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Abstract We present a novel reconstruction algorithm that, given an input point set

sampled from an object S, builds a one-parameter family of complexes that approx-

imate S at different scales. At a high level, our method is very similar in spirit to

Chew’s surface meshing algorithm, with one notable difference though: the restricted

Delaunay triangulation is replaced by the witness complex, which makes our algo-

rithm applicable in any metric space. To prove its correctness on curves and surfaces,

we highlight the relationship between the witness complex and the restricted Delau-

nay triangulation in 2d and in 3d. Specifically, we prove that both complexes are

equal in 2d and closely related in 3d, under some mild sampling assumptions.

Keywords Sampling · Reconstruction · Delaunay triangulation · Witness complex

1 Introduction

The problem of reconstructing a curve or a surface from scattered data points has re-

ceived a lot of attention in the past. Although it is ill-posed by nature, since infinitely

many shapes with different topological types can interpolate a given point cloud,

a number of provably good methods have been proposed. The common denomina-

tor of these methods is the assumption that the input point set is densely sampled

from a sufficiently regular shape: this assumption makes the reconstruction problem

well posed, since all sufficiently regular shapes interpolating the point set have the
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Fig. 1 Helical curve drawn on a torus (left). From a uniform sampling of the curve, our algorithm builds

a one-parameter family of complexes (right) and maintains their Betti numbers (left)

same topological type and are close to one another geometrically. It suffices then to

approximate any of these shapes to get the right answer. The notion of ε-sample, in-

troduced by Amenta and Bern [1], provides a sound mathematical framework for this

kind of approach, the corresponding set of reconstructible shapes being the class of

manifolds with positive reach [26]. A number of provably-good algorithms are based

on the ε-sampling theory—see [9] for a survey, and several extensions have been

proposed to reconstruct manifolds in higher-dimensional spaces [15] or from noisy

point cloud data [24]. The theory itself has been recently extended to a larger class

of shapes, known as the class of Lipschitz manifolds [8]. In all these methods, the

Delaunay triangulation of the input point set plays a prominent role since the final

reconstruction is extracted from it.

This approach to surface reconstruction is limited because it assumes implicitly

that a point cloud should always represent a single class of shapes. Consider the

example of a closed helical curve rolled around a torus in R
3—see Fig. 1. Take a

very dense uniform point sample of the curve: what does this point set represent,

the curve or the torus? Although both objects are well sampled according to Amenta

and Bern’s sampling theory, classical reconstruction methods always choose a sin-

gle class of shapes, here the curve or the torus, by restricting themselves either to

a certain dimension or to a certain scale: for instance, the reconstruction method of

[15] or the dimension detection algorithm of [23] will detect the curve but not the

torus, since the point set is a sparse sample of the curve but not of the torus. Now,

we claim that the result of the reconstruction should not be either the curve or the

torus, but both of them. More generally, the result of the reconstruction should be a

one-parameter family of complexes, whose elements approximate the original shape

at different scales, as illustrated in Fig. 1. This point of view, inspired from recent

results by Chazal et al. [10], stands in sharp contrast with previous work in the area
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and is echoed in the literature on nonlinear dimensionality reduction [34, 36] and

topological persistence [19, 25, 37].

This paper presents a novel reconstruction algorithm that, given an input point set

W sampled from an object S, builds a one-parameter family of complexes that ap-

proximate S at different scales. At a high level, the method is very similar to Chew’s

surface meshing algorithm [7, 17]: it constructs a subset L of W iteratively, while

maintaining a subcomplex of the Delaunay triangulation of L. The one-parameter

family of complexes obtained from this iterative process is the result of the algorithm.

The difference with Chew’s approach is that, instead of maintaining the restricted De-

launay triangulation of L, we maintain its witness complex CW(L) relative to W . The

main advantages are that the underlying object S does not have to be known, and that

the full-dimensional Delaunay triangulation D(L) does not have to be computed.

Moreover, the algorithm can be used in any metric space, ultimately enabling new

applications of the Delaunay-based reconstruction ideas.

The witness complex can be viewed as a weak version of the Delaunay triangula-

tion, well defined and computable in any metric space—see Sect. 2 below. As such,

it has played an important role in the context of topological data analysis [22]. It was

first introduced by de Silva [20], who proved that CW (L) is a subcomplex of D(L)

whenever the points of L lie in general position in a Euclidean space. Moreover, if

the set W of witnesses spans the whole ambient space, then CW (L) is equal to D(L).

Now the question is whether this property holds when the points of W are sampled

from a subspace of the ambient space, such as for instance a submanifold: in [22],

Carlsson and de Silva observed that CW (L) is then closely related to the restricted

Delaunay triangulation DS(L), and they conjectured that both objects should coin-

cide under some sampling assumptions on W and L. We prove that this conjecture

is valid for a curve in the plane but not for a surface in 3d. In the latter case, we

show how to relax the definition of the witness complex so that it contains DS(L),

and then how to extract a subcomplex that approximates DS(L) (and hence S). This

proves that our reconstruction algorithm is correct when applied to point samples of

Lipschitz curves or surfaces. We are only aware of one related result: in [4], Attali

et al. show that CW (L) and DS(L) coincide whenever the set W of witnesses spans

an entire submanifold of R
n of dimension one or two. This result differs from ours

in two ways: our set W can be finite, which makes our result more practical, yet in

return our set L has to be sparse compared to W , for CW (L) to contain DS(L). This

sparseness condition is not an issue in practice, since the set L is constructed by the

algorithm. Other noticeable differences are that our manifolds can have singularities

and that our point samples can be noisy. Our assumption on the input point set W

is fairly mild, since it amounts to saying that the Hausdorff distance between W and

S is sufficiently small. In particular, there is no sparseness condition on W , and the

amplitude of the noise can be as large as the sampling density. This noise model,

introduced in [12] and used in subsequent work on reconstruction [10, 13, 29, 30],

is less restrictive than its predecessors [16, 24, 28], and it makes our algorithm more

practical.

The paper is organized as follows. In Sect. 2, we recall several concepts that will

be used later on. In Sect. 3, we present our structural results. Specifically, we prove

that the restricted Delaunay triangulation and the witness complex are equal in 2d
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(Sect. 3.1) and closely related in 3d (Sect. 3.2), under some mild sampling assump-

tions. In Sect. 4, we introduce our reconstruction algorithm and present some experi-

mental results.

2 Background and Definitions

Let S be a subset of R
2 (resp. R

3), L a finite set of points in R
2 (resp. R

3), and ε a

positive number.

Definition 2.1

– L is an ε-noisy sample of S if no point of L is farther than ε from S.

– L is an ε-sample of S if no point of S is farther from L than ε.

– L is ε-sparse if the pairwise distances between the points of L are at least ε.

A 0-noisy sample is called a noise-free sample. When the first two conditions of

the definition apply simultaneously, for a same ε, the Hausdorff distance between L

and S is bounded by ε. We denote by D(L) the Delaunay triangulation of L.

Definition 2.2 The Delaunay triangulation of L restricted to S, or DS(L) for short,

is the subcomplex of D(L) made of the Delaunay faces whose dual Voronoi faces

intersect S.

Let W be another set of points in R
2 (resp. R

3), finite or infinite.

Definition 2.3

– Given a point w ∈ W and a simplex σ = [p0, . . . , pl] with vertices in L, w wit-

nesses σ if p0, . . . , pl belong to the l + 1 nearest neighbors of w, that is,

∀i ∈ {0, . . . , l}, ∀q ∈ L \ {p0, . . . , pl}, d(w,pi) ≤ d(w,q).

– The witness complex of L relative to W , or CW (L) for short, is the maximum

abstract simplicial complex with vertices in L, whose faces are witnessed by points

of W .

The fact that CW (L) is an abstract simplicial complex means that a simplex belongs to

the complex only if all its faces do. By the so-called Weak Witness Theorem [20], we

have CW (L) ⊆ D(L), which implies that CW (L) is an embedded simplicial complex.

In the sequel, L will be referred to as the set of landmarks, and W as the set of

witnesses.

Lipschitz curves and surfaces Boissonnat and Oudot [8] introduced a new frame-

work for the analysis of Delaunay-based sampling algorithms. This framework relies

on a quantity, called the Lipschitz radius, which plays a role equivalent to the local

feature size of Amenta and Bern [1], on a much larger class of shapes—the class of

Lipschitz curves and surfaces.
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Definition 2.4 Let S be the boundary of a bounded open subset O of R
2 (resp. R

3).

Given a point p ∈ S, the k-Lipschitz radius of S at p, or lrk(p) for short, is the maxi-

mum radius r such that O ∩B(p, r) is the intersection of B(p, r) with the hypograph

of some k-Lipschitz univariate (resp. bivariate) function. We call lrk(S) the infimum

of lrk over S.

Recall that the hypograph of a real-valued bivariate function f is the set of

points (x, y, z) ∈ R
3 such that z < f (x, y). The function f is k-Lipschitz if: ∀p,

q ∈ R
2,

|f (p)−f (q)|
‖p−q‖ ≤ k. It is proved in [8] that lrk(S) > 0 whenever S is a k-Lipschitz

curve in R
2 or surface in R

3. In such a case, one can attach to each point p ∈ S a

so-called k-Lipschitz normal nk(p) and a so-called k-Lipschitz support plane Tk(p),

which play a role similar to the usual normal vector and tangent plane in the Lipschitz

setting:

Definition 2.5 Given p ∈ S, the k-Lipschitz normal of S at p, noted nk(p), is the z

vector of an oriented orthonormal frame (x,y, z) in which O− ∩ B(p, lrk(p)) is the

intersection of B(p, lrk(p)) with the hypograph of a k-Lipschitz function f (x, y).

The k-Lipschitz support plane at p, noted Tk(p), is the plane orthogonal to nk(p)

that passes through p.

The main result of [8] is the following:

Theorem 2.6 Let S be a k-Lipschitz surface in R
3 and L ⊂ S a finite point set such

that:

H1 L is an ε-sample of S with ε < 1
7

lrk(S),

H2 the triangles of DS(L) have radius-edge ratios of at most ̺ with ̺ < cos 2θ
2 sin θ

and

θ = arctank.

Then, DS(L) is a 2-manifold isotopic to S, at Hausdorff distance at most ε from S,

and whose oriented normals approximate the k-Lipschitz normals of S within an

angle of arcsin(2̺ sin θ).

Another useful result, proved in [31], is an equivalent of Proposition 13 of [5] for

Lipschitz surfaces:

Lemma 2.7 Let S be a k-Lipschitz surface in R
3 with k < 1. Then, ∀p ∈ S, ∀r ≤

lrk(p), S ∩ B(p, r) is a topological disk.

Similar results can be proved in the planar case (we recall their proofs for com-

pleteness):

Lemma 2.8 Let S be a k-Lipschitz curve in R
2 with k < 1. Then, ∀p ∈ S, ∀r ≤

lrk(p), S ∩ B(p, r) is a topological arc. Moreover, the orthogonal projection of S ∩
B(p, r) onto Tk(p) is a segment whose vertices are the orthogonal projections of the

two endpoints of S ∩ B(p, r).
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Proof Since S is an embedded curve without boundary, S ∩ B(p, r) is a collection

of pairwise-disjoint simple arcs, whose endpoints lie on the circle ∂B(p, r). Proving

that S ∩ B(p, r) is a topological arc reduces then to showing that |S ∩ ∂B(p, r)| ≤ 2.

