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Abstract. Ozone data derived from the Tropospheric Moni-

toring Instrument (TROPOMI) sensor on board the Sentinel-

5 Precursor satellite show exceptionally low total ozone

columns in the polar region of the Northern Hemisphere

(Arctic) in spring 2020. Minimum total ozone column val-

ues around or below 220 Dobson units (DU) were seen over

the Arctic for 5 weeks in March and early April 2020. Usu-

ally the persistence of such low total ozone column values in

spring is only observed in the polar Southern Hemisphere

(Antarctic) and not over the Arctic. These record low to-

tal ozone columns were caused by a particularly strong po-

lar vortex in the stratosphere with a persistent cold strato-

sphere at higher latitudes, a prerequisite for ozone deple-

tion through heterogeneous chemistry. Based on the ERA5,

which is the fifth generation of the European Centre for

Medium-Range Weather Forecasts (ECMWF) atmospheric

reanalysis, the Northern Hemisphere winter 2019/2020 (from

December to March) showed minimum polar cap tempera-

tures consistently below 195 K around 20 km altitude, which

enabled enhanced formation of polar stratospheric clouds.

The special situation in spring 2020 is compared and dis-

cussed in context with two other Northern Hemisphere spring

seasons, namely those in 1997 and 2011, which also dis-

played relatively low total ozone column values. However,

during these years, total ozone columns below 220 DU over

several consecutive days were not observed in spring. The

similarities and differences of the atmospheric conditions of

these three events and possible explanations for the observed

features are presented and discussed. It becomes apparent

that the monthly mean of the minimum total ozone column

value for March 2020 (221 DU) was clearly below the re-

spective values found in March 1997 (267 DU) and 2011

(252 DU), which highlights the special evolution of the po-

lar stratospheric ozone layer in the Northern Hemisphere in

spring 2020. A comparison with a typical ozone hole over

the Antarctic (e.g., in 2016) indicates that although the Arctic

spring 2020 situation is remarkable, with total ozone column

values around or below 220 DU observed over a considerable

area (up to 0.9 million km2), the Antarctic ozone hole shows

total ozone columns typically below 150 DU over a much

larger area (of the order of 20 million km2). Furthermore, to-

tal ozone columns below 220 DU are typically observed over

the Antarctic for about 4 months.

1 Introduction

Today’s operating satellite instruments produce a reliable

picture of the Earth’s atmosphere and its chemical composi-

tion. These instruments monitor, for example, the evolution

of the stratospheric ozone layer (e.g., Loyola et al., 2009),

which is important for life on Earth. Unusually low ozone

values can occur in the polar regions if chemical and dy-

namical processes interact in a specific way. A long-lived

polar vortex with low stratospheric temperatures can sup-

port significant ozone depletion, and a strong polar vortex
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itself can hamper meridional transport of ozone-rich air from

lower latitudes (e.g., Solomon, 1999; Solomon et al., 2014).

The largest concentrations of atmospheric ozone are found

in the stratospheric ozone layer, with about 90 % of the at-

mosphere’s ozone located at altitudes between 15 and 30 km

(e.g., Langematz, 2019). The Dobson unit (DU) – named af-

ter Gordon Dobson (1889–1976), who devised the first in-

strument for measuring atmospheric ozone content – is used

to describe the total amount of ozone found in the atmosphere

above a specific location. Typically, an ozone hole in the

Antarctic is defined as the area where the total ozone column

(TOC) is less than 220 DU (e.g., WMO, 2018). In the South-

ern Hemisphere (SH) polar region (Antarctic) a TOC below

220 DU is about 30 % under the climatological mean ozone

value in austral spring, which was determined for the years

before 1980 (e.g., Chap. 4 in WMO, 1999; Chap. 3 in WMO,

2003). Climatological mean TOCs averaged over the North-

ern Hemisphere (NH) polar region (Arctic) in boreal spring

are higher (∼ 400–450 DU; e.g., Dameris, 2010). Therefore,

the decrease of TOC below 220 DU during this period indi-

cates a reduction of total ozone in the order of 50 %. We note

that NH winters with reduced wave activity could be related

to reduced transport of ozone into the stratospheric polar vor-

tex and to stronger ozone depletion in the lower stratosphere

because of lower temperatures (e.g., Tegtmeier et al., 2008).

