Record-Boundary Discovery in Web Documents

D. W. Embley

Y. Jiang

Y. -K. Ng

Brigham Young University ACM SIGMOD Conference, 1999.

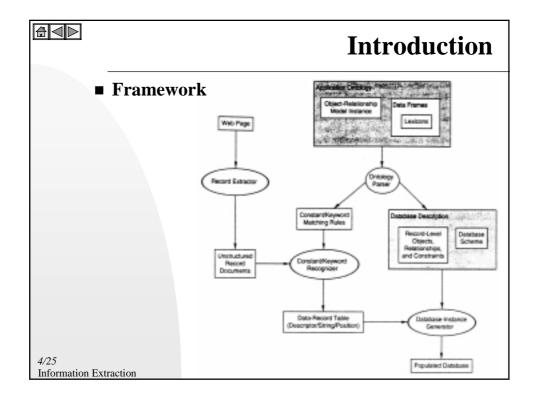
"Ontology-based Extraction and Structuring of Information from Data-rich Unstructured Documents"

ACM CIKM Conference, 1998.

Yi-Hung Wu 1999/9/16

Outline

- **■** Introduction
- Record-Boundary Discovery
- **Individual Heuristics**
- **Combined Heuristic**
- **■** Experiment
- **■** Extraction and Structuring
- **■** Conclusion


2/25

Introduction

■ Extract and structure the web data

- ◆ develop an ontological model instance for a domain of interest (Application Ontology)
- ◆parse this ontology (Ontology Parser)
 - generate the rules for matching constants and keywords
 - generate a database scheme
- ◆ separate a web page into individual record-size chunks (Record Extractor)
- ◆extract objects and relationships (Recognizer)
- ◆ populate the database instance (Generator)

Introduction

■ Assumptions

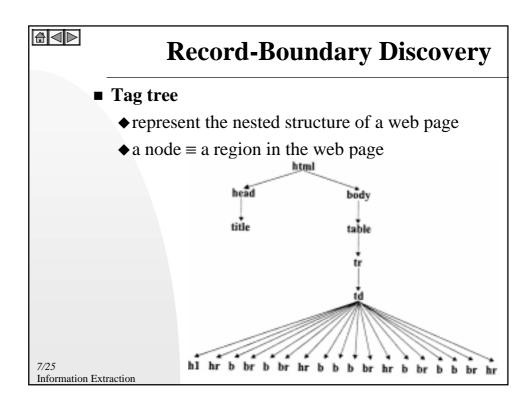
- ◆ a web page has multiple records (data-rich)

 car advertisements, job listing, obituaries
- ◆ a web page contains at least one recordseparator tag
 - discover boundaries of records

5/25

Information Extraction

6/25


Information Extraction

Introduction

■ Sample web page

```
<html><head><title>Classifieds</title></head>
<br/><br/>body bgrolor="#FFFFFF">
<ta
<h1 align="left">Funeral Notions - </h1> October 1, 1998
<b>Lemar K. Adamsos</b><br/>bc> died on September 30, 1998. Lemar was born on September 5, 1913.
church ... <box MEMORIAL CHAPEL</box ... <br >
Our beloved <a>h>Brian Fielding Fron</a>, age 41, passed away on September 30, 1998, ...
held at ... in the <b > Howard Stake Center < /bo.,
<to-Carrillo's Turson Mortuary</to>. ...
Holy Hope Cemetery<br>, ...
<b>Leonard Kenneth Gunther</b><br> passed away on September 30, 1986. . . .
<hr>

All material is copyrighted
</body>
```


Record-Boundary Discovery

- **■** Locating groups of records
 - ◆ choose the subtree whose root has the highest fan-out
 - ◆ count the number of appearances for each tag in the immediate child nodes
 - **☞ irrelevant tag (< 10%): <h1>**
 - @candidate tag: <hr>

- Ranking the candidate tags
 - ♦ individual heuristics
 - ◆ combined heuristics

8/25

Individual Heuristics

- **■** Highest-count Tags: HT
 - ◆ sort by the number of appearances in the highest fan-out subtree

 $Fb:8 \rightarrow br:5 \rightarrow hr:4$

- Identifiable "separator" Tags: IT
 - ♦ ordered list for common use by observation
 - rhr tr td a table p br h4 h1 strong b i
 - **75** 15 15 14 10 10 10 10 10 10 6 5 (%)
- Standard Deviation: SD
 - ◆ compute the standard deviation of the interval between each occurrence of a tag