Since r ≤ lrk(p), S ∩ B(p, r) is the graph of some k-Lipschitz univariate function

f defined over Tk(p) with k < 1. This implies that S ∩ B(p, r) lies in the double

wedge K of apex p, of axis Tk(p), and of half-angle θ . Now, at every point of K ∩
∂B(p, r), the line tangent to ∂B(p, r) makes an angle of at least π

2
− θ with Tk(c).

Thus, for any two points u,v of ∂B(p, r) lying in the same wedge of K , the line (u, v)

makes an angle of at least π
2

− θ > θ with Tk(c). It follows that S ∩ ∂B(p, r) cannot

have more than one point per wedge of K , since otherwise the fact that S ∩ B(p, r)

coincides with the graph of f would be contradicted. As a result, S ∩ B(p, r) is a

topological arc, whose endpoints are precisely the two points u,v of S ∩ ∂B(p, r).

Since S ∩ B(p, r) coincides with the graph of f , the orthogonal projection of

S ∩ B(p, r) is one-to-one, and thus it maps the arc S ∩ B(p, r) to a segment whose

vertices are the orthogonal projections of the endpoints of S ∩ B(p, r). �

Theorem 2.9 If S is a k-Lipschitz curve in the plane with k < 1, and if L is an

ε-sample of S with ε < lrk(S), then DS(L) is a polygonal curve homeomorphic to S

and at Hausdorff distance at most ε from S.

Proof Since L is an ε-sample of S, no point of S is farther than ε from L ⊆ DS(L).

Conversely, every point of DS(L) belongs to some Delaunay edge circumscribed by

a Delaunay ball centered on S. This ball has a radius of at most ε, since L is an

ε-sample of S. Thus, no point of DS(L) is farther than ε from S. This proves that

dH(S, DS(L)) ≤ ε.

Let us now show that S and DS(L) are homeomorphic. Let [u,v] be an edge of

DS(L). Let B(c, r) be a Delaunay ball centered on S that circumscribes [u,v]. Since

L is an ε-sample of S, we have r ≤ ε < lrk(S). Therefore, S ∩B(c, r) is a topological

arc whose endpoints are u and v, by Lemma 2.8. Moreover, S intersects ∂B(c, r)

only in u and v. Thus, u and v are consecutive points of L on S.

Assume conversely that u and v are two points of L consecutive on S. Let γ be

the elementary1 arc of S that joins u and v. Let l be the bisector line of [u,v]. Since

l divides R
2 into two regions, one of which contains u while the other contains v, γ

intersects l. Let c be a point of intersection, and let r = d(c,L). If the circle ∂B(c, r)

passes through u and v, then B(c, r) is a Delaunay ball and hence [u,v] belongs

to DS(L). Otherwise, ∂B(c, r) passes through some other point t ∈ L. Since u and v

are consecutive along S, t does not belong to γ . Hence, S ∩ B(c, r) contains a piece

of γ (since c ∈ γ ) and also a piece of S \γ , and these pieces are disjoint, since B(c, r)

does not contain u nor v. As a result, S ∩ B(c, r) is disconnected, which implies that

r > lrk(S), by Lemma 2.8. Now, since L is an ε-sample of S, we have r ≤ ε < lrk(S),

which contradicts the above statement. Therefore, [u,v] belongs to DS(L).

It follows from the last two paragraphs that there is a bijection between the ele-

mentary arcs of S and the edges of DS(L). For any edge e = [u,v] of DS(L), let he

be a homeomorphism from e to the elementary arc of S joining u and v, such that

1Elementary means that γ does not contain any point of L other than u and v.
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he(u) = u and he(v) = v. Let h be the map defined by: ∀p ∈ DS(L), h(p) = he(p),

where e is any edge of DS(L) containing p. Since the edges of DS(L) have pairwise-

disjoint relative interiors, and since the he coincide at vertices (they leave the vertices

unchanged), h(p) does not depend on the choice of the edge e of DS(L) that con-

tains p. It follows that h is a well-defined and continuous function from DS(L) to S.

Moreover, since the he are bijective, and since there is a bijection between the edges

of DS(L) and the elementary arcs of S, h is bijective. In addition, the inverse of h

is continuous, since DS(L) is compact. It follows that h is a homeomorphism from

DS(L) to S. �

3 Structural Results

In this section, we highlight the relationship between the witness complex and the

restricted Delaunay triangulation in 2d and in 3d. Let S be a k-Lipschitz manifold,

i.e., either a k-Lipschitz curve in the plane (Sect. 3.1) or a k-Lipschitz surface in 3d

(Sect. 3.2), for some constant k ≥ 0. For convenience, we define θ = arctank ∈
[0,π/2[. Let W be a δ-noisy δ-sample of S and L ⊂ W an ε-sparse ε-sample of

W . The constants δ and ε will be explicited later on. Clearly, L is a (δ + ε)-sample

of S.

For the sake of simplicity, we assume for now that the points of L belong to

S, i.e., that L is a noise-free sample of S. We will see in Sect. 3.3 that this condi-

tion can actually be removed, since whenever L is a δ-noisy ε-sparse ε-sample of a

k-Lipschitz surface S, there exists some nearby and isotopic k′-Lipschitz surface S′

with k′ = O(k) and lrk′(S′) = Ω(lrk(S)) such that the points of L lie on S′ (Theo-

rem 3.16).

Our assumption that L is a sparse point set may look a bit restrictive at first sight.

However, in our application the set of landmarks will not be given as input and will

be made sparse by construction—see Sect. 4.

3.1 The Planar Case

Theorem 3.1 Assume that θ < arcsin 1
8

≈ 7.2 deg and that δ < min{ 1−8 sin θ
12

,
3 cos θ−2

4(9 cos θ+6)
}lrk(S). If ε satisfies max{ 12 sin θ

1−8 sin θ
, 6

3 cos θ−2
}δ < ε < 1

8
lrk(S) − 3

2
δ, then

CW (L) coincides with DS(L).

The lower bound on ε means that the set W of witnesses must be sufficiently

dense2 compared to the set L of landmarks, for the simplices of DS(L) to be wit-

nessed. An illustration is given in Fig. 2, which shows that CW (L) contains DS(L)

when L is sparse (left picture), whereas when L = W (ε = 0), CW (L) coincides with

the nearest neighbor graph of L, which has nothing to do with DS(L) (right picture).

The upper bound on ε ensures that the set L of landmarks is sufficiently dense, so that

the nice properties of DS(L) stated in Sect. 2 hold and that classical local arguments

can be applied to show that CW (L) is included in DS(L).

To prove the theorem, we will need the following technical result:

2In particular, we have ε > 6δ.
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Fig. 2 (Color online) A set of witnesses sampling a smooth closed curve with noise, and two different

subsets of landmarks (in green) together with their witness complexes

Lemma 3.2 Assume that θ < π
6

. Then, every Voronoi vertex lies at least min{ 1
2

lrk(S),
ε

2 sin θ
} away from L.

Proof Let c be a Voronoi vertex, and let (u, v,w) be its dual Delaunay trian-

gle. Since L ⊂ S, the points u,v,w belong to S. Let r = d(c, u). Assume for a

contradiction that r < min{ 1
2

lrk(S), ε
2 sin θ

}. Then, (u, v,w) is included in the ball

B(u,2r) ⊆ B(u, lrk(S)), and thus lines (u, v), (u,w), and (v,w) form angles of at

most θ with Tk(u). It follows that each inner angle of triangle (u, v,w) is smaller than

2θ or larger than π − 2θ . Since θ < π
6

, the larger inner angle of the triangle is at least

π − 2θ , hence the radius-edge ratio of (u, v,w) is at least 1
2 sin θ

. As a consequence,

we have r ≥ ε
2 sin θ

, since the lengths of the edges of (u, v,w) are at least ε (recall

that L is ε-sparse). This contradicts the assumption that r < min{ 1
2
lrk(S), ε

2 sin θ
} and

thereby concludes the proof of the lemma. �

We will now prove Theorem 3.1 in two steps: first, we will show that DS(L) is

included in CW (L) (Lemma 3.3), then we will show that CW (L) is included in DS(L)

(Lemma 3.4).

Lemma 3.3 Assume that θ < π
6

and that δ < min{ 1−2 sin θ
2

, 3 cos θ−2
2(3 cos θ+4)

}lrk(S). If

ε satisfies max{ 2 sin θ
1−2 sin θ

, 6
3 cos θ−2

}δ < ε < 1
2
lrk(S) − δ, then DS(L) is included in

CW (L) and has no simplex of dimension two or more.

Proof Let e = [u,v] be an edge of DS(L). By the definition of DS(L), the dual

Voronoi edge of e intersects S at some point c. Let r = d(c, u) = d(c, v) = d(c,L),

which is at most ε + δ, since L is a (δ + ε)-sample of S. Since W is a δ-sample of S,

there is some w ∈ W at distance at most δ from c. Then, u and v are both included in

B(w,ε + 2δ).

Let p be any point of L \ {u,v}. We will prove that p /∈ B(w,ε + 2δ), which

means that w witnesses e. Consider the portion of S that lies in B(c, r). Since r ≤
ε + δ < lrk(S), we know from Lemma 2.8 that S ∩ B(c, r) is a topological arc whose

endpoints are u,v and whose orthogonal projection onto Tk(c) is the line segment

[ū, v̄], where ū, v̄ are the orthogonal projections of u,v. If p does not belong to
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B(c, lrk(S)), then it does not belong to B(w,ε + 2δ) either, since B(w,ε + 2δ) ⊂
B(c, ε + 3δ), which by hypothesis is included in B(c, lrk(S)). Otherwise, since p ∈
L\{u,v}, S ∩B(c, r) contains c but not p. Therefore, p̄ (the orthogonal projection of

p onto Tk(c)) does not belong to [ū, v̄], because the projection from S ∩ B(c, lrk(S))

to Tk(c) is one-to-one. As a consequence, d(c,p) is at least d(c, p̄) ≥ d(c, {ū, v̄}) +
d(p̄, {ū, v̄}). Since L is ε-sparse, we have d(p,u) ≥ ε, d(p, v) ≥ ε, and d(c, u) =
d(c, v) ≥ d(u,v)

2
≥ ε

2
. Moreover, since S ∩ B(c, lrk(S)) is the graph of a k-Lipschitz

univariate function defined over Tk(c), we have d(p̄, ū) ≥ d(p,u) cos θ , d(p̄, v̄) ≥
d(p, v) cos θ , d(c, ū) ≥ d(c, u) cos θ , and d(c, v̄) ≥ d(c, v) cos θ . As a result,

d(c,p) ≥ d(c, p̄) ≥ d
(
c, {ū, v̄}

)
+ d

(
p̄, {ū, v̄}

)
≥ ε

2
cos θ + ε cos θ = 3

2
ε cos θ.

This expression is greater than ε + 3δ, since ε > 6δ
3 cos θ−2

, by hypothesis. It follows

that p is farther than ε + 3δ from c and hence farther than ε + 2δ from w. Thus, w

witnesses [u,v]. Similarly, every other edge of DS(L) is witnessed by some point of

W . Since L ⊆ W , the vertices of DS(L) witness themselves, hence the 1-skeleton of

DS(L) is included in CW (L).