Additionally, a shift of the tropopause to higher altitudes and

a colder tropopause could lead in the same direction (e.g.,

Manney et al., 2011).

The south polar lower stratosphere cools significantly

more in winter (June–August) than the north polar lower

stratosphere (December–February). In the cold polar lower

stratosphere in winter, polar stratospheric clouds (PSCs)

form during polar night. PSCs develop at temperatures be-

low 195 K or 188 K at 50 hPa, which are approximate values

that depend on HNO3 and H2O concentrations (see, for in-

stance, Fig. 4-1 of Chap. 4 in WMO, 2018). Under these con-

ditions, nitric acid trihydrate crystals (NAT: HNO3 × 3H2O;

so-called NAT-PSCs) or ice PSCs are formed in the follow-

ing days or weeks, respectively. PSC particles allow hetero-

geneous reactions to take place on their surfaces, which en-

able halogen compounds (chlorine and bromine) to be re-

leased from reservoir compounds (e.g., ClONO2, HCl) and

then be converted to an active form. When the sun returns

in polar spring, active molecules, such as Cl2 or HOCl, are

converted into reactive Cl and ClO. Ozone depletion follows

via catalytic photochemical reaction cycles. More details can

be found in the review article by Solomon (1999).

Due to the prohibition of the production and usage of

ozone-depleting substances (among others CFCs, chloroflu-

orocarbons) in response to the international activities to pro-

tect the ozone layer (Montreal Protocol, 1987, and its amend-

ments), atmospheric concentrations of these chemical sub-

stances (particularly CFCs) and their products have been re-

duced over the last 20 years by about 15 % (Chap. 1 in WMO,

2018). Nevertheless, the current atmospheric burden of CFCs

is still enhanced with respect to 1980s values as CFCs have

lifetimes of several decades (SPARC, 2013). Consequently,

the chlorine concentration in the stratosphere is still high.

Based on the current scientific understanding, the chlorine

content is expected to reach pre-CFC-era conditions (i.e., lev-

els similar to the ones before 1980) around the middle of this

century, and we can therefore expect a return to pre-CFC val-

ues of the ozone layer in the next 30 to 40 years (see Chaps. 3

and 4 in WMO, 2018).

Notwithstanding the Montreal Protocol and the projected

recovery of the ozone layer, very low TOC values over the

polar cap can occur not only in the SH, but also in the

NH. For instance, as shown in Fig. 1, in March and early

April 2020, very low TOC values were measured in the Arc-

tic, although the stratospheric chlorine content in 2020 was

known to be lower than in previous years (Chap. 1 in WMO,

2018).

The dynamical conditions of the stratosphere as observed

in the NH spring 2020 were unusual, showing an undis-

turbed polar stratospheric vortex with low temperatures, as

will be seen in the upcoming analysis. Comparable dynami-

cal conditions in the NH stratosphere in spring were noted

in the literature for 1997 (e.g., Coy et al., 1997; Manney

et al., 1997; Lefèvre et al., 1998; Hansen and Chipperfield,

1999) and 2011 (e.g., Manney et al., 2011; Sinnhuber et

al., 2011; Kuttippurath et al., 2012; Hommel et al., 2014).

TOC values were low for an extended time period in spring

in these 2 years, but TOC values below 220 DU were not

observed. Although the dynamical conditions in winter and

spring 2019/2020 were unusual, they lie in the natural range

of stratospheric dynamical fluctuations in NH winter and

early spring (e.g., Langematz et al., 2014). The importance of

stratospheric dynamics causing low TOC has been discussed

in detail in the last decades (e.g., Chaps. 4 and 12 in WMO,

1999; Chap. 3 in WMO, 2003; Chap. 3 in WMO, 2014;

Solomon, 1999; Petzoldt, 1999; Rex et al., 2004; Tilmes et

al., 2006; Kivi et al., 2007; Tegtmeier et al., 2008; Harris et

al., 2010).

