx).
Now DF(0) is not invertible on the whole space, but it is when restricted to
the subspace of even functions on [0, 1]. The update scheme we obtain is

(3.5) qn+x(x) = qn(x) + 2Gx(2x - 1) - 2vt(X ,2x-X;q„).
Spectral function data. We suppose that the Dirichlet eigenvalues {Xj} are
known along with the sequence of norming constants

(3.6) pj = llfrllj
^•(0)2

¿2

While an iterative method can be developed which uses this data directly (Sacks
[21]), we have actually obtained better results by converting the norming con-
stant data into endpoint data. This may be done as follows.

If we differentiate (2.3) with respect to A, we obtain

-<p" + q(x)j> = <f) + X<p,
where (¡> denotes §|. Multiplying this last equation by <j), equation (2.3) by
<j>, and subtracting, we obtain [20, p. 30]

(j>2 = (f)"<j)-<j>"(P.
Integrating this from x = 0 to x = 1 gives

Ii4>2(x,X)dx = <p'(X,X)^(X,X).

Thus we have

(3.7) Pj = cp'(X,Xj)^(X,Xj).
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If we differentiate (2.5) in A, use (2.8) to simplify, and combine with (3.7), we
get

(3 8) M» =_2pjXj_
^(°)     cos y/Xj + J¡ tK( 1, i) cos y/Xjtdt '

We use the spectrum {Xj} to compute the function K(X, t), and then (3.8)
gives the values of the endpoint data in terms of the norming constants.

An alternative method, using a more traditional approach, would be to use
(3.7) and the expression (see [20, p. 39])

*M>-IlTçr-í=i
From this last formula we get

?ln   j.x__-L   TT   *'• - kiÏX(\   x.\-—L-   TT   A'A
<-l,W

= j2n2-Xj n ¿.ini1"]^

We recognize the second infinite product as (sin^/X]) / ^/X], and the final result

nQx ÍÍÍ)     PiyfiiV2*2-*.!) n i*2»2-*;
l'j ^(0)- sinyO-        JjwU-Aj
follows. For the purpose of numerical solution we will always arrange that
A, = i2n2 for large enough /, so that the product in (3.9) is always finite. In
order to control roundoff error, one must be careful in the application of (3.9).
The first term should be written as

where dj = ^/X] - jn. The direct function evaluation, (sindj)¡d¡ should
be used only if dj is bounded away from zero, otherwise the quotient should
be expanded as a Taylor series. With this safeguard, formula (3.9) gave good
results even for large values of N. Some further improvement can be obtained
by replacing the product by a sum of the logarithms of each term and then
exponentiating the result.

Partially known q(x). We suppose the Dirichlet eigenvalues {Xj} are known,
and that q(x) itself is known on, say, the right half-interval [¿, 1]. From the
one spectrum we are able to recover one piece of Cauchy data, namely K(X, t).
It is now not hard to check that if we set

D = {(x,t): j <x <X,  X-x<t<x},

then K(x, t) is uniquely determined in D by the conditions (2.6) and (2.7)
together with the known K(X, t). But then the other piece of Cauchy data
KX(X, t) is uniquely determined on (0, 1), and we may again proceed with the
iteration step.
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A second approach, probably easier in practice, is to adapt the quasi-Newton
scheme as follows. Define the mapping F(q) as in the symmetric q case above.
If we choose an initial guess qo to be equal to the known q(x) on [\, 1], then
in the quasi-Newton formula (3.4) we need to compute the inverse of DF(0)
restricted to the subspace of functions vanishing on [j, 1]. This is again a
straightforward calculation, and the resulting iteration scheme is

q„+x(x) = qn(x) + 4Gx(2x - X) - 4vt(X, 2x - X;qn),        0<x< \,
with Gx(t) = Kt(X, t) as above.
Other boundary conditions at x = 0. In the case that the boundary condition
at x = 0 is (1.2) for some finite h, we can make the following modification to
the above procedure. Define <j>(x, X) to be the solution of (2.3) with