Let us now focus on higher-dimensional simplices. Since L is a (δ + ε)-sample

of S with δ + ε < min{ 1
2

lrk(S), ε
2 sin θ

} by hypothesis, all the points of S lie within

distance min{ 1
2

lrk(S), ε
2 sin θ

} of L. Therefore, S cannot contain any Voronoi vertex,

by Lemma 3.2. This means that DS(L) has no triangle. As a consequence, DS(L)

has no simplex of dimension two or more, and therefore it is equal to its 1-skeleton,

which is included in CW (L). �

Lemma 3.4 Assume that θ < arcsin 1
8

and that δ < 1−8 sin θ
12

lrk(S). If ε satisfies
12 sin θ

1−8 sin θ
δ < ε < 1

8
lrk(S) − 3

2
δ, then CW (L) is included in DS(L) and has no simplex

of dimension two or more.

Proof Let v be a vertex of CW (L). By assumption, we have v ∈ L ⊂ S, therefore the

Voronoi cell of v intersects S, which implies that v is a vertex of DS(L). Let now

[u,v] be an edge of CW (L), and let w ∈ W be a witness of [u,v]. We assume without

loss of generality that d(w,u) ≤ d(w,v).

Claim 3.4.1 d(w,u) ≤ d(w,v) ≤ 2ε + 3δ.

Proof Let w̄ be a point of S closest to w. Since W is a δ-noisy sample of S, we

have d(w, w̄) ≤ δ. It follows that d(w̄, u) ≤ δ + ε < lrk(S). Since S ∩ B(w̄, lrk(S)) is

the graph of a k-Lipschitz univariate function defined over Tk(w̄), u belongs to the

double wedge K of apex w̄, of axis Tk(w̄), and of half-angle θ . Let Ku be the wedge

of K that contains u (if u = w̄, then take either wedge of K for Ku). Since θ < π
4

,

for any point p ∈ K \ Ku, the point of Ku closest to p is w̄. In particular, given any

r ∈]δ+ε, lrk(S)[, every point p of S ∩∂B(w̄, r)\Ku satisfies d(p,u) ≥ d(p, w̄) = r .

If v does not belong to B(w̄,2r), then d(p,L) ≥ r > δ +ε, which contradicts the fact

that L is a (δ+ε)-sample of S. Since this is true for all r ∈]δ+ε, lrk(S)[, v belongs to

the ball B(w̄,2(δ + ε)), which implies that d(w,v) ≤ 3δ + 2ε, since d(w, w̄) ≤ δ. �
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Consider the set of balls centered on the line segment [w,v] and whose bounding

spheres pass through v. Since B(w,d(w,v)) contains u, one of these balls (called B)

is such that ∂B contains both u and v. Clearly, B ⊆ B(w,d(w,v)). Since w witnesses

[u,v], the interior of B(w,d(w,v)) cannot contain any point of L other than u, thus

no point of L lies in the interior of B . Therefore, B is a Delaunay ball. Let c be

its center. It lies on the Voronoi edge e dual to [u,v]. Moreover, its distance to L

is at most d(w,v). By Claim 3.4.1, we have d(w,v) ≤ 2ε + 3δ, which, according

to the hypothesis of the lemma, is less than min{ 1
4

lrk(S), ε
4 sin θ

}. Hence, d(c,L) <

min{ 1
4

lrk(S), ε
4 sin θ

}.

Claim 3.4.2 If a Voronoi edge contains a point closer to L than min{ 1
4

lrk(S), ε
4 sin θ

},
then this edge intersects S.

Proof Let e be a Voronoi edge containing a point c closer to L than r = min{ 1
4

lrk(S),
ε

4 sin θ
}. Let [u,v] be the Delaunay edge dual to e. We have d(c, u) = d(c, v) =

d(c,L) < r . It follows that d(u, v) ≤ 2r . Since 2r < lrk(S), S ∩ B(u,2r) is the

graph of a k-Lipschitz univariate function defined over Tk(u). As a consequence,

S ∩ B(u,2r) lies outside the double wedge K(u) of apex u, of axis aligned with

nk(u), and of half-angle π
2

− θ . Moreover, by Lemma 2.8, S ∩ B(u,2r) is a topo-

logical arc whose endpoints lie on the circle ∂B(u,2r). Since c lies in B(u, r), it

can be proved that S ∩ B(u,2r) intersects any line3 included in the double wedge

K(c) of apex c, of axis aligned with nk(u), and of half-angle θ : a proof of this fact

is given in Claim 6.6.3 of [8] for the 3d case, and it holds the same in 2d. Now,

since v lies outside K(u), the angle between nk(u) and the line l supporting e is at

most θ , which means that l is included in K(c) and thus intersects S inside B(u,2r).

Finally, we assumed that e intersects B(u,2r), while Lemma 3.2 states that the ver-

tices of e lie outside of B(u,2r). Hence, l ∩ B(u,2r) = e ∩ B(u,2r), and therefore e

intersects S. �

It follows from this claim that e intersects S. Therefore, [u,v] is an edge of DS(L).

As a result, the 1-skeleton of CW (L) is included in DS(L). Let us now show that

CW (L) has no simplex of dimension two or more. Recall that a simplex σ belongs

to CW (L) only if all its faces belong to CW (L). Therefore, it suffices to prove that

CW (L) has no triangle.

Claim 3.4.3 For any triangle t of D(L), at least one edge of t does not belong

to DS(L).

Proof Let (u, v,w) be a triangle of D(L). Assume for a contradiction that edges

[u,v], [v,w], and [u,w] belong to DS(L). Since L is a (δ + ε)-sample of S, the three

edges are circumscribed by Delaunay balls of radius at most δ + ε. It follows that the

triangle (u, v,w) is included in B(v,2(δ+ε)). Let c be the circumcenter of this trian-

gle. Since c is a Voronoi vertex, Lemma 3.2 states that d(c,L) ≥ min{ 1
2

lrk(S), ε
2 sin θ

},

3Any such line must pass through c.
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Fig. 3 Order-two Voronoi diagrams of two sets of points in the plane

which by assumption is greater than 2(ε + δ). Therefore, c does not belong to

B(v,2(ε + δ)), and hence it does not belong to triangle (u, v,w) either. This means

that c is not a local maximum of the distance to L. As a consequence, there is a

Voronoi edge e incident to c such that d(x,L) increases as point x moves away from

c along e. Since the local maxima of the distance to L are Voronoi vertices, d(x,L)

keeps increasing until x reaches the other vertex of e. Thus, every point of e is at least

d(c,L) away from L with d(c,L) > 2(δ + ε). This implies that e cannot intersect S,

because otherwise some point of e would be at most δ + ε away from L (recall that

L is a (δ + ε)-sample of S). Now, the Delaunay edge dual to e is an edge of (u, v,w).

Therefore, at least one edge of (u, v,w) does not belong to DS(L), which contradicts

our assumption. �

Since CW (L) is included in D(L), and since its edges belong to DS(L), any tri-

angle of CW (L) is a Delaunay triangle whose edges belong to DS(L). Hence, by

Claim 3.4.3, CW (L) has no triangle, which concludes the proof of the lemma. �

3.2 The 3d Case

Unlike in the planar case, the witness complex and the restricted Delaunay triangu-

lation of points sampled from a surface in 3d may not always coincide, even in situ-

ations where the sets of witnesses and landmarks satisfy strong sampling conditions.

The reason is that, when a tetrahedron t of D(L) has almost cocircular vertices, the

chance for any of the diagonal edges of t to be witnessed by a point of W is small—

such a tetrahedron is called a sliver in the literature [35]. In order to give an intuition

of this fact, let us assume for simplicity that the surface is flat and that the vertices

of t are cocircular, as in Fig. 3 (left). The order-two Voronoi diagram of the vertices

is then degenerate, the Voronoi cells of the diagonal edges being reduced to a single

point p that lies at the intersection of the edges of the diagram. Therefore, any di-

agonal edge can be witnessed only by p, which means that the probability for any

triangle of the quadrangle to be witnessed when W is finite is zero. As a result, holes

appear with probability one in the witness complex, as illustrated in Fig. 4 (left).
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Fig. 4 Witness complex, ν-witness complex, and extracted manifold

When the vertices of tetrahedron t are almost-cocircular, as in Fig. 3 (right), the

order-two Voronoi cell of one diagonal edge is empty, while the cell of the other diag-

onal edge is arbitrarily small. Thus, the probability for any triangle of the quadrangle

to be witnessed when W is finite is also arbitrarily small. Although it is always possi-

ble to perturbate the point set L so that the points are in general position, guaranteeing

that the order-two Voronoi cells of the edges of DS(L) are sufficiently large requires

large perturbations, which are not tractable in practice, since the underlying surface

S is unknown.

3.2.1 The ν-witness Complex

Our approach for dealing with the above issue consists in relaxing the definition of

the witness complex, so that the latter includes the restricted Delaunay triangulation.

This requires to modify the concept of witness:

Definition 3.5 Given an integer m, a point w ∈ W , and a simplex σ = [p0, . . . , pl]
with vertices in L, w m-witnesses σ if all the d(w,pi) are among the m smallest

values of the set {d(w,q), q ∈ L}.

Observe that, in the case where m ≤ l, some vertices of σ must be equidistant to

w for w to m-witness σ . In particular, if m = 1, then all the points of σ must be

equidistant to w, which means that w is a strong witness of σ , or equivalently, that σ

is a Delaunay simplex. If m = 0, then no point w ∈ W can m-witness σ . In [22], the

authors use m-witnesses only for edges. More generally, we use them for simplices

of all dimensions:

Definition 3.6 Given a countable sequence ν of integers, the ν-witness complex of L,

or CW
ν (L) for short, is the maximum abstract simplicial complex with vertices in L

such that each i-face is νi -witnessed by some point of W .

Since the simplices of CW
ν (L) have their vertices in L, their dimension is at most

|L| − 1. Hence, in the sequence of integers, only ν0 through ν|L|−1 are used. There

is a strong relationship between CW (L) and CW
ν (L): if νi ≥ i + 1 ∀i, then CW

ν (L)

contains CW (L); in contrast, if νi ≤ i + 1 ∀i, then CW
ν (L) is included in CW (L);
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thus, CW (L) = CW
ν (L) whenever νi = i + 1 ∀i. In addition, if νi = 0 for some i, then

the i-skeleton of CW
ν (L) is empty, since a simplex cannot be 0-witnessed, and the

dimension of CW
ν (L) is then at most i − 1.

Theorem 3.7 Assume that θ < arccos(2 sin π
7
) ≈ 29.7 deg and that δ <

cos θ−2 sin π
7

3 cos θ+2 sin π
7

·

lrk(S). If ε satisfies
8 sin π

7

cos θ−2 sin π
7
δ < ε < lrk(S) − 3δ, then, for any sequence ν of inte-

gers such that ν0 ≥ 1, ν1 ≥ 6, and ν2 ≥ 6, DS(L) is included in CW
ν (L).

Proof Since the vertices of DS(L) belong to L, which is included in W , they witness

themselves and thus belong to CW
ν (L). In addition, DS(L) contains no tetrahedron

generically.

Let σ be a simplex (edge or triangle) of DS(L), and let B(c, r) be a Delaunay

ball centered on S and circumscribing σ . Since W is a δ-sample of S, there is a point

w ∈ W at distance at most δ from c. Then, σ lies in the ball B(w, r + δ), which is

included in B(c, r + 2δ).