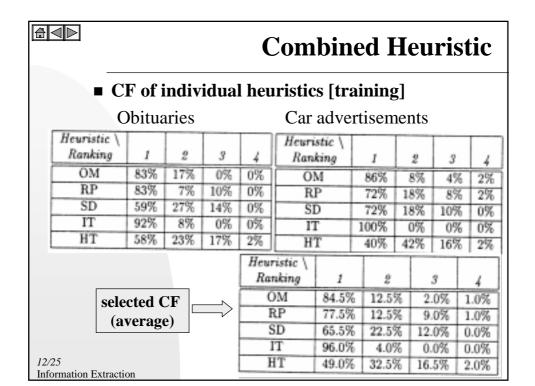
 \mathcal{P} hr:0.57 \rightarrow b:0.89 \rightarrow br:1.25

9/25
Information Extraction

Individual Heuristics

- Repeating-tag Pattern: RP
 - ◆ count the number of occurrences for all pairs of candidate tags without intervening text
 - ◆ calculate the differences between counts
 - $= x_{xy} = |c_{xy} c_{x}|, y_{xy} = |c_{xy} c_{y}|$
 - $\neg x \rightarrow y$ if $min(x_{xi}) < min(y_{xi})$ for all possible i, j
 - $\text{$^{\phi}$hr:1$} \rightarrow \text{br:2} \rightarrow \text{b:5} \ [c_{\text{br,hr}} = 3, c_{\text{hr,b}} = 3]$
- Ontology Matching: OM
 - estimate the number of records by applying the record-identifying fields
 - **Funeral:4**, Birth Date: 2, Death Date: $3 \Rightarrow 3$
 - \mathcal{P} hr:1 \rightarrow br:2 \rightarrow b:5

10/25 Information Extraction


Û

Combined Heuristic

- **■** Certainty measure
 - ◆ define a confidence measure by using Stanford certainty theory
 - ◆example
 - \checkmark hr>: HT \Rightarrow 88%, IT \Rightarrow 74%, SD \Rightarrow 66% \bigcirc 88%+74%+66% - 88%×74% - 74%×66% -

 $66\% \times 88\% + 88\% \times 74\% \times 66\% = 98.93\%$

Combined Heuristic

- **■** Compound heuristic
 - ◆ apply individual heuristics to ranking

 $\protect\operatorname{\$-ranks}$ of $\protect\operatorname{\verb+hr}>: \operatorname{HT} \Rightarrow 3, \operatorname{IT} \Rightarrow 1, \operatorname{SD} \Rightarrow 1$

○2%+96%+65.5% - ... + 2%×96%×65.5%

- Algorithm
 - ◆construct a tag tree
 - ♦ locate the highest fan-out subtree
 - ◆extract the candidate tags
 - ◆ apply individual heuristics
 - ◆ apply Stanford certainty theory
 - ◆ choose the tag with the highest compound CF

13/25
Information Extraction

Combined Heuristic

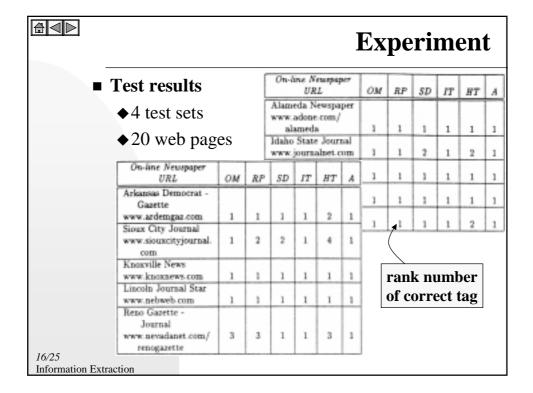
■ Combinations of five heuristics [training]

- ♦26 choices
- ◆ success rate

Compound Heuristic	Success Rate	Compound Heuristic	Success Rate
OR	85.83%	OSI	95.00%
OS	88.00%	OSH	87.50%
OI	95.00%	OIH	95.00%
OH	79.00%	RSI	95.00%
RS	79.50%	RSH	85.50%
RI	95.00%	RIH	95.00%
RH	76.33%	SIH	95.00%
SI	95.00%	ORSI	100.00%
SH	69.50%	ORSH	82.50%
IH	95.00%	ORIH	100.00%
ORS	81.50%	OSIH	95.00%
ORI	93.33%	RSIH	100.00%
ORH	84.83%	ORSIH	100.00%

HT	H
IT	Ι
SD	S
RP	R
OM	0

4/25



Combined Heuristic

■ Example

- ♦ individual heuristics
 - **FHT:** [(b,1), (br,2), (hr,3)]
 - **FIT:** [(hr,1), (br,2), (b,3)]
 - **SD:** [(hr,1), (b,2), (br,3)]
 - **PRP:** [(hr,1), (br,2), (b,3)]
 - **OM:** [(hr,1), (br,2), (b,3)]
- ◆compound heuristic
 - **ORSIH:** [(hr,99.96%), (br,64.75%), (b,56.34%)]