4>'(0,X) = h,       <t>(0,X) = X.
Then there exists K(x, t) = K(x, t; q) such that

rx
<t>(x, A) = cos \/~Xx + I   K(x, t) cos Vit dt,

Jo
where K solves the characteristic boundary value problem

K„-Kxx + q(x)K = 0,       0<|r|<x<l,
1 tx

K(x, ±x) = h + x /   q(s) ds,       0 < x < 1.
2 Jo

One can now proceed as in the h = oo case. Given suitable spectral data, we
may uniquely recover the Cauchy data {#(1, t), KX(X, t)} , and the successive
approximation or quasi-Newton method may be adapted to recover q from the
resulting overposed boundary value problem.

4. Numerical implementation and examples
In this section we shall present the results of some of the numerical compu-

tations we performed to show the performance of the algorithm described in
§2. In all of these experiments we obtained spectral data, that is, we solved
the direct problem, by using the FORTRAN software package SLEIGN kindly
provided by its authors [3]. This program uses a modified Prüfer transforma-
tion to transform the second-order differential operator into a more numerically
tractable system. A shooting method (using the adaptive scheme RKF45 as the
integrator) is then used to approximate the eigenvalues and eigenfunctions of
the equation.

Our goal is to reconstruct the function q(x) as best as we can from a finite
number of pieces of spectral data, and we shall always assume that this corre-
sponds to the first N eigenvalues (or eigenvalues and norming constants, etc.).
Given that uniqueness requires a complete set of spectral data, it is however
necessary to make some assumptions about the missing spectral data.

Consider the case, for example, of Dirichlet eigenvalues Xj . From the asymp-
totic form (2.1) we see that in the absence of any further information, a rea-
sonable approximation is that

(4.1 ) Xj = (jn)2 + [ q(s) ds   for j > N.
Jo
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As long as

(4.2) Ai <A2<..-<AJV<((Ar+l)7r)2+ / q(s)ds,
Jo

it then follows from the known existence theory for the inverse Dirichlet prob-
lem (e.g., [17, 20]) that the entire infinite sequence defined by (4.1)—(4.2) is the
Dirichlet spectrum of some q . The smoother q is, the faster the sequence {üj}
in (2.1 ) will decay, and the more accurate this approximation will be. Of course,
we do not know the mean value q := J0 q(s) ds either, and strictly speaking,
nothing at all can be said about it from the knowledge of a finite number of
eigenvalues. That is, for any q(x) there exists q(x) with any prescribed mean
and having any finite number of pieces of spectral data in common with q.
On the other hand, if 7Y is large enough, and q is reasonably well behaved,
we expect that a good estimate for the value of q can be obtained from the
identity

(4.3) q=Xim(Xj-j2n2).
J—»oo

For now, we will regard q as a quantity to be estimated as part of the solution,
distinct from q itself, and we assume always that (4.1) holds. In the next section
we will show examples of the effect that choice of q has on the reconstruction,
and we will comment further on the error in q due to the approximation (4.1).
All other spectral data will be approximated similarly for j > N, that is, taken
to be the value one obtains in replacing q by the constant q .

Our reconstruction procedure may be divided into the three steps indicated
in the flowchart.

spectral
data y

compute

<7
modifie

data i-
compute
K(l,t)

Kx(\,t)

Cauchy
data

compute

q(x)

Computation of q. If q is not known from some independent source, we must
approximate it on the basis of the given spectral data. The most straightforward
estimate would be

(4.4) q = Xm - N2n2 „2

and we have found this to work well in most situations. If the data happens
to be of the two-spectrum type, we get one estimate from each spectrum and
the average of the two could be used. Once the value of q has been obtained,
we follow the usual procedure of working with the modified data obtained by
subtracting q from the given eigenvalues. We will thus reconstruct q(x) - q,
and then add the mean back on at the end.