Claim 3.7.1 The ball B(c, r + 2δ) contains at most six points of L.

Proof Since L is a (δ + ε)-sample of S, the radius r of the surface Delaunay ball

is at most δ + ε. Therefore, r + 2δ ≤ ε + 3δ, which is less than lrk(S) according

to the hypothesis of Theorem 3.7. It follows that S ∩ B(c, r + 2δ) is the graph of a

k-Lipschitz bivariate function defined over the plane Tk(c).

Let p1, . . . , pl be the points of L ∩ B(c, r + 2δ). We call p̄1, . . . , p̄l their orthog-

onal projections onto Tk(c). Since L is ε-sparse, the pi are at least ε away from one

another. And since they belong to S∩B(c, lrk(S)), which is the graph of a k-Lipschitz

bivariate function defined over the plane Tk(c), their projections p̄i are at least ε cos θ

away from one another. Moreover, since B(c, r) is a Delaunay ball, the pi are at least

r away from c, hence the p̄i are at least r cos θ away from c.

The rest of the proof depends on whether r ≥ ε or r < ε. In fact, the overall ideas

are the same, but some technical details differ.

• If r ≥ ε, then, inside Tk(c), c and the p̄i are centers of pairwise-disjoint open disks

of radius ε
2

cos θ . Let Dc,D1, . . . ,Dl denote these disks. Since the pi belong to

B(c, r + 2δ), the p̄i belong to the disk D(c, r + 2δ). Therefore, Dc,D1, . . . ,Dl

form a congruent packing of the disk D(c, r + 2δ + ε
2

cos θ). Now, according to

the hypotheses of the theorem, we have:

r + 2δ + ε

2
cos θ ≤ ε + 3δ + ε

2
cos θ <

ε

2
cos θ

(
1

sin π
7

+ 1

)
.

Hence, by a classical result on congruent packings of disks [27, 33], there are at

most seven disks of radius ε
2

cos θ packed in D(c, r + 2δ + ε
2

cos θ). The fact that

Dc is one of them implies that l ≤ 6, which proves the claim in the case where

r ≥ ε.

• If r < ε, then c and the p̄i are centers of pairwise-disjoint open disks of radius
r
2

cos θ . Let Dc,D1, . . . ,Dl denote these disks. Since the pi belong to B(c, r +2δ),
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Dc,D1, . . . ,Dl are included in D(c, r + 2δ + r
2

cos θ). Now, B(c, r) is a Delaunay

ball, hence its bounding sphere contains at least two points of L, which implies that

r ≥ ε
2

. Moreover, the hypotheses of the theorem state that δ < ε
4
( cos θ

2 sin π
7

−1), which

is at most r
2
( cos θ

2 sin π
7

− 1). Therefore, Dc,D1, . . . ,Dl form a congruent packing of a

disk of radius

r + 2δ + r

2
cos θ < r + r

(
cos θ

2 sin π
7

− 1

)
+ r

2
cos θ = r

2
cos θ

(
1

sin π
7

+ 1

)
.

It follows, by the same result as above on congruent packings of disks, that l ≤ 6,

which proves the claim in the case where r < ε. �

The claim implies that the vertices of σ are among the six nearest neighbors of w.

Since this is true for any edge or triangle of DS(L), and since the vertices of DS(L)

belong to CW
ν (L), CW

ν (L) contains all the edges and triangles of DS(L). This ends

the proof of the theorem. �

The next theorem guarantees that the simplices of CW
ν (L) are not too large as far

as the νi remain bounded. It follows that the size of CW
ν (L) is linear in |L|, since

L is sparse. This property can be generalized to higher dimensions, at the price of

an exponential growth of the constant factor. This motivates the use of the witness

complex instead of the Delaunay triangulation.

Theorem 3.8 Assume that δ, ε satisfy δ+ε < cos θ√
6

lrk(S). Then, for any point w ∈ W ,

the distance between w and its sixth nearest neighbor among the points of L is at

most δ + (
√

6
cos θ

+ 1)(δ + ε). As a consequence, for any sequence ν of integers such

that ν1 ≤ 6, the total number of simplices of CW
ν (L) is at most 2O(( δ+ε

ε cos θ
)3)|L|, which

is linear with respect to |L| as far as θ is fixed and δ is within a constant factor of ε.

Proof Let w ∈ W , and let w̄ be a point of S closest to w. Since W is a δ-noisy sample

of S, we have d(w, w̄) ≤ δ. We call p1, . . . , pl the points of L that lie in B(w̄, (
√

6
cos θ

+
1)(δ + ε)), and p̄1, . . . , p̄l their orthogonal projections onto the plane Tk(w̄). We will

prove that l ≥ 6.

Since L is a (δ + ε)-sample of S, the balls Bi = B(pi, δ + ε) cover S ∩
B(w̄,

(δ+ε)
√

6
cos θ

) (observe that, among the balls of radius δ + ε centered at the points

of L, only the Bi intersect B(w̄,
(δ+ε)

√
6

cos θ
)). It follows that, inside Tk(w̄), the disks

Di = D(p̄i, δ + ε) cover the orthogonal projection of S ∩ B(w̄,
(δ+ε)

√
6

cos θ
). Now,

according to the hypothesis of the lemma, we have (δ+ε)
√

6
cos θ

< lrk(S). Thus, by

Lemma 2.7, S ∩ B(w̄,
(δ+ε)

√
6

cos θ
) is a topological disk whose orthogonal projection

onto Tk(w̄) contains the projection D of the intersection of B(w̄,
(δ+ε)

√
6

cos θ
) with the

cone of apex w̄, of axis aligned with nk(w̄), and of half-angle π
2

− θ . Therefore, the

Di cover D, which is a disk of center w̄ and radius (δ + ε)
√

6. Thus, the number of



Discrete Comput Geom (2008) 40: 325–356 339

disks Di is at least

Area(D)

Area(Di)
= 6π(δ + ε)2

π(δ + ε)2
= 6.

It follows that the number of points of L that lie in B(w̄, (
√

6
cos θ

+ 1)(δ + ε)) is at

least 6. As a result, the distance from w to its sixth nearest landmark is at most

d(w, w̄) + (
√

6
cos θ

+ 1)(δ + ε) ≤ δ + (
√

6
cos θ

+ 1)(δ + ε).

Let us now bound the size of CW
ν (L). Let p be a point of L. From the above

paragraph we deduce that the edges of CW
ν (L) incident to p are included in balls of

radii at most δ + (
√

6
cos θ

+ 1)(δ + ε). Hence, all edges belong to a common ball of

center p and radius r ≤ 2δ + 2(
√

6
cos θ

+ 1)(δ + ε), which is equal to 2ε(1 +
√

6
cos θ

+
(

√
6

cos θ
+2) δ

ε
). The neighboring vertices q1, . . . , ql of p in CW

ν (L) belong to B(p, r) as

well. Now, since the points of L are farther than ε from one another, the qi are centers

of pairwise-disjoint balls of radius ε
2

, hence their number l is at most
Vol (B(p,r))

Vol (B(p, ε
2 ))

≤

64(1 +
√

6
cos θ

+ (
√

6
cos θ

+ 2) δ
ε
)3 = O( 1

cos3 θ
(1 + δ

ε
)3). Since every simplex of CW

ν (L)

incident to p is uniquely defined as a subset of {q1, . . . , ql}, the number of simplices

of CW
ν (L) incident to p is at most 2l , which gives the result. �

3.2.2 Manifold Extraction

It follows from Theorem 3.7 that CW
ν (L) contains DS(L), but Fig. 4 (center)4 shows

that CW
ν (L) is not restricted to DS(L) and contains additional simplices that are small

enough to be ν-witnessed. Nevertheless, it is possible to extract from CW
ν (L) a sim-

plicial surface Ŝ isotopic to S and at Hausdorff distance O(ε+δ) of S. The extraction

procedure takes a number ̺ as parameter and proceeds as follows:

1. Since the goal is to extract a 2-manifold, only the 2-skeleton of CW
ν (L) is consid-

ered. Since it may not be an embedded complex, we intersect it with D(L). The

result is a pure 2-dimensional subcomplex C of D(L).

2. To guarantee that the output simplicial surface has no skinny triangle, we delete

from C all the triangles whose radius-edge ratios are greater than ̺.

3. We greedily remove from C all the triangles incident to sharp edges. An edge is

sharp if all its incident triangles in C lie in a small wedge of angle at most π
2

. This

definition applies in particular to edges that are incident to one single triangle.

4. By a depth-first walk in the dual graph of the remaining part of C , we extract the

outer boundary of C .

Observe that steps 3 and 4 correspond to the manifold extraction procedure

of [1–3]. As argued in these papers, the outcome is a simplicial complex Ŝ whose

dihedral angles are greater than π
2

. Moreover, thanks to step 2, the radius-edge ratios

of the facets of Ŝ are at most ̺. However, two issues arise: first, by greedily remov-

ing non-Delaunay triangles or triangles with sharp edges or large radius-edge ratios

4Thanks to a bug in Geomview, we can see some hidden triangles in the vicinity of slivers, such as in green

areas.
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from CW
ν (L), steps 1 through 3 might end up with an empty complex C . As a result,

Ŝ may be empty. Second, the outer boundary of C might not be an embedded sur-

face, since it may contain multiple vertices or edges. By proceeding with a depth-first

search on the dual graph of C , step 4 duplicates multiple vertices and edges, so that

the resulting complex Ŝ is a simplicial surface whose immersion in R
3 coincides with

the outer boundary of C .

Theorem 3.9 Let ̺ = 1+ 1−2 sin π
7

8 sin π
7

≈ 1.038. Assume that θ < arctan
√

3
1+4̺

≈ 18.6 deg

and that δ <
cos4 θ(cos θ−2 sin π

7 )

(2 cos2 θ+
√

6 cos θ+4 cos θ sin π
7 −2

√
6 sin π

7 )(cos θ+
√

6)(4+3 cos2 θ)̺
√

3
lrk(S). If ε

satisfies
8 sin π

7

cos θ−2 sin π
7
δ < ε < cos3 θ

(cos θ+
√

6)(4+3 cos2 θ)̺
√

3
lrk(S)− 2 cos θ+

√
6

cos θ
δ, then, for any

sequence ν of integers such that ν0 ≥ 1 and ν1 = ν2 = 6, the simplicial complex Ŝ

extracted from CW
ν (L) with parameter ̺ is an embedded surface isotopic to S and at

Hausdorff distance at most (δ + (
√

6
cos θ

+ 1)(δ + ε))
̺
√

3

cos2 θ
from S.

The proof of the theorem follows roughly the same scheme as in [8] and it uses

material that comes mainly from that paper. Here is a short overview:

– First, we show that the triangles of DS(L) are not skinny and make large dihedral

angles. This fact, combined with Theorem 3.7, implies that complex C contains

DS(L) after step 3 above. We deduce that Ŝ is not empty, since DS(L) is a manifold

without boundary, by Theorem 2.6.

– Second, we use Theorem 3.3(ii) of [8] to show that Ŝ is a Lipschitz surface, which

implies in particular that it is an embedded surface.

– Third, we use Proposition 6.4 of [8] to bound the Hausdorff distance dH(Ŝ, S)

between Ŝ and S. We show that dH(Ŝ, S) is small compared to the Lipschitz radii

of Ŝ and S.

