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A reconstructive scheme for variational iteration method using the Yang-Laplace
transform is proposed and developed with the Yang-Laplace transform. The identi-
fication of fractal Lagrange multiplier is investigated by the Yang-Laplace trans-
form. The method is exemplified by a fractal heat conduction equation with local
fractional derivative. The results developed are valid for a compact solution do-
main with high accuracy.
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Introduction

Heat transfer problems can be mathematically modelled by ordinary and partial differ-

ential equations [1], integral equations [2], and integro-differential equations [3]. Commonly

heat conduction problems are solved either analytically or analytical and numerically applying

various methods, among them: finite difference techniques (FDT) [4], regression analysis (RA)

[5], Adomian decomposition method (ADM) [6], homotopy analysis method (HAM) [7], differ-

ential transformation method (DTM) [8], boundary element method (BEM) [9], the heat-bal-

ance integral method (HBIM) [10-12], etc.

The variational iteration method (VIM) was first proposed by He [13] and was suc-

cessfully applied to deal with heat conduction equations [14-17]. In 2010, the fractional

variational iteration method (FVIM) via modified Riemann-Liouville derivative was conceived

[17]. On the other hand, the local fractional variational iteration method via local fractional cal-

culus [18-20] was developed in [21] and successfully applied to differential equations on Cantor

sets [22-24]. In this context, recently, a method combining the variational iteration method and

Laplace transform method was suggested [25, 26] and a modification via fractional calculus and

Laplace transform was conceived by Wu [27].

Fractal heat conduction problems describe heat transport in inhomogeneous materials

as fibrous materials, textiles, coal deposits, and other discontinuous media where

homogenizations are unacceptable because this approach neglects important physical character-

istics of the transport processes. The non-smoothness raises problems and avoids application of

the classical calculus of integer and fractional order. To avoid this problem, the local fractional
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calculus [20, 21] was successfully applied to ordinary and partial differential equations with ei-

ther fractal media or with fractal boundary conditions. Solutions of such local problems have

been developed the local fractional Fourier series method [28], Yang-Fourier and Yang-Laplace

transforms [29], local fractional variational iteration method [21-24], etc.

As a stand of portion of development of solutions to fractal heat conduction problems,

the present communication refers to a coupling method combining the features of the variational

iteration method and the Yang-Laplace transform [29] local fractional derivatives.

Reconstructive processes

Let us consider the following local fractional partial differential equations:

Lau – Rau = g(x) (1)

where u = u(x), La is the linear local fractional operator, Ra is the linear local fractional operator

of order less than La, and g(x) is a source term of the non-differential function.

According to the rule of local fractional variational iteration method, the correction lo-

cal fractional functional for eq. (1) is constructed as [21-24]:
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In eq. (2) the local fractional integral operator is defined as [18-20]:
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and the partition of the interval [a, b], is:
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In eq. (2) l(t)a/G(1 + a) is a fractal Lagrange multiplier.

When da~un is considered as a restricted local fractional variation [20], i. e. da~un = 0,

we obtain the following fractal Lagrange multiplier:
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where La in eq. (1) are ka times local fractional partial differential equations.

Therefore, eq. (2) becomes:
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For initial value problems of eq. (1), we can start with:
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where local fractional derivative is given by [18-20]:
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with 
a[f(x) – f(x0)] � G(1 + a)[f(x) – f(x0)], and local fractional derivative of high order is de-

noted as [20]:
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The Yang-Laplace transform is defined as [18, 19, 29]:
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and its inverse formula is [18, 19, 29] :
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where f(x) is local fractional continuous, sa = ba + ia�a and Re(sa) = ba.

Thus, following eqs. (2) and (5), we obtain a new local fractional functional in the

form:
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We now take Yang-Laplace transform of eq. (2), namely:
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Here, we first take the variation, which is given by:
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By using computation of (11b), we get:
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where there is a following relation [18, 19]:
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Hence, from (12a) we get:
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Taking the inverse version of the Yang-Fourier transform, we have:
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In view of eq. (14), we obtain:
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Therefore, we have the following iteration algorithm:
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From eq. (12b) we get:
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Hence, form eq. (16a) the initial value is determined by:
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Consequently, the Yang-Laplace transform for identification of fractal Lagrange mul-

tiplier is shown in eqs. (15a, b) which leads to the local fractional series solution:
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Application to fractal heat-conduction problem

In order to illustrate the proposed method, we give the fractal heat-conduction prob-

lem. As it was demonstrated earlier [20, 21], the heat equation on Cantor sets (local fractional

heat equation) can be expressed as:
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where u(x, t) is a fractal heat flux.

The initial value is presented as [21]:
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By using eq. (15a) we structure the iterative relation as:
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In view of eqs. (17 b, c), the initial value reads:
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and its Yang-Laplace transform is:
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Hence, we get the first approximation, namely:
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The second approximation reads:
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Therefore, we get:
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The other approximations are written as:
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Consequently, the local fractional series solution is:
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The same final result was developed by the local fractional variational method [21].

Conclusions

A local fractional continuous solution to fractal heat conduction problems was devel-

oped is obtained by a new approach coupling process the variational iteration method and the

Yang-Laplace transform. The method is straightforward and well exemplified by a solution of

fractal heat conduction with fractal Neumann condition.
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