Computation of the Cauchy data {K(X, t), KX(X, t)} . According to the discus-
sion of §§2 and 3, the Cauchy data for K are uniquely determined by systems
of equations of the form

(4.5) j f(t)sinyfx~jtdt = aj,        j=X,2,....
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To approximate / using N such equations, we let {uk}k=l be a set of basis
functions on [0, 1], and look for / in the form

N

(4.6) /w = £/*"*«•
fe=l

Then the coefficients / := (fx, ... , fN) can be computed from the system

(4.7) Af = a,
where a = (ax,..., a¡f) and A is the N x N mcirix with entries

(4.8) üjk = /   uk(t) sin JXjtdt.

For certain choices of basis functions {uk}, it is not hard to verify that
the matrix A is always nonsingular. For example, when uk = sin^/X^t,
this follows easily from the linear independence of the uks. For some pur-
poses, for example when the A/s are Dirichlet eigenvalues, a better basis is
uk(t) = sin knt. In this case, A is guaranteed to be nonsingular provided that
XN < (N+ X)2n2. Note that this is not really a new hypothesis but is already im-
plied by (4.1) and the requirement (in the case that q = 0) that Xx,... ,Xn ,
(N + X)2n2, (N + 2)2n2, ... be a legitimate sequence of Dirichlet eigenval-
ues. Note that having made the reduction to the case q = 0, we will have
#(1, 0) = K(X, X) = 0, so this choice of basis works particularly well for re-
covery of K(X, t) from Dirichlet eigenvalues. For either of these choices of
basis, the matrix A tends to be strongly diagonally dominant, with condition
number very close to 1.

When the A/s in (4.5) are eigenvalues corresponding to h = oo and some
finite H, then a good choice of basis is to take uk to be the kth eigenfunction
of (1.1)—(1.3) with q = 0, namely uk(t) = sinzV, where vk is the solution
of z = - H tanz in the range n\ < z < (n+ l)f. However, this will require
computation of the iVs. Comparable accuracy and conditioning will generally
be obtained by taking uk(t) = sin(k - j)nt (i.e., the eigenfunctions when H =
0).

In general, there are two considerations to keep in mind in selecting the basis
{uk}. First, we want a well-conditioned matrix A, and second it should be
appropriate for the particular choice of f(t) in (4.5). For example, as long
as h = oo, it follows that K(X, 0) = KX(X, 0) = 0, so ii is natural to have
uk(0) = 0 for recovery of any combination of the Cauchy data. At the other
end we will have tf(l, 1) = 0, but KX(X, 1) ¿ 0 (unless q(X) = q(0)), so the
basis sin^TTi is best for recovery of K(X, t), but not for KX(X, t) + HK(X, t).

When h < oo, there are cosines instead of sines in (4.5), and we make
the appropriate modifications. We may choose the basis functions either to
satisfy the prescribed boundary condition or else u'k(0) = 0, depending on the
situation. For example, if f(t) = K(X, t), then f'(0) = 0, so the second choice
seems more natural. Note that we can always reduce to the case K(X, X) = 0
without changing the other boundary condition by subtraction of a linear or
quadratic function.

Finally, one can also try nontrigonometric basis functions, such as splines or
orthogonal polynomials. These will give rise to a nonsingular matrix A as long
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as no function in the span of the uk's is orthogonal to one of the sin y/Xjt's. In
the case of splines, the possibilities include both linear and cubic spline bases.
For smooth functions these gave reconstructions that were almost as good as
those using trigonometric bases, and linear splines were only marginally poorer
than cubic ones. For rough functions q(x) these bases performed quite badly.
We also tried Chebyshev polynomials, assuming that within the class of polyno-
mial bases these would offer the most likely chance of giving reasonable results,
and we modified them to match the correct boundary conditions. The results
were rather poor—considerably poorer than even linear spline functions in all
the cases we tried. In order to obtain the best performance from the method,
it is essential that the choice of basis elements reflect the known boundary con-
ditions satisfied by the function f(t). In order to satisfy this constraint in
the case of Chebyshev polynomials, we were forced, for example, to take only
the even ones, and this necessitated the use of rather high-degree polynomial
approximation.

In summary, we found no reason to deviate from the more obvious choice
of trigonometric bases, since these consistently gave the best results, and these
bases were used to produce all the numerical results shown in the paper.