– Finally, we apply Theorem 6.2 of [11] to show that Ŝ and S are isotopic.

The rest of Sect. 3.2 is devoted to the details of the proof of Theorem 3.9 and it

can therefore be skipped in a first reading. The following results from [8] will be

useful:

Lemma 3.10 (Triangle Normal) Let S be a k-Lipschitz surface, and θ = arctank.

For any p ∈ S and for any triangle f = (u, v,w) such that u,v,w ∈ S ∩B(p, lrk(S))

and that the radius-edge ratio of f is at most ̺, the angle between nk(p) and the line

orthogonal to the plane aff(u, v,w) is at most arcsin(2̺ sin θ).

Lemma 3.11 (Normal Variation) Let S be a k-Lipschitz surface, and θ = arctank.

∀p,q ∈ S s.t. d(p, q) < lrk(p), (nk(p),nk(q)) ≤ 2θ .

Moreover, the hypotheses of Theorem 3.9 imply that the following conditions are

satisfied:

C1 δ <
cos θ−2 sin π

7

8 sin π
7

ε.
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C2 δ + (
√

6
cos θ

+ 1)(δ + ε) < cos2 θ

(4+3 cos2 θ)̺
√

3
lrk(S).

Ŝ is not Empty

Lemma 3.12 DS(L) is a 2-manifold with obtuse dihedral angles, isotopic to S, at

Hausdorff distance δ + ε from S, and whose triangles have radius-edge ratios of at

most ̺.

Proof Recall that L is a (δ + ε)-sample of S with δ + ε < 1
7

lrk(S), by C2. Therefore,

hypothesis H1 of Theorem 2.6 is satisfied with ε replaced by δ + ε. Let now f be a

triangle of DS(L), and let B(c, r) be a surface Delaunay ball that circumscribes f .

Since L is a (δ + ε)-sample of S, we have r ≤ δ + ε, which implies that the cir-

cumradius of f is bounded by δ + ε. Moreover, since L is ε-sparse, the length of

the shortest edge of f is at least ε. Therefore, the radius-edge ratio of f is at most

1 + δ
ε
, which by C1 is less than 1 + cos θ−2 sin π

7

8 sin π
7

≤ ̺. This property holds for every

triangle f of DS(L). Since in addition we assumed that θ < arctan
√

3
1+4̺

, we have

2̺ sin θ < cos(θ + π
6
) < cos(2θ), and thus hypothesis H2 of Theorem 2.6 is satis-

fied as well. It follows then from Theorem 2.6 that DS(L) is a 2-manifold isotopic

to S and at Hausdorff distance δ + ε of S. Moreover, the oriented normals of DS(L)

approximate the k-Lipschitz normals of S within an angle of arcsin(2̺ sin θ). This

means that, for any triangles f1 and f2 of DS(L) that share an edge, for any common

vertex v, the normals n(f1) and n(f2) make angles of at most arcsin(2̺ sin θ) with

the k-Lipschitz normal nk(v). Since θ < arctan
√

3
1+4̺

, arcsin(2̺ sin θ) is less than π
4

,

hence the dihedral angle between f1 and f2 is greater than π
2

. �

Let us now prove that the closed 2-manifold DS(L) is included in complex C

upon termination of step 3 of the extraction process. This will imply that Ŝ is not

empty, since it coincides with the outer boundary of C , which encloses DS(L). Ac-

cording to Theorem 3.7, DS(L) is included in CW
ν (L) initially. By definition, DS(L)

is a subcomplex of D(L), and by Lemma 3.12 it is a 2-manifold (and thus a pure

2-dimensional complex). Thus, DS(L) is included in C upon termination of step 1

of the extraction process. Still by Lemma 3.12, the radius-edge ratios of the triangles

of DS(L) are at most ̺, and DS(L) has obtuse dihedral angles. As a consequence,

DS(L) remains in C throughout steps 2 and 3.

Ŝ is a Lipschitz Surface

As argued in Sect. 3.2.2, the subcomplex Ŝ extracted from CW
ν (L) is a combinatorial

surface, but its immersion in R
3 may not be an embedding. However, it coincides

with the outer boundary of complex C , thus, by moving the vertices of Ŝ slightly

in R
3, one can easily turn the immersion into an embedding. Therefore, up to an

infinitesimal perturbation of the vertices of Ŝ, we consider from now on that Ŝ is an

embedded surface. This is needed for the sake of our proofs, but we will see after

Lemma 3.15 that actually no perturbation is needed to embed Ŝ.
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C2 and Theorem 3.8 imply that any triangle f of CW
ν (L) is included in a ball of

radius δ + (
√

6
cos θ

+ 1)(δ + ε). Since the radius-edge ratio of f is at most ̺, a quick

computation shows that the circumradius of f is at most (δ + (
√

6
cos θ

+1)(δ + ε))̺
√

3,

which by C2 is less than cos2 θ
4+3 cos2 θ

lrk(S) < 1
7
lrk(S).

Orientation Convention 3.13 We orient every triangle f of Ŝ such that n(f ) ·
nk(v) ≥ 0 for each vertex v of f .

The existence of such an orientation follows from C2 and Lemmas 3.10 and 3.11.

We will now prove that this convention induces a valid orientation of Ŝ.

Lemma 3.14 The Orientation Convention 3.13 induces a valid orientation of Ŝ.

Proof It suffices to prove that the orientation of the triangles of Ŝ is consistent across

the edges of Ŝ, i.e., that the orientations of any two adjacent triangles of Ŝ induce

opposite orientations of their common edge. Let f and f ′ be two triangles of Ŝ with

a common edge e. Let v be a vertex of e. We call fv and f ′
v the respective orthogonal

projections of f and f ′ onto the plane Tk(v). Inside Tk(v), we endow triangles fv

and f ′
v with the same orientations as f and f ′ respectively. The Orientation Conven-

tion 3.13 states that n(f ) · nk(v) and n(f ′) · nk(v) are both positive, hence so are

n(fv) · nk(v) and n(f ′
v) · nk(v). Now, by the triangle normal Lemma 3.10, the planes

aff(f ) and aff(f ′) make angles of at most arcsin(2̺ sin θ) < π
4

with Tk(v). Since

the dihedral angle between f and f ′ is at least π
2

, fv and f ′
v lie on either sides of

the projection of e onto Tk(v). It follows that the orientations of fv and f ′
v induce

opposite orientations of their common edge. Similarly, the orientations of f and f ′

induce opposite orientations of e. Since this is true for any two triangles of Ŝ with a

common edge, Ŝ is consistently oriented by the orientation convention. �

Lemma 3.15 Ŝ is a k′-Lipschitz surface with lrk′(Ŝ) ≥ lrk(S)−3̺
√

3(δ + (
√

6
cos θ

+1)

× (δ + ε)).

Proof Let d = (δ + (
√

6
cos θ

+ 1)(δ + ε))̺
√

3. For any point p ∈ Ŝ and any triangle f

of Ŝ intersecting B(p, lrk(S) − 3d), the circumradius of f is at most d , hence f is

included in B(p, lrk(S) − d). Let fp be a triangle of Ŝ containing p, and let v be a

vertex of fp closest to p. We have d(p, v) ≤ d , hence f is included in B(v, lrk(S)).

Since the radius-edge ratio of f is at most ̺, the triangle normal Lemma 3.10 states

that (n(f ),nk(v)) ≤ arcsin(2̺ sin θ). Since this is true for any point p ∈ Ŝ and any

triangle f ∈ Ŝ intersecting B(p, lrk(S) − 3d), Theorem 3.3(ii) of [8] states that Ŝ is

a k′-Lipschitz surface with k′ = tan(arcsin(2̺ sin θ)) and lrk′(Ŝ) ≥ lrk(S) − 3d . �

The fact that Ŝ is a Lipschitz surface implies that any infinitesimal perturbation of

its vertices yields another Lipschitz (and thus embedded) surface. As a consequence,

no perturbation of the vertices of Ŝ is in fact needed to embed Ŝ.
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Hausdorff Distance dH(Ŝ, S)

Let d = (δ + (
√

6
cos θ

+ 1)(δ + ε))̺
√

3. To apply Proposition 6.4 of [8] and bound

dH(S, Ŝ), we need to check that the following conditions are satisfied:

– The vertices of Ŝ lie on S: this is true, since Ŝ is a subcomplex of CW
ν (L) and since

L ⊂ S, by assumption.

– The circumradii of the triangles of Ŝ are at most d with d < 1
7

lrk(S): this is ensured

by C2 and Theorem 3.8.

– For any triangle f of Ŝ and any vertex v of f , the angle between n(f ) and nk(v)

is less than π
3

− θ : this is ensured by the triangle normal Lemma 3.10 and by the

fact that θ < arctan
√

3
1+4̺

.

– Ŝ has vertices on all the connected components of S: this is true because Ŝ encloses

complex C , which contains the closed surface DS(L) that has vertices on all the

connected components of S (by Lemma 3.12), and because the triangles of C are

too small to connect distinct connected components of S.

It follows then from Proposition 6.4 of [8] that

dH(S, Ŝ) ≤ d

cos2 θ
=

(
δ +

( √
6

cos θ
+ 1

)
(δ + ε)

)
̺
√

3

cos2 θ
. (1)

Ŝ is isotopic to S

By (1), we have dH(Ŝ, S) ≤ d
cos2 θ

, where d = (δ + (
√

6
cos θ

+ 1)(δ + ε))̺
√

3. By

C2, this quantity is less than 1
4
(lrk(S) − 3d), which, by Lemma 3.15, is at most

1
4

min{lrk(S), lrk′(Ŝ)}. As a consequence, dH(Ŝ, S) is less than half the so-called

weak feature sizes of R
3 \ Ŝ and of R

3 \ S, by Theorem 3.8 of [8]. This implies

that Ŝ and S are isotopic, by Theorem 6.2 of [11].

3.3 Dealing with Noisy Data

Our previous results hold as far as the set L of landmarks lies on the surface S. This

property can be ensured by assuming that the set W of witnesses, which contains L,

is noise-free. However, Theorem 3.16 below shows that the property can still be en-

sured when W , L are noisy samples of S. In the sequel, λ0 ≈ 0.078 denotes the

smallest positive root of the polynomial 64λ6 + 832λ5 + 1008λ4 − 160λ3 − 4λ2 −
12λ + 1. Moreover, given any θ ∈ [0, π

2
], λ(θ) denotes the smallest positive root of

16(4 sin2 θ −1)λ6 +32λ5 −12(2+3 sin2 θ)λ4 +8λ3 + (4 sin2 θ +63)λ2 +64λ−16.

Theorem 3.16 Let S be a k-Lipschitz surface and L a δ-noisy ε-sparse (δ + ε)-

sample of S. Assume that δ, ε satisfy the following conditions, where θ = arctank:

N1 δ < min{ 1
4
,

√
2−4 sin θ

2(
√

2+4 sin θ)
,

cos(2θ)−2 sin θ
2(cos(2θ)+2 sin θ)

, λ0, λ(θ)}ε.