15/25

Experiment

■ Success rates

Heuristic	Success Rate
OM	80%
RP	75%
SD	65%
IT	95%
HT	45%
ORSIH	100%

'96 CHEV Monte Carlo 234, loaded, bright Red 15,000 actual miles! A great buy at \$14,990, \$750 to 1000 down. MURDOCK CHEVRGLET 298-8090

'94 CHEV Corsice, 88.281 miles. Ask for #16, \$4,900. Government Surplus533-5885

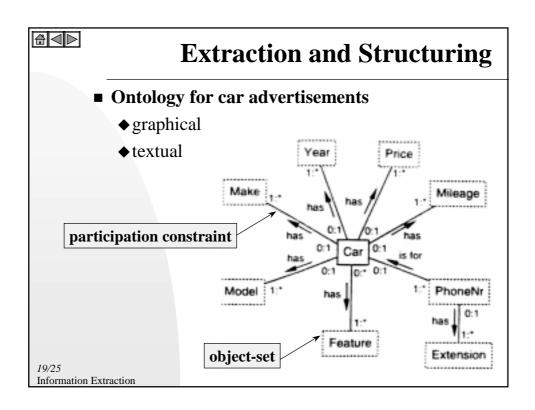
.....

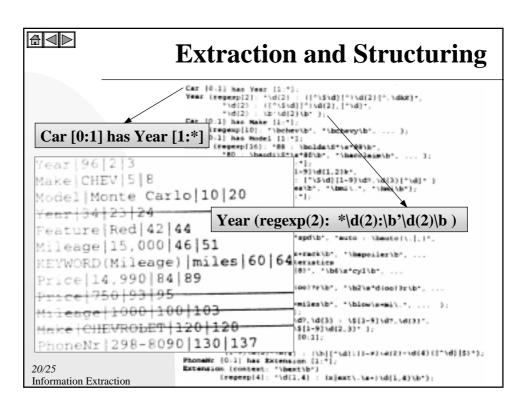
'89 AUDI 80. red. auto., p/w, p/l. sumroof, loeded, 128K. new trans., new diff. Runs perfect, must sell, \$3300 obo. gcall Nate, 554-4414

17/25 Information Extraction

Extraction and Structuring

- Main processes
 - ♦ ontology parser
 - **☞ constant/keyword matching rules**


Oa list of regular expressions for each object-set


☞ SQL create-table statements

Oobject-set name ⇒ attribute name

- ◆ constant/keyword recognizer
 - rame/string/position table
- ◆ database-instance generator
 - *tuples with a sequence of (attribute, value) pairs

18/25

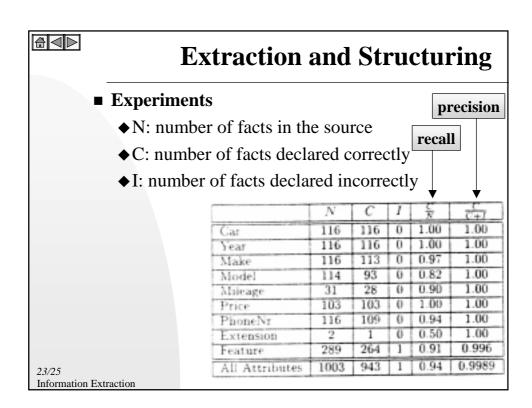
Extraction and Structuring

■ Heuristics for selection of constants

- ♦ keyword proximity: one-to-many **(Mileage,15000)**
- ◆ functional relationship: one-to-one
 - ☞ (Model, Carlo), (PhoneNr, 298-8090)
- ◆ nonfunctional relationship: many-to-many **r(Feature,Red)**
- ♦ first occurrence without constraint violation
 - **(Year,96), (Make,CHEV), (Price,14990)**

21/25

Information Extraction



Extraction and Structuring

- **■** Database instances
 - **♦**tuples
 - © Car (1001, "96", "CHEV", "Monte Carlo", "15000", "14990", "298-8090")
 - Car-Feature("1001", "Red")
 - **♦**table

Year	Make	Model	Price
94	DODGE		4,995
94	DODGE	Intrepid	10,000
91	FORD	Taurus	3,500
9.0	FORD	Probe	
88	FORD	Escort	1000

22/25

Conclusion

■ Contributions

- ◆ an ontology-based framework for extracting and structuring information in web pages
- ◆a heuristic approach to discovering record boundaries in web pages
- ◆ a heuristic approach to recognizing facts contained in web pages

■ Difficulties

- ♦ misidentification of attributes: I-15566-2441
- ♦ variations in patterns: Wind95⇒Win95
- ♦typographical mistakes: Chrystler⇒Chrysler

24/25

Conclusion

■ Issues

- ♦ improve schema generation and database population
 - ☞ better data type: 55000 vs. 55k

25/25