Computation of q . The final step is to compute the solution q by either of the
two iteration schemes described earlier. A convergence result for the successive
approximation method is given in §6. Very rapid convergence was usually ob-
tained by either method, as the examples below show. Carrying out this part
of the reconstruction is completely straightforward, once one has a numerical
method for approximation of the wave field functions u(x, t ; q) or v(x, t ; q)
defined in §2. In the computations used to obtain the examples below, a second-
order accurate finite difference discretization of (2.6) was used. See §3 of Sacks
[21], where a more detailed discussion is given for a similar computation.

Examples. To illustrate the results of this paper we have chosen three particular
potential functions, qw(x), q^T>(x), and q^(x) as shown in Figure 1.

The first of these represents a smooth function, the second a function with
discontinuities, and the third is a continuous function without a continuous
derivative and symmetric about x = \ .

l.O|9(1)0O 4.0

2.0

0.0

-1.5

,(2)(z)

Figure 1
Functions used to test the algorithm
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(i)TV = 3 1.0   l TV = 5

TV = 5 4.0 TV= 10

„(2)
TV = 20 4.0

2.0

0.0

-1.5

r

TV = 30

„(3)
TV = 3 2.0

Figure 2
Reconstruction of q(x) for various values of N
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Figure 2 shows the results of applying the algorithm to each of the functions
qw(x), q(T>(x), and q^(x). In the case of the functions #(1) and #(2), the
data was from two spectra, the first using Dirichlet conditions at both ends,
the second using a Dirichlet condition at x = 0 and a Neumann condition at
x = X. For the symmetric function #(3) we used a single spectrum coming from
Dirichlet conditions at both ends. The symmetry of the potential was then used
to convert the inverse problem into one using endpoint data, as discussed in
the previous section. In the case of q^(x) we provided the algorithm with the
exact value of the mean q.

The successive approximation method was used to compute q from the
Cauchy data K(X, t), KX(X, t), and this scheme was stopped at the third it-
eration after an initial guess of qo = 0. As the analysis of the next section
will show, we require relatively fewer spectral data (smaller values of tV) to
reconstruct a smooth q(x).

Rate of convergence of the iteration scheme. Table 1 shows the convergence rate
of the iterates qn(x) to q(x) for the case q = <?(1) for the three types of data
used. The results show the rapid convergence of the method, this time using the
quasi-Newton method. A marginally better result would have been obtained by
the successive approximation method. The slightly higher accuracy of the two-
spectrum reconstruction is probably due to the forward solver producing more
accurate values for the eigenvalues than for the other kinds of spectral data.
This same rapid convergence holds for the less smooth functions #(2) and q^ .

Table 1
Convergence of the iterates qn(x) for the test function q =
q^(x) using the quasi-Newton method.

Relative L°° and L2 norm convergence of qn(x), N = 10

Two spectrum Spectral function Endpoint data
1.0000 1.0000
0.0176 0.0182
0.0036 0.0009
0.0036 0.0008

1.0000 1.0000
0.0177 0.0184
0.0050 0.0011
0.0050 0.0010

1.0000 1.0000
0.0182 0.0185
0.0050 0.0015
0.0051 0.0015

To give some idea of the running time of our algorithm, consider the case
of the potential q{2)(x). To obtain the reconstruction of this function shown
in Figure 2 with N = 20 on a Sun 3/360 took 1.75 seconds. We used three
iterations of the method and took M = 100, that is, a stepsize of 0.01. The
computational cost of the algorithm is quite insensitive to the function q(x) or
to the value of tV , at least over the ranges under consideration. The choice of
stepsize in the successive approximation or quasi-Newton scheme is the domi-
nant factor. In comparison, the cost of computing the spectral data accurate to
10~5 using SLEIGN was 134 seconds. Computing eigenvalues involves many
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calls to evaluate q(x), and so the actual running time of the program is highly
dependent on how expensive it is to compute q .