N2 δ < min{ 1
14

lrk(S) − 1
2
ε, 1

6
lrk(S) − 7

12
ε}.
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Then, there exists a k′-Lipschitz surface S′, passing through the points of L, isotopic

to S, and at Hausdorff distance of S at most ε + 3δ, such that:

⎧
⎪⎨
⎪⎩

k′ = tan
(
arcsin

( 4((1+2 sin θ) δ
ε
+sin θ)

2 sin(arcsin
1−2 δ

ε

2(1+2 δ
ε )

−2 arcsin
2 δ

ε

1−2 δ
ε

)

))
= O(k + δ

ε
),

lrk′(S′) ≥ lrk(S) − (2ε + 7δ) > 1
2

lrk(S).

If the set W of witnesses is a δ-noisy δ-sample of a k-Lipschitz surface S for some

sufficiently small δ (as compared to lrk(S)), then Theorem 3.16 ensures that there

exists an interval of values of ε such that any ε-sparse ε-sample L of W lies on a

k′-Lipschitz surface S′ with k′ = O(k + δ
ε
) and lrk(S

′) = Ω(lrk(S)). Theorem 3.9

can then be applied to S′, W , L, provided that k, ε, and δ
ε

are small enough to meet

its hypothesis. Then, because S′ is isotopic to S and close to it for the Hausdorff

distance, the conclusion of Theorem 3.9 holds for S, W , L as well, with a slightly

worse bound on the Hausdorff distance. There also exists a version of Theorem 3.16

for Lipschitz curves, which can be combined with the structural results of Sect. 3.1.

The proof is roughly the same.

The rest of Sect. 3.3 is devoted to the proof of Theorem 3.16, which builds an

isotopy φ : [0,1] × S → R
3 such that S′ = φ(1, S) is a k′-Lipschitz surface passing

through the points of L with k′ = O(k + δ
ε
) and lrk′(S′) = Ω(lrk(S)). Intuitively,

since the points of L lie ε away from one another, with ε large compared to the

amplitude δ of the noise, the surface S can be snapped onto the points of L without

changing its normals too much. This can be easily seen on simple examples, such

as for instance when S is the x-axis in R
2 (in this case, the snapped curve is the

polygonal chain connecting the points of L in the order of their abscissae).

To build the isotopy φ, we first map the points of L to their nearest neighbors on S.

If some point p ∈ L has two or more nearest neighbors on S, then we choose either

of them. We get a new point set L̃ ⊂ S, together with a surjective map μ : L → L̃.

The restricted Delaunay triangulation of L̃, DS(L̃), will play a prominent role in our

construction.

Lemma 3.17 Under the hypotheses of Theorem 3.16, for any distinct points p,q of

L, d(μ(p),μ(q)) ≥ ε − 2δ > 0.

Proof Since L is δ-noisy, we have d(p,μ(p)) = d(p,S) ≤ δ and d(q,μ(q)) =
d(q, S) ≤ δ. Moreover, since L is ε-sparse, we have d(p, q) ≥ ε. It follows by the

triangle inequality that d(μ(p),μ(q)) ≥ ε − 2δ, which is positive, by N1. �

It follows from this lemma that μ is one-to-one and hence bijective. Therefore, we

can define a function φ̃ : [0,1] × L̃ → R
3 as follows:

∀t ∈ [0,1], ∀p ∈ L̃, φ̃(t,p) = (1 − t)p + tμ−1(p).

We can then extend φ̃ to [0,1] × DS(L̃) by linearity:

∀t ∈ [0,1], ∀p ∈ D
S(L̃), φ̃(t,p) = λuφ̃(t, u) + λvφ̃(t, v) + λwφ̃(t,w),
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where λu, λv, λw are the barycentric coordinates of p in any triangle (u, v,w) of

DS(L̃) containing p. If p belongs to several triangles, then φ̃(t,p) does not depend

on the choice of the triangle, since DS(L̃) is an embedded simplicial complex. More-

over, φ̃ is a continuous function in variables (t,p).

Since L is a δ-noisy (ε + δ)-sample of S, L̃ is a noise-free (ε + 2δ)-sample of S

with ε + 2δ < 1
7

lrk(S), by N2. Therefore, hypothesis H1 of Theorem 2.6 is satisfied.

Moreover, by Lemma 3.17, L̃ is (ε − 2δ)-sparse, hence the radius-edge ratios of the

triangles of DS(L̃) are at most ˜̺ = ε+2δ
ε−2δ

, which by N1 is less than cos(2θ)
2 sin θ

. It fol-

lows that hypothesis H2 is also satisfied, which implies that DS(L̃) is isotopic to S,

by Theorem 2.6. This means that there is an isotopy I : [0,1] × S → R
3 such that

I (1, S) = DS(L̃). We define φ by applying I and φ̃ successively, at double speed:

{
∀t ∈ [0, 1

2
], ∀p ∈ S, φ(t,p) = I (2t, p),

∀t ∈ [ 1
2
,1], ∀p ∈ S, φ(t,p) = φ̃(2t − 1, I (1,p)).

This is the standard way of composing isotopies. In particular, φ is well defined, since

I (1,p) ∈ DS(L̃) for all p ∈ S. To prove that φ is an isotopy, it suffices to show that

φ̃ itself is an isotopy, which boils down to showing that φ̃(t, .) is one-to-one as a

function of p for all t ∈ [0,1], since we already know that φ̃ is continuous and since

DS(L̃) is compact. We will use an intermediate result:

Lemma 3.18 Under the hypotheses of Theorem 3.16, the following assertions hold:

(i) For any two vertices u,v of DS(L̃), d(u, v) ≥ ε − 2δ.

(ii) For any vertex v and any non-incident simplex (edge or triangle) σ of DS(L̃),

the distance between v and σ is at least ε
(1−2 δ

ε
)2

2(1+2 δ
ε
)
.

(iii) For any two disjoint edges e, e′ of DS(L̃), the distance between e and e′ is

bounded from below by ε
(1−2 δ

ε
)2

2(1+2 δ
ε
)

√
1 − 4

(1+2 δ
ε
)2

(1−2 δ
ε
)2

sin2 θ .

Proof (i) is a direct consequence of the fact that L̃ is (ε − 2δ)-sparse.

Concerning (ii), it is proved in [8, Lemma 5.8] that, since assumptions H1–H2 of

Theorem 2.6 are satisfied, DS(L̃) is a k̃-Lipschitz surface with k̃ =
tan(arcsin(2 ˜̺ sin θ)) and lrk̃(DS(L̃)) ≥ lrk(S) − 3(ε + 2δ). Let v be a vertex

of DS(L̃), and σ a simplex (edge or triangle) of DS(L̃) that is not incident

to v. If σ does not intersect B(v, lrk̃(DS(L̃))), then its distance to v is at least

lrk̃(DS(L̃)) ≥ lrk(S) − 3(ε + 2δ), which by N2 is greater than ε
2

≥ ε
(1−2 δ

ε
)2

2(1+2 δ
ε
)
. Oth-

erwise, the point p ∈ σ closest to v lies inside the ball B(v, lr
k̃
(DS(L̃))). Since

DS(L̃) ∩ B(v, lrk̃(DS(L̃))) coincides with the graph of a bivariate function defined

over the k̃-Lipschitz support plane of DS(L̃) at v (called Tk̃(v), for short), the or-

thogonal projection p̄ of p onto Tk̃(v) lies outside Ū (v), the orthogonal projection

of the umbrella U(v) of triangles of DS(L̃) incident to v. Since v lies in the interior

of Ū (v), the line segment [v, p̄] intersects the boundary of Ū (v). Let q̄ be a point of

intersection, and q the point of the boundary of U(v) that projects onto q̄ . Inside the
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plane that contains v, p and p̄ (and hence also q and q̄), DS(L̃) ∩ B(v, lrk̃(DS(L̃)))

coincides with the graph of a k̃-Lipschitz univariate function defined over the line

(v, p̄). Since5 k̃ < 1, the fact that q̄ ∈ [v, p̄] implies that d(v, q) ≤ d(v,p). Hence,

d(v,p) is at least the distance between v and the boundary of U(v), which we must

now bound from below. For any triangle (u, v,w) of DS(L̃) incident to v, the dis-

tance h from v to line (u,w), also known as the height of triangle (u, v,w), is given

by d(v,u) sin v̂uw, and it is a lower bound on the distance between v and edge

[u,w]. According to (i), we have d(v,u) ≥ ε − 2δ. Moreover, since the radius-edge

ratios of the triangles are at most ˜̺ = ε+2δ
ε−2δ

, every inner angle of (u, v,w) is at least

arcsin ε−2δ
2(ε+2δ)

. Therefore, we have v̂uw ≥ arcsin ε−2δ
2(ε+2δ)

and h ≥ (ε−2δ)2

2(ε+2δ)
= ε

(1−2 δ
ε
)2

2(1+2 δ
ε
)
.

Since this is true for any triangle of DS(L̃) incident to v, the distance between v and

the boundary of U(v) is at least ε
(1−2 δ

ε
)2

2(1+2 δ
ε
)
, which proves (ii).

By the same argument, for any disjoint edges e, e′ of DS(L), and for any point

p ∈ e, the distance from p to e′ is at least the distance from p to the boundary of

U(e) = U(u) ∪ U(v), where u,v are the vertices of e. Therefore, the proof of (iii)

reduces to finding a lower bound on the distance between e and the points of ∂U(e).

Let q be the point of ∂U(e) whose orthogonal projection q̄ onto the k̃-Lipschitz

support plane Tk̃(v) minimizes the distance to the orthogonal projection ē = [ū, v]
of e. The distance from any point p ∈ ∂U(e) to e is at least the distance from its

orthogonal projection p̄ to ē, which is bounded from below by d(q̄, ē). Moreover,

we have d(q̄, ē) ≥ d(q, e) cos(arctan k̃), since U(e) ⊂ DS(L̃) ∩ B(v, lr
k̃
(DS(L̃))),

which coincides with the graph of a k̃-Lipschitz bivariate function defined over T
k̃
(v).

Therefore, the distance of any point of ∂U(e) to e is at least d(q, e) cos(arctan k̃) =

d(q, e)

√
1 − 4

(1+2 δ
ε
)2

(1−2 δ
ε
)2

sin2 θ . We must find a lower bound on d(q, e). Let � ⊂ T
k̃
(v)

be the strip whose boundaries are the lines orthogonal to ē passing through ū and v.

For any point p̄ /∈ �, the nearest neighbor of p̄ on ē is either ū or v. Hence, if q̄ /∈ �,

then d(q, e) ≥ ε
(1−2 δ

ε
)2

2(1+2 δ
ε
)
, by (ii). For any point p̄ ∈ �, the nearest neighbor of p̄ on ē

is also its nearest neighbor on the line aff(ē). Hence, if q̄ ∈ �, then q̄ is either a vertex

of ∂Ū(e) (meaning that q is a vertex of ∂U(e)) or a point of ∂� (meaning that the

nearest neighbor of q̄ on ē is either ū or v). In both cases, we have d(q, e) ≥ ε
(1−2 δ

ε
)2

2(1+2 δ
ε
)
,

by (ii). This proves (iii). �

Let t ∈ [0,1]. Observe that, since L is a δ-noisy sample of S, φ̃(t, .) moves the

points of L̃ by at most δ. It follows, by convexity,6 that every point of DS(L̃) is

moved by at most δ. Using Lemma 3.18, we can prove that φ̃(t, .) is one-to-one:

• For any simplex (vertex, edge, or triangle) σ of DS(L̃), the restriction of φ̃(t, .) to

σ is one-to-one. Indeed, since φ̃(t, .) is linear on σ , its restriction to σ is one-to-

one, provided that φ̃(t, σ ) has the same dimension as σ . This is clearly the case

5By N1, we have ε+2δ
ε−2δ

<

√
2

4 sin θ
, which implies that arcsin(2 ˜̺ sin θ) = arcsin(2 ε+2δ

ε−2δ
sin θ) < π

4
.