Considering the dynamical conditions, it was not unex-

pected to measure low TOC values within the polar vortex

in NH spring 2020. However, as indicated in Fig. 1, it is still

noteworthy that the TOC values were below the typical ozone

hole threshold of 220 DU for about 5 weeks, despite the re-

duced chlorine content in the stratosphere. The occurrence

of TOC values below 220 DU in March 2020 derived from

satellite instrument measurements is confirmed by ground-

based measurements at different NH stations, in particular

at stations in Canada (e.g., Alert, Eureka, and Resolute). The

ozone data are available, for instance, at http://www.temis.nl/

uvradiation/UVarchive/stations_uv.html (last access: 13 Jan-

uary 2021; van Geffen et al., 2017). Additional ozonesonde

profiles are discussed in detail by Wohltmann et al. (2020)

and Bernhard et al. (2020).

This study provides a description of the dynamical situa-

tion in NH winter and spring 2019/2020, which for the first

Atmos. Chem. Phys., 21, 617–633, 2021 https://doi.org/10.5194/acp-21-617-2021

http://www.temis.nl/uvradiation/UVarchive/stations_uv.html
http://www.temis.nl/uvradiation/UVarchive/stations_uv.html


M. Dameris et al.: Record low ozone values over the Arctic 619

Figure 1. Total ozone column over the Northern Hemisphere on 5, 12, 19, and 28 March and 7 April 2020 measured by the TROPOMI

instrument on board the Sentinel-5 Precursor (S5P) satellite. The color scale shows Dobson units (DU). The area with total ozone column

values below 220 DU is denoted by the white color. Grey areas near the North Pole indicate missing data during polar night.

time led to TOC values below 220 DU in larger areas of the

polar vortex for an extended time period over the Arctic. We

compare winter 2019/2020 to winters with similar dynami-

cal conditions in Arctic spring but which did not show TOC

values below 220 DU over the polar NH in spring over an ex-

tended time period. Further, we also demonstrate that the low

TOC values over the Arctic observed in spring 2020 are far

from the conditions usually observed in the Antarctic ozone

hole.

In the next section (Sect. 2) the data sets used are intro-

duced, including a short description of the performed data

processing. In Sect. 3 the special situation in NH winter and

spring 2019/2020 is presented in detail, and in Sect. 4 it is

compared with two NH winter and spring seasons, namely

1996/1997 and 2010/2011, where similar polar stratospheric

conditions – including low TOC values – have been ob-

served. In addition, the observations in Arctic winter and

spring 2019/2020 are compared to a typical Antarctic ozone

hole as detected in 2016 and to the small Antarctic ozone

hole observed in 2019. The discussion of results and the con-

clusions are presented in Sects. 5 and 6, respectively.

2 Data and data processing

2.1 Meteorological data

In this study the presented dynamical analyses are based

on meteorological data derived from the European Centre

for Medium-Range Weather Forecasts’ (ECMWF’s) most re-

cent atmospheric reanalysis, ERA5, i.e., the fifth generation

(Hersbach et al., 2019b, 2020). The ERA5 data used in this

study cover the period from 1979 to 2020. For our investi-

gations ERA5 temperature and wind data were used at the

provided 0.25◦ × 0.25◦ resolution. Daily mean data are cal-

culated for the presentations of the respective meteorologi-

cal situations from the ERA5 hourly data on pressure levels

(Hersbach et al., 2018). Monthly mean values are obtained

from the monthly mean data at pressure levels (Hersbach et

al., 2019a). In addition, daily potential vorticity (PV) fields

on isentropes have been derived from hourly PV data on

isentropes, which were obtained from the full ERA5 data

set (Copernicus Climate Change Service (C3S), 2017) and

regridded to a regular latitude longitude grid (of roughly

0.28◦ × 0.28◦). ERA5 (raw) data are publicly available. For

details, see the Data Availability section.

2.2 Ozone data

Ozone data from July 2019 to April 2020 from the Tropo-

spheric Monitoring Instrument (TROPOMI) sensor on board

the EU/ESA Copernicus Sentinel-5 Precursor satellite are

scientifically used for the first time in combination with the

long-term ozone data set from the European satellite data

record GOME-type Total Ozone Essential Climate Variable

(GTO-ECV) from July 1995 to June 2019 (Coldewey-Egbers

et al., 2015). The publicly available (Level 2) TOC data for

July 2019 to April 2020 are derived from the TROPOMI sen-

sor using the GODFIT algorithm (Lerot et al., 2014). The es-

timated mean magnitude of the bias of the TROPOMI TOC

compared with ground-based measurements is less than 1 %,
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with a mean standard deviation of up to 2.5 % (Garane et al.,