5. Continuous dependence on the data
The central idea in this paper is the reconstruction of the potential q(x)

from a finite number, tV , of spectral data. Thus, by necessity, we only obtain
an approximation to q(x), and as a practical matter we must consider the fur-
ther possibility of these spectral measurements containing errors. This section
considers the dependence of the reconstruction on the number N, and on er-
rors in the spectral data. Furthermore, our algorithm requires the mean of q(x)
and knowledge of the boundary conditions, although in theory these quantities
can be obtained as part of the solution from a complete set of spectral data. As
we indicated in the last section, we can usually estimate the value of q even
from limited data, but we assumed that an independent measurement of the
boundary coefficients had been made. Thus we should understand the conse-
quence of an incorrect estimate in q and investigate the ability of the algorithm
to reconstruct q(x) in the presence of errors in h, H, and H.

Error due to missing spectral data. For definiteness, let us consider the two-
spectrum problem of §2, and assume we have already reduced to the case q = 0.
From knowledge of the spectral data {Xj}f=l and {fij}f=x we may approximate
the Cauchy data for K by solving two N x N systems as described in §4. The
exact error we commit depends of course on the particular basis functions {uk}
which are chosen.

If, for example, we choose uk(t) = sinknt in the system for K(X, t), then
it is not hard to see that the approximation obtained in this way is precisely
the same as the solution of the full system (2.8) if Xj = (jn)2 for j > N.
Similarly, using uk(t) = sin(k - \)nt in the system for KX(X, t) yields the
exact solution of (2.9) if ßj = (j - j)2n2 for j > N. According to the analysis
of Hochstadt [9], if the corresponding approximate solution is qest, then the
difference q - qest is a certain combination of the ;'th eigenfunctions for qes,
and q and their derivatives for j > N. Since either of these eigenfunctions
looks very much like sin jnx, this amounts to saying that the error is completely
in the high (higher than Xn) frequency components of q .

If we use instead the basis uk(t) = sin^/X/t for recovery of K(X, t) (re-
spectively uk(t) = sin y/fTjt for recovery of Kx(\, t)), then the approximate
Cauchy data is simply the projection of the exact Cauchy data onto the finite-
dimensional subspaces spanned by these basis functions. Thus, the L2 error in
the Cauchy data will tend to zero as N -> oo at a rate which is dependent on the
smoothness of K, which is itself dependent on the smoothness of the exact co-
efficient q(x). According to the analysis of §6, the corresponding L2 error in q
will also tend to zero at the same rate. In terms of fixed frequency components,
it seems clear that neither of the iteration schemes can produce an updated guess
with significantly more content than is already present in the data. Thus band-
limited spectral data will also yield an (essentially) band-limited approximate
solution for these choices of basis.

We may expect, therefore, that the error in the approximate solution due to
the finiteness of the spectral data is something like the error in approximating
a function by a partial sum of its Fourier series. In fact, we have observed this

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RECONSTRUCTION TECHNIQUES FOR STURM-LIOUVILLE PROBLEMS 177

4.0

2.0

0.0

-1.5

(a) (b)
Figure 3

Comparison of algorithm and Fourier series
reconstruction by algorithm using Fourier cosine series

to be a surprisingly accurate description. See Hald [7] for more direct analysis
of the recovery of Fourier coefficients of q .

The left graph in Figure 3 shows the reconstruction of q{2) using our algo-
rithm (except that we have provided the exact value of q) with two spectra and
tV = 5 and tV = 10. The graph on the right shows the corresponding 10- and
20-term partial sums of the Fourier cosine series for <?(2) (recall a certain value
of tV corresponds to IN pieces of spectral data).
Error in spectral data. Let us next consider the effect of error in the given spec-
tral data, again for the two-spectra problem of §2 with q = 0. We shall write
the eigenvalues for the Dirichlet spectrum in the form y/X] = jn + d¡ and
the measured eigenvalues in the form y/X¡ = jn + d¡ + 0¡, to indicate that
one should consider the measurement errors to be of magnitude dj rather than
y/Xj. So the difference in the actual value of a, := sin y/Xj and its value Gj
based on the measured spectrum is