6∀p ∈ DS (L̃), (φ̃(t,p) − p) is indeed a convex combination of the {(φ̃(t, q) − q), q ∈ L̃}.
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if σ is a vertex. If σ is an edge [u,v], then, since by N1 we have 2δ < ε − 2δ,

φ̃(t, u) and φ̃(t, v) are distinct, by Lemma 3.18(i). If σ is a triangle (u, v,w),

then we must show that φ̃(t, u), φ̃(t, v), and φ̃(t,w) are not collinear. Since every

vertex of the triangle moves by at most δ, vertices u and v move by at most 2δ

relative to w. Thus, each of them reduces the angle ûwv by at most arcsin 2δ
ε−2δ

,

since the vertices are at least ε − 2δ away from one another initially. Recall that

the radius-edge ratio of (u, v,w) is at most ˜̺ = ε+2δ
ε−2δ

, hence angle ûwv is at least

arcsin 1
2 ˜̺ = arcsin ε−2δ

2(ε+2δ)
initially. It follows that ûwv does not vanish as u,v,w

are moved by φ̃, since by N17 we have 2 arcsin 2δ
ε−2δ

< arcsin ε−2δ
2(ε+2δ)

. Since this is

true for any inner angle of (u, v,w), φ̃(t, (u, v,w)) is a nondegenerate triangle.

• Since the restriction of φ̃(t, .) to any simplex of DS(L̃) is one-to-one, φ̃(t, .) itself

is one-to-one provided that the images of any two disjoint simplices of DS(L̃)

(which are simplices of same dimensions) are disjoint, and that the images of any

two non-disjoint simplices of DS(L̃) have disjoint relative interiors. Assume for

a contradiction that two disjoint (resp. non-disjoint) simplices σ1, σ2 of DS(L̃)

have non-disjoint images (resp. images with non-disjoint relative interiors) through

φ̃(t, .). Since σ1 ∩ σ2 = ∅ (resp. int(σ1) ∩ int(σ2) = ∅), and since φ̃ moves the

points of DS(L̃) continuously at some time t ′ ∈ [0, t], either φ̃(t ′, v1) ∈ φ̃(t ′, σ2)

for some vertex v1 of σ1 non-incident to σ2, or φ̃(t ′, v2) ∈ φ̃(t ′, σ1) for some vertex

v2 of σ2 non-incident to σ1, or φ̃(t ′, e1) ∩ φ̃(t ′, e2) �= ∅ for two disjoint edges

e1 ∈ σ1 and e2 ∈ σ2. In all three cases, the two simplices involved (namely, v1 and

σ2, or v2 and σ1, or e1 and e2) lie at most 2δ away from each other in DS(L̃),

since φ̃(t, .) does not move the points of DS(L̃) by more than δ. This contradicts

Lemma 3.18, since by N18 we have δ < ε
2

(1−2 δ
ε
)2

2(1+2 δ
ε
)

√
1 − 4

(1+2 δ
ε
)2

(1−2 δ
ε
)2

sin2 θ . Therefore,

disjoint simplices of DS(L̃) have disjoint images through φ̃(t, .), and non-disjoint

simplices of DS(L̃) have images through φ̃(t, .) with disjoint relative interiors,

which implies that φ̃(t, .) is one-to-one.

It follows that φ̃ is an isotopy from DS(L̃) to S′ = φ̃(1, DS(L̃)). As a consequence,

φ is an isotopy from S to S′. In addition, since L̃ is a noise-free (ε + 2δ)-sample

of S, we have dH(S, DS(L̃)) ≤ ε + 2δ, by Theorem 5.4 of [8]. Moreover, since

φ̃(1, .) moves the points of DS(L̃) by at most δ, we have dH(DS(L̃), S′) ≤ δ. As

a result, the Hausdorff distance between S and S′ is at most ε + 3δ. For each ori-

ented simplex σ = [v0, . . . , vl] of DS(L̃), we set the orientation of simplex φ̃(1, σ )

to [φ̃(1, v0), . . . , φ̃(1, vl)]. Since DS(L̃) is an oriented surface and φ̃ is an isotopy

from DS(L̃) to S′, we get a valid orientation of S′. We conclude the proof of Theo-

rem 3.16 with the following lemma:

Lemma 3.19 Under the hypotheses of Theorem 3.16, S′ is a k′-Lipschitz surface,

with k′ = tan(arcsin(
4((1+2 sin θ) δ

ε
+sin θ)

2 sin(arcsin
1−2 δ

ε

2(1+2 δ
ε )

−2 arcsin
2 δ

ε

1−2 δ
ε

)

)) and lrk′(S′) ≥ lrk(S)−(2ε+7δ).

7More precisely, by the fact that δ < λ0ε.

8More precisely, by the fact that δ < λ(θ)ε.
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Proof The proof is roughly the same as for Lemma 5.8 of [8]. Let f ′ be a tri-

angle of S′, and f̃ the triangle of DS(L̃) such that f ′ = φ̃(1, f̃ ). Since L̃ is an

(ε + 2δ)-sample of S, f̃ is circumscribed by a ball of radius at most ε + 2δ. And

since φ̃(1, .) does not move the vertices of f by more than δ, f ′ is included in a

ball of radius at most ε + 3δ, although its circumradius might be much larger. More-

over, as shown above in the proof of isotopy, the radius-edge ratio of f ′ is at most

̺′ = 1

2 sin(arcsin ε−2δ
2(ε+2δ)

−2 arcsin 2δ
ε−2δ

)
.

Let p′ be a point of S′, and p a point of S closest to p′. Since dH(S, DS(L̃)) ≤
ε+2δ and dH(DS(L̃), S′) ≤ δ, we have d(p,p′) ≤ ε+3δ. Let r = lrk(S)−(2ε+7δ).

For any triangle f ′ = (u′, v′,w′) of S′ that intersects B(p′, r), f ′ intersects B(p, r +
ε + 3δ) and is therefore included in B(p, r + 2ε + 6δ). Let f̃ = (ũ, ṽ, w̃) be the

triangle of DS(L̃) such that f ′ = φ̃(1, f̃ ). Since φ̃(1, .) does not move the vertices

of f̃ by more than δ, f̃ is included in B(p, r + 2ε + 7δ) = B(p, lrk(S)). Therefore,

lines (ũ, ṽ), (ṽ, w̃), and (w̃, ũ) make angles of at least π
2

− θ with the k-Lipschitz

normal nk(p) of S at p. As a consequence,

∣∣(w′ − v′) · nk(p)
∣∣ ≤

∣∣(w′ − w̃
)
· nk(p)

∣∣ +
∣∣(w̃ − ṽ) · nk(p)

∣∣ +
∣∣(ṽ − v′) · nk(p)

∣∣

≤ δ + ‖w̃ − ṽ‖ sin θ + δ.

Since L̃ is an (ε + 2δ)-sample of S, we have ‖w̃ − ṽ‖ ≤ 2ε + 4δ. Moreover, since L

is ε-sparse, we have ‖w′ − v′‖ ≥ ε. It follows that the angle between nk(p) and line

(v′,w′) is:

arccos
|(w′ − v′) · nk(p)|

‖w′ − v′‖ ≥ arccos
2δ + (2ε + 4δ) sin θ

ε

= π

2
− arcsin

(
2(1 + 2 sin θ)

δ

ε
+ 2 sin θ

)
.

The same relation holds for lines (u′, v′) and (u′,w′) as well. Since the radius-edge

ratio of f ′ is at most ̺′, the triangle normal Lemma 3.10 states that the angle between

nk(p) and the oriented normal n(f ′) of f ′ is at most arcsin(4̺′((1 + 2 sin θ) δ
ε

+
sin θ)). Since this is true for any triangle of S′ that intersects B(p, r), Theorem 3.3(ii)

of [8] states that S′ is a k′-Lipschitz surface with k′ = tan(arcsin(4̺′((1 + 2 sin θ) δ
ε
+

sin θ))) and lrk′(S′) ≥ r = lrk(S) − (2ε + 7δ). �

4 Application to Reconstruction from Point Samples

4.1 Algorithm

The algorithm works in any metric space. It takes as input a finite point set W , identi-

fied as the set of witnesses, and an optional countable sequence ν of integers, whose

default value is νi = i + 1 ∀i (which corresponds to CW
ν = CW ). The algorithm con-

structs a set L ⊆ W of landmarks iteratively, starting with L = ∅, and in the mean-

time it maintains CW
ν (L). At each iteration, the witness lying furthest away from L
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is inserted in L, and CW
ν (L) is updated as described below. The process stops when

L = W . The output of the algorithm is either the one-parameter family of complexes

CW
ν (L) built throughout the process, or simply the diagram of their Betti numbers

computed on the fly using the persistence algorithm9 of [37]. With this diagram at

hand, the user can determine the scale at which to process the data: it is then easy to

generate the corresponding subset of landmarks (the points of W have been sorted

according to their order of insertion in L) and to rebuild its witness complex.

4.2 Update of CW
ν (L)

Our strategy to update CW
ν (L) relies on the following observation: when a wit-

ness p is inserted in L, every simplex that appears in CW
ν (L) is incident to p,

whereas every simplex that disappears from CW
ν (L) has a face that is no longer ν-

witnessed because of the insertion of p in the set of landmarks. It follows that the

ν-witnesses of all these simplices belong to the reverse κ-nearest witnesses10 of p,

where κ = min{|L|,maxiνi}. Hence, CW
ν (L) can be updated, first by searching for

the reverse κ-nearest witnesses of p, and then, for each witness w in the outcome, by

searching for the κ nearest landmarks of w, to determine which simplices to insert

or delete from CW
ν (L). A number of dynamic data structures exist that can perform

these queries efficiently—see [18] for a survey. Note however that κ can be as large

as |W |, a case in which the above queries take linear time. Moreover, when νi ≥ |L|
∀i, CW

ν (L) coincides with the complete hypergraph of L and hence has an expo-

nential size. Nevertheless, in Euclidean space R
n, κ is more likely to be a constant

depending (exponentially) on n, which reduces the size of CW
ν (L) to O(|L|), by The-

orem 3.8. The total time spent by the algorithm to maintain CW
ν (L) is then O(|W |2),

since any newly-created landmark has �(|W |) reverse κ-nearest witnesses (these can

be detected naively by an exhaustive search on the set W ), each of which witnesses

a constant number of simplices (these can be found by maintaining the list of κ near-

est landmarks of each witness). We conjecture that it should be possible to reduce the

time complexity to O(|W | log |W |), under some sparseness condition on W .

4.3 2d and 3d Cases

We take ν = (1,2,3) in 2d and ν = (1,6,6,4) in 3d, as prescribed by the theory.

Moreover, we replace CW
ν (L) by its intersection with D(L), noted (CW

ν ∩ D)(L). This

makes sense because, DS(L) being a subset of D(L), Theorems 3.1 and 3.9 hold the

same if CW
ν (L) is replaced by (CW

ν ∩ D)(L). The advantage is that (CW
ν ∩ D)(L) can

be stored as a subcomplex of D(L), which allows to speed-up the (reverse) near-

est neighbors queries in practice. Another thing in 3d is that we also maintain the

subcomplex Ŝ extracted from (CW
ν ∩ D)(L) by the procedure of Sect. 3.2.2.