2019). An initial comparison of TOCs from TROPOMI and

the Ozone Monitoring Instrument (OMI) on board the NASA

Aura spacecraft indicated that TROPOMI TOCs are slightly

smaller (∼ −1 %) than OMI TOCs. A similar difference is

thus expected with respect to GTO-ECV since OMI provides

the reference basis for the combined record (see next para-

graph). The TROPOMI TOC images presented for the first

time in this study are based on daily mean data regridded to

1◦ × 1◦ resolution to facilitate the comparison with the GTO-

ECV data. For details, see the Data Availability section.

GTO-ECV has been developed in the framework of the

European Space Agency’s Climate Change Initiative ozone

project and is based on observations from different satellite

sensors: the Global Ozone Monitoring Experiment on board

the second European Remote Sensing satellite (GOME/ERS-

2), the Scanning Imaging Absorption Spectrometer for At-

mospheric Chartography on board the Environmental Satel-

lite (SCIAMACHY/ENVISAT), the Ozone Monitoring In-

strument on board the Aura satellite (OMI/Aura), and the

Global Ozone Monitoring Experiment second generation on

board the MetOp satellite (GOME-2/MetOp), covering the

time period from July 1995 to June 2019 (Coldewey-Egbers

et al., 2015). As for TROPOMI, the retrieval algorithm GOD-

FIT (Lerot et al., 2014) is used to derive TOCs from the mea-

surements of the individual satellite sensors. Before the sep-

arate data records are merged into one single product, ad-

justments are applied in order to minimize possible inter-

sensor biases and/or drifts. If not accounted for, such dis-

crepancies can introduce unwanted discontinuities or artifi-

cial trends in the combined record. Due to its notable tem-

poral stability, OMI was selected to serve as a reference for

the other instruments. The data are then adjusted by using

a correction that depends on latitude and time. The agree-

ment between GTO-ECV and ground-based observations is

0.5 %–1.5 % peak-to-peak amplitude with a negligible long-

term drift in the NH (Garane et al., 2018), and the difference

between GTO-ECV and an “adjusted” TOC data set based

on reanalysis data is between −0.5±1.7 % and −1.0±1.1 %

(for details, see Coldewey-Egbers et al., 2020). In particular,

the excellent temporal stability makes the GTO-ECV data

record suitable and useful for applications related to long-

term investigations of the ozone layer. In this study we use

the daily mean data product at 1◦ × 1◦ resolution to analyze

minimum ozone columns in the NH polar region during the

past 24 years. During polar night, the satellite sensors used

cannot provide measurements. For instance, in December,

north of about 70◦ N, no observations are available. With re-

turning sunlight, the coverage in the NH high-latitude regions

improves, and global coverage resumes around 20 March.

3 Situation in Northern Hemisphere winter and spring

2019/2020

Arctic winter and early spring 2019/2020 showed a persis-

tent stratospheric polar vortex with strong zonal winds from

mid-December until early April. Figure 2 presents the po-

tential vorticity (PV) field of ERA5 in the NH at the isen-

tropic surface of 475 K (around 20 km altitude) and shows

the position and strength of the polar vortex. The region of

strong PV gradients, which is represented here by the con-

tour line of 36 PV units (e.g., Wohltmann et al., 2020), in-

dicates the edge of the polar vortex. The figure illustrates

that the polar vortex is strong in March and early April and

that the position of the polar vortex coincides with the re-

gion of low TOC values (Fig. 1). Figure 3 shows strong zonal

mean zonal wind speeds at 60◦ N, 10 hPa (about 30 km alti-

tude) in the ERA5 data (magenta line and dots in the fig-

ure), which are higher than the monthly mean values for

the time period from 1979/1980 to 2019/2020 (see grey dots

in the figure). This finding is in line with a similar analy-

sis by Lawrence et al. (2020), who used Modern-Era Ret-

rospective analysis for Research and Applications version 2

(MERRA-2) data. In addition, Lawrence et al. (2020) showed

that the polar vortex was generally stronger than usual (with

respect to the climatological mean) in the polar stratosphere

from November to April. Further, their analysis showed the

height dependence of the zonal mean zonal wind anoma-

lies, and it was found that the anomalies in NH spring

are most pronounced around 10 hPa (and above). Smaller

dynamical fluctuations were detected in winter 2019/2020,

which were caused by planetary wave activity (Lawrence

et al., 2020; for additional information, see https://acd-ext.