cij - äj = (-X)j[sin(dj + Sj) - sindj],
so that, assuming dj ^ 0,

\X -â~j/otj\ < |1 -sin(dj + Sj)/sindj\ « \ôj\/dj
if Sj <dj <n . This says that the relative error in otj, and hence in the recon-
structed data K(X, t), due to error in the free term of (4.7) is approximately the
value of the ratio of Sj to d¡. A similar result can be derived for the effect of
errors in the Dirichlet-Neumann eigenvalues {p¡} . Actually, these errors also
cause an error in the coefficient matrix A, but these may be expected to lead
to further relative error in the computed Cauchy data of a similar magnitude.
Note that since dj< -* 0 as j -> oo, and X}• -» oo, the relative error in A; itself
needs to be extremely small to have useful information in it. See McLaugh-
lin [19] for further results about continuous dependence of the solution on the
spectral data.
Recovery of boundary conditions. As was mentioned earlier, if complete spectral
data is available, then it is in theory possible to determine the boundary condi-
tions as part of the solution of the problem. We do not believe, however, that
this is numerically feasible in most cases. Let us use the two-spectrum case with
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finite h, H, H as an example; similar conclusions would be obtained for the
other versions of the problem.

For q(x) e L2(0, 1), the eigenvalues {Xj}JL{ and {Xj}^ must satisfy the
asymptotic formulae [15]

(5.1) Xj= j2n2 + A0 + a¡,       Xj = j2n2 + A~0 + äj,

where {a,} and {äj} are in I2 and the constants A0 and A0 satisfy

A0 = 2(h + H)+ [ q(s)ds,        Äo = 2(h + H)+ f q(s)ds.
Jo Jo

Furthermore, the smoother q is, the faster the decay of the sequences a¡, äj
to 0 will take place, e.g., order of X/j2 if q is C2. Can we really compute
anything from these asymptotic formulae? We may clearly expect to be able to
estimate the values of A0 and Äq from a reasonable finite amount of spectral
data, with less data being necessary when q is smoother (see discussion below).
We may thus obtain approximations, say to q and H iî h and H are known.
However, to recover all four of these constants, we would need to be able to
accurately estimate higher-order coefficients in the asymptotic expansions of the
eigenvalues, and this seems unlikely unless a large number of eigenvalues are
quite accurately known.

Error in q and the boundary conditions. As we described in the previous section,
our algorithm requires an estimate of the mean value q, and for reasons de-
scribed above we really must make the assumption that the boundary conditions
are given independently of the spectral data. Now we must ask the questions:
how well can we expect to compute q, what are the penalties for a bad estimate,
and what is the effect of measurement error in the boundary coefficients?

In Figure 4 we show the values of the quantity Xj -j2n2 - ¡0 q(s) ds for j in
the range 4 < j < 30. Note the dramatic difference in the rate of convergence
of Xj - j2n2 in each of the three cases. In the function qw(x) it is possible to
make an evaluation of q correct to three or four decimal places with N about
10. For TV « 30, we may even be able to compute a reasonable value for the
next term in the asymptotic expansion. For the case of function <?(2) we can
really only expect to compute the mean to within a single decimal place. Of
course, this behavior is simply a consequence of the fact, mentioned above, that
the decay rate of the sequence {a,} in (5.1) is governed by the smoothness of
q. There are numerous ways one can attempt to compute the value q from
the data illustrated in Figure 4. Some of the more sophisticated methods can
give poorer results than the simplest, as the values for the function q{2\x)
show. Our practice of computing the mean by using only the last term, that is,
A/v - N2n2 , gave, on average, as good a result as any other method we tried. A
comparison of Figures 2 and 3(a) shows the type of error that can be expected
from choosing the value of the mean as described in the last section; almost all
the error is made at the endpoints (in this case only the left endpoint, but this
varies with the function being reconstructed and the type of spectral data).

A further example of the sensitivity of the algorithm to errors in both the
computation of the mean and the boundary condition is shown in Figure 5.