9The filtration used in [37] is rebuilt at each iteration, since some simplices are deleted from our complex

CW
ν (L).

10These are the witnesses that have p among their κ nearest landmarks.
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4.4 Theoretical Guarantees

Let L(i) denote the set L at the end of the ith iteration of the algorithm. We call ε(i)

the minimum number such that L(i) is an ε(i)-sample of W . Since L(i) grows with

i, ε(i) is a decreasing function of i. Moreover, we have the following:

Lemma 4.1 At any iteration i, L(i) is an ε(i)-sparse ε(i)-sample of W .

Proof At each iteration j ≤ i of the algorithm, the witness p(j) farthest from

L(j − 1) is inserted in L(j − 1). Right before this insertion, L(j − 1) is an ε(j − 1)-

sample of W . This means that the distance from p(j) to L(j −1) is ε(j −1). Since L

keeps growing during the process, we have ε(j) ≥ ε(j + 1) ∀j ≤ i. Therefore, every

point inserted in L before or at iteration i is at least ε(i) away from L at the time of

its insertion. This implies that L(i) is an ε(i)-sparse point sample. �

Combining this lemma with the structural results of Sects. 2 and 3, we obtain a

guarantee on the stability of the topological type of the witness complex during the

course of the algorithm:

Theorem 4.2 Assume that the input W is a δ-noisy δ-sample of some k-Lipschitz

curve (resp. surface) S in R
2 (resp. R

3). Then, (CW
ν ∩ D)(L(i)) (resp. Ŝ(i)) is isotopic

to S and close to S for the Hausdorff distance whenever L(i) satisfies the hypotheses

of Theorems 2.9, 3.1, and 3.16 (resp. 3.9 and 3.16), which eventually happens if δ

and k are small enough.

Under mild assumptions on the input, the theorem guarantees that the topological

type of (CW
ν ∩ D)(L(i)) (resp. Ŝ(i)) stabilizes for some time during the course of the

algorithm and therefore that a plateau appears in the diagram of the Betti numbers

of (CW
ν ∩ D)(L(i)) (resp. Ŝ(i)), showing the correct values. In practice, the user does

not know exactly where the plateau should be located in the diagram, because δ, k,

and lrk(S) are unknown. Nevertheless, our structural results give a lower bound on

the length of the plateau, which is of order of (alrk(S) − bδ), where a, b are two

constants. As a consequence, for sufficiently small δ, the plateau is long enough to

be detected by the user or any statistical analysis performed in a post-processing

step. In the case where W samples several manifolds (such as in the example of

Fig. 1), Theorem 4.2 guarantees11 that several plateaus appear in the diagram of Betti

numbers, each one showing a plausible reconstruction, depending on the scale at

which the input data set W is processed. Once again, these guarantees hold as long

as the input point set W is sufficiently dense compared to lrk(S). In particular, no

sparseness condition on W is required, although S can be non-smooth and W can be

noisy. This makes our reconstruction method more practical than previous work in

this context [8, 24].

11In the example of Fig. 1, the two plausible reconstructions are the helical curve and the torus in R
3.

Strictly speaking, our theoretical statements do not consider curves in R
n with n ≥ 3. However, as in the

smooth setting, our proofs can be extended to arbitrary values of n, provided that a suitable definition of

Lipschitz curve is used.
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Fig. 5 Diagram of Betti numbers of Ŝ for the Tanglecube point set

4.5 Experimental Results and Discussion

Figures 5 and 6 show the evolution of the Betti numbers of Ŝ(i) throughout the course

of the algorithm on two different input point sets. The abscissa represents 1
ε(i)

, which

is an increasing function of i and gives an idea of the scale at which the input data is

being processed. The first point set was generated using Chew’s algorithm on an al-

gebraic surface commonly known as the tanglecube. The second point set is courtesy

of the Stanford shape repository and was obtained from a 3d scanner.

Figure 5 shows three phases in the evolution of the Betti numbers. At first, their

behavior is erratic, which means that the topology of Ŝ(i) keeps changing because

ε(i) is not yet small enough compared to lrk(S). The top picture in the right column

shows Ŝ(i) at some point during this phase. Then, ε(i) satisfies the hypothesis of

Theorem 3.9 for a while, which implies that the Betti numbers stabilize to the right

value and a plateau appears in the diagram—here, the surface is connected, of genus

five, and without boundary, hence β0 = β2 = 1 and β1 = 10. The size of the plateau

depends on the value of δ compared to lrk(S). The two middle pictures in the right

column show Ŝ(i) at two different times during this phase. Finally, ε(i) becomes

too small, and (CW
ν ∩ D)(L(i)) does not contain DS(L(i)) any longer. As a result,

some holes appear in the complex, and Ŝ(i) is simply the boundary of a myriad of

randomly agglomerated tetrahedra. An example is shown in the bottom-right corner

of the image.

The same kind of phenomenon occurs in Fig. 6, where the plateau is smaller due

to the fairly high value of δ. The top-right picture shows Ŝ(i) at some point on the

plateau. Interestingly enough, the value of β1 on the plateau (β1 = 12) means that the

genus of Ŝ(i) is six, which coincides with the genus of the scanned physical model
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Fig. 6 Diagram of Betti numbers of Ŝ for the Happy Buddha point set

but not with that of the mesh provided by the repository, which contains extra handles

such as the one shown at the center of Fig. 6. The reason is that, due to the presence

of noise and holes in the input point cloud, standard reconstruction algorithms fail

at retrieving the topology of the original object because they consider the data at

full scale only. In contrast, our algorithm performs reconstructions at various scales

and generates plateaus whenever the topological type of the reconstruction is stable,

which corresponds to plausible topological types of the original object. As an illus-

tration, observe that a new plateau starts on the right-hand side of the main plateau,

right before the data structure becomes unstable. This new plateau shows β1 = 14,

which indicates that a new handle has been detected, as illustrated in the bottom-right

corner of Fig. 6. Another example is shown in Fig. 1, where the diagram has two

well-separated plateaus corresponding to two plausible reconstructions: a torus, and

a simple closed curve drawn on that torus. To handle the change in dimension (shown

on the right-hand side of the figure), we maintained CW
ν (L(i)) for both ν = (1,2,3,4)

and ν = (1,6,6,4) simultaneously and determined at each step the complex to keep

according to their Betti number β2.

The definitive choice of the scale(s) at which to deal with the data is highly depen-

dent on the application, and therefore it should be made by the user. We expect that

statistical analysis on our diagrams would allow our algorithm to detect the plateaus

and to suggest reasonable choices. Note however that not all the plateaus are guaran-

teed to be meaningful. Indeed, the fact that the homotopy type of the complex remains

stable over a period of time does not imply that the complex itself is stable combina-

torially. In the example of Fig. 7 for instance, the insertion of a new landmark creates

a loop but at the same time destroys another loop in the complex, thereby keeping its

Betti numbers unchanged, whereas the sets of generators of the homology groups of
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Fig. 7 (Color online) A set W of witnesses (in black) sampling a smooth curve in the plane, and a sparse

subset L of landmarks. The witness complex of L relative to W is shown in green, while the edges of the

order-two Voronoi diagram of L are shown in grey. Note how the insertion of a ∈ W in L creates a new

loop but at the same time removes edge [b, c] from the complex, thereby destroying the former loop. The

homotopy type of the complex remains unchanged

the complex do differ. Such events leading to fake plateaus in the diagram are likely

to be rare and short, since they correspond to highly unstable phases of the course of

the algorithm, where the sampling conditions are not satisfied. Nevertheless, accord-

ing to the example of Fig. 7, they can occur, and the question of whether they can be

detected and discarded automatically is still open.

5 Conclusion

We have introduced a new reconstruction method based on the use of the witness

complex. This method uses inter-sample distances alone and can therefore be used

in any metric space. Moreover, it stands in sharp contrast with previous work in the

area, since it is multiscale and gives some insights on the various plausible topolog-

ical types of the original object. We believe that this approach to manifold recon-

struction is highly practical and has a number of potential applications, such as for

instance topological noise removal or mesh compression. As a side product, in order

to prove our algorithm correct on Lipschitz curves and surfaces, we have worked out

interesting relationships between the witness complex and the restricted Delaunay

triangulation in 2d and 3d. Our structural results assume that the set L of landmarks

is an ε-sparse ε-sample of the set W of witnesses. This hypothesis is stringent but

not unrealistic in practice, since L is generated by the algorithm. In contrast, our

assumption on the input W is fairly mild.

Let us mention that our structural results still hold in the somewhat more general

setting where W is an adaptive δ-sample of S in the sense of [1] and where L is an

(ε, κ)-sample of W in the sense of [24]. The proofs are roughly the same, with an

additional twist which slightly degrades the constants.

A number of theoretical questions are left open by this work, including:

• Is it possible to devise automatic procedures for discriminating the fake plateaus

from the meaningful plateaus in the diagram of Betti numbers? One possible ap-

proach, suggested by the example of Fig. 7, would be to keep track of the genera-

tors of the homology groups of the complex throughout the course of the algorithm,
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similarly to what is done in persistent homology [37]. The difficulty here is that

our family of complexes is not a filtration, the complex at iteration i being neither

a subset nor a superset of the complex at iteration i + 1.

• Can the time complexity of the algorithm be reduced to O(|W | log |W |)? Reverse

nearest neighbors queries can take linear time in the worst case, because a land-

mark can be among the nearest landmarks of a linear number of witnesses. As a

consequence, reducing the time complexity requires to control the sizes of the lists

of reverse nearest witnesses, which can probably be done under some sparseness

condition on W . However, can it be done under weaker conditions?

• The behavior of our reconstruction algorithm depends highly on the order in which

the witnesses are inserted in L—in some sense, the algorithm is parameterized by

this order. In the present paper, we use one possible ordering of the witnesses,

prescribed by the furthest-point criterion. However, many other orderings could be

considered, some of which might be relevant in different contexts. One appealing

example is the problem of reconstructing curves and surfaces in the presence of

background noise, where the furthest-witness strategy applied in this paper fails

for obvious reasons.

• Can our structural results be extended to manifolds of higher dimensions? Since

the publication of the conference version of this paper, significant steps have been

made in this direction: de Silva has extended the Weak Witness Theorem to the

case of point clouds lying on Riemannian manifolds of constant sectional cur-

vature [21]. Unfortunately, focusing on the Euclidean case, we have seen that the

Weak Witness Theorem does not hold for general smooth submanifolds of R
n [32].

Nevertheless, Cheng, Dey, and Ramos had proved that restricted Delaunay trian-

gulations of dense point samples enjoy similar properties in higher dimensions as

they do in R
3, provided that the standard Delaunay test is replaced by a weighted

Delaunay test [15]. Building on their work, we have extended the results of this

paper to the general case of smooth submanifolds of R
n, with the Euclidean metric

replaced by a weighted metric [6]. Combined with recent advances on the front

of topological persistence, these results have led to a new class of reconstruction

algorithms, inspired from this work and based on the use of the witness complex,

whose space and time complexities scale up with the intrinsic dimension of the

point cloud data, as opposed to the dimension of the ambient space [14].
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