In the graph on the left in Figure 5 the dashed curve represents the recon-
struction of qm(x) from two spectra using tV = 10 and the correct value
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Figure 4
Ka/«es o/ A„ - n2n2 - /„' q, 4 < n < 30

With 10% error in the mean With 0.05 error in H

Figure 5
Reconstruction of q^2)(x) with error in the mean and boundary condition

q = 0.985 . The solid line shows the reconstruction using the value q = 1.085,
a relative error of about 10%. This represents the greatest deviation of A; -j2n2
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from q over the range 4 < j < 30. This worst case gives encouragement that a
highly accurate value of q is not essential to the reconstruction of the potential
function. However, the algorithm does produce a solution with the prescribed
value of q, so that the L2 error in q cannot be less than the error in q .

If an error is made in determining the boundary condition, what is the effect?
If we fix the left-hand boundary condition to be Dirichlet (h = oo), then for
finite H the eigenvalues {pj} satisfy

Pj = (j-\)1n2 + Ao + aj,
where {a¡} e I2 and Aq = 2H + q. From this we may expect that errors in q
and H are somewhat interchangeable in the sense that we will be computing
2H + q from A0 and will interpret an error in H as an incorrect q with the
same magnitude of error. For example, if the correct value of H is 0.05, but
we believe it to be H = 0, then the reconstructed q, using the correct q, is
shown in the right-hand graph of Figure 5, again using tV = 10. The magnitude
of the errors in the two reconstructions, which correspond to identical errors in
Ao , are comparable, although distributed somewhat differently.
Comparison with other reconstruction methods. To conclude this section, we
would like to mention a typical source of computational difficulty which is not
present in the algorithms discussed here. Consider, for example, the case when
the data are Dirichlet eigenvalues and norming constants, {Xj}, {pj}. Solution
methods based on the Gel'fand-Levitan integral equation (1.4), and also on the
approach of Sacks [21], require the computation from the spectral data of the
auxiliary function g(t) defined by

*W = J^(2n j sin jnt - (smfijt)/\/x~Pj).
i

For example, in [21], the function qx(x) = 2g(2x) is exactly the first approx-
imation to the solution q in the iterative procedure described there. In any
case, the success of the algorithm is limited by any errors present in g . Now
g is actually a series for a reasonably well-behaved function (exact smoothness
depending on the smoothness of q), but is plainly the difference of two rather
singular functions, and so convergence of the series can be quite slow. This is
especially true if the differences A; - j2n2 or the corresponding quantity for
the norming constants are not tending to zero very rapidly. Poor convergence
is also to be expected if the endpoint values are inconsistent with the terms of
the series, as happens, for example, if q (0) ^ 0.

The point then is that if the method requires a direct computation of g(t)
from the above definition, we may get a poor result because g is represented in
the "wrong" basis, and there is no apparent way of expressing g in terms of a
more suitable basis. A great advantage of the method which we have used in this
paper is the flexibility to use more appropriate basis functions. As a dramatic
example of this, we have obtained far better reconstruction of q(x) = cos27rx
with N = 2 using the method of this paper that can be obtained by the method
of [21] with TV = 20. An attempt to solve the same problem using a more direct
discretization of the Gel'fand-Levitan integral equation we expect would give
an even worse result because the function g is used in defining the function
f(x, t), and this appears both as the free term and as the kernel of the integral
equation.
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6. UNIQUENESS AND CONVERGENCE RESULTS

In this section we return to the problem of recovering q from Cauchy data
for K, and prove results about uniqueness and convergence of the successive
approximation method. As the analysis is somewhat similar to corresponding
material in Sacks [21], we will be brief.

Let us assume that the left boundary condition is Dirichlet (h = oo), and the
Cauchy data {K(X, t), KX(X, t)} has been constructed from the spectral data
in one of its forms, in the manner discussed earlier. Recall that the function q
is a fixed point of the mapping

(6.1) q^2j^u(x,x;q):=T(q),

where u(x, t;q) is defined by (2.13) and (2.14).
Theorem 1. The mapping T has at most one fixed point in L°°(0, 1).
Proof. For a fixed M > 0, define CM = {q e L2(0, X): \q(x)\ < M a.e.}. Let
Pm denote the operator of projection onto Cm , that is,

(h(x)   if\h(x)\<M,
PMh{x) = \±M   if±h(x)>M.

Suppose q and q are fixed points of T, and choose M so that \q\, \q\ < M.
Thus, q and q are also fixed points of PmT , and we are done if we show that
q^ PmT is a contraction on Cm in the weighted norm

lklli:= / q2(x)e2^x~^ dx,
Jo

for some sufficiently large A.
We clearly have

(6.2) \\PMT(q) - PMT(q)h < \\T(q) - T(q)\\x,
and using (2.16), we get

T(q)(x) - T(q)(x) = 2 [ (q(y) - q(y))u(y ,2x-y;q)dy
Jx

■fJ X
+ 2      q(y)[u(y, 2x - y ; q) - u(y, 2x - y ; q)] dy.

Jx

By introducing the Riemann function for Lu = uxx - uu + q(x)u, the second
term on the right may be rewritten in the form

(6.3) f Q(x,y)(q(y)-q(y))dy,
Jx

with a bounded kernel Q depending on q and q. We see, therefore, that

(6.4) \T(q)-T(q)\<C f\q(y)-q(y)\dy,
Jx

and so by a standard calculation it follows that

(6-5) \\T(q)-T(q)h<^j\\Q-Qh-
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Thus, by choosing A sufficiently large, we obtain the necessary contracting prop-
erty of PM T.   a

As a corollary, we have a new proof of uniqueness for all of the forms of the
inverse spectral problem mentioned in §§2 and 3.

The proof of Theorem 1 shows that PmT has at most one fixed point q,
and clearly if \q(x)\ < M, then q is also a fixed point of T. Therefore, if
the inverse spectral problem has a solution q with \q(x)\ < M, then it may
be obtained as the unique fixed point of PmT . Furthermore, the sequence
{q„} defined by qn+x = PMTq„ is guaranteed to converge to q in L2(0, 1)
for any choice of qo <E L°°(0, 1). The successive approximation procedure
described in §2 is the iteration of T rather than PMT, but these are of course
the same, provided the sequence of iterates remains bounded and M is chosen
sufficiently large. The role of the projection operator is to ensure that all of the
action takes place on a bounded set in L°°(0, 1 ). If the solution being sought is
itself bounded, then we expect that it does not hurt to truncate qn+x wherever
it gets too large. Of course, knowing when it is safe to truncate requires some
a priori knowledge of q, but a crude upper bound for \q(x)\ can always be
obtained from the spectral data (e.g., [6, 19]). We remark also, that with only a
finite number of pieces of spectral data available, we have construed the problem
in such a way that the solution we seek must always be bounded. In practice,
we have never found the extra step of truncation to be necessary.

Theorem 2. Let q eL°°(0, 1) be the solution of the inverse spectral problem and
choose M > ||#||z,°°. Pick qo e L°°(0, 1) and for « > 0 define qn+x = PMTqn .
Then qn -» q uniformly on [0, 1].
Proof. By the above remarks and the proof of Theorem 1 it follows that qn^> q
in L2(0, 1). To obtain the uniform convergence, we observe that since the
sequence {q„} is uniformly bounded, the corresponding solutions «(•,•; q„)
are uniformly bounded in Wl<°° (see [21, Lemma 4.1]). From (2.12) and
(2.16) it follows that the sequence {T(qn) - q} is an equicontinuous family,
and so the {qn - q} are equicontinuous. By the Arzelà-Ascoli theorem, the
uniform convergence follows.   D

We have been unable to prove a corresponding convergence result for the
quasi-Newton method, which was also described in §2. The principal obstacle
is that (6.4) is no longer valid when u(x, t;q) is replaced by v(x, t; q)—a
similar equation is obtained except that the integration is from 0 to 1. Thus
(2.22) is in the nature of an iterative scheme for a Fredholm integral equation,
rather than a Volterra equation. As mentioned earlier, we have never found a
significant difference between (2.16) and (2.22), and the explanation, no doubt,
is that (2.22) is a small perturbation of a Volterra update method.
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