gsfc.nasa.gov/Data_services/met/ann_data.html, last access:

13 January 2021; or https://ozonewatch.gsfc.nasa.gov/, last

access: 13 January 2021; a key reference for such analyses

is Newman et al., 2001). No minor or major warmings of

the polar stratosphere were observed (see below), and the

polar vortex was mostly undisturbed and showed a circular

shape, except for the period from mid-January to beginning

of February 2020, as can be seen from Fig. 3. These re-

sults are in agreement with Lawrence et al. (2020). In Fig. 4

the ERA5 monthly mean zonal winds derived for the NH

in January, February, and March 2020 indicate a persistent

strong polar vortex, with maximum zonal wind speeds up to

118 m s−1 at 10 hPa in January.

The dynamical conditions in winter 2019/2020 with low

planetary wave activity result in very low temperatures in the

polar lower stratosphere during polar night, especially in Jan-

uary, February, and March, which cause a strong polar vor-

tex as a response. In the following, our analyses of lower

stratospheric temperatures focus on the 50 hPa pressure level

(about 20 km altitude), which is within the height range im-

portant for ozone depletion. Figure 5 shows that the monthly

mean temperatures in January, February, and March 2020

were very low in comparison with the respective mean values
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Figure 2. Potential vorticity (PV) on the 475 K isentropic surface over the Northern Hemisphere on 5, 12, 19, 28 March and 7 April 2020

based on ERA5. The color scale shows potential vorticity units (PVUs); 1 PVU is 10−6 m−2 s−1 K kg−1. The grey contour highlights the

36 PVU. Red contour lines indicate the polar temperature field, with values ranging from 210 to 195 K; the distance of isolines is 5 K.

calculated for the last 4 decades (1979/1980–2019/2020). In

March 2020 the calculated maximum temperature difference

with respect to the long-term mean was −23.8 K. In Fig. 6

(magenta line) minimum polar temperatures below 195 K at

50 hPa are detected in the polar cap region (50–90◦ N) from

the beginning of December until the end of March. Further

analyses of the temperature field at 50 hPa indicate large ar-

eas below 195 K. This result agrees with the analyses by

Lawrence et al. (2020) based on MERRA-2 and by Wohlt-

mann et al. (2020) based on ERA5. As indicated in Fig. 7

(dotted magenta line), the maximum daily mean area of tem-

peratures below 195 K is 13 × 1012 m2, found at the end of

January. At the end of March, the daily cumulative area be-

low 195 K, i.e., the sum of the daily areas below 195 K up

to the respective date, results in about 920 × 1012 m2. This

led to conditions allowing for the formation of NAT-PSCs at

50 hPa for about 3.5 months (see Figs. 6 and 7). Our results

are supported by Lawrence et al. (2020) and Wohltmann et

al. (2020), who among others analyzed the volume of PSCs

(see also Manney et al., 2020). When the sun rises in spring,

sunlight delivers the energy required for starting a chemical

depletion process of ozone (e.g., Solomon, 1999). In spring

2020 record low Arctic TOC values below 220 DU devel-

oped within the boundaries of the strong polar vortex for 8

continuous days from 12 to 19 March (see Fig. 1 and also

the magenta line in Fig. 8). A region of significantly reduced

TOC values inside the polar vortex was observed over the

polar cap from the beginning of March until early April 2020

(Fig. 1).

In Figs. 3 and 6, corresponding values of mean zonal

winds and minimum polar cap temperatures over the Antarc-

tic are shown. In particular, a typical, undisturbed SH sit-

uation in 2016 (red lines) and the situation in 2019 (pur-

ple lines) with a dynamically disturbed spring season are

presented. It becomes evident that in winter the zonal

mean zonal winds (at 60◦ S, 10 hPa) are stronger (by about

30 m s−1), and the minimum temperatures (polar cap, 50 hPa)

are much lower (about 10 K) than in the Arctic (see also War-

gan et al., 2020).

The temporal evolution of minimum TROPOMI TOC val-

ues north of 50◦ N from July 2019 until April 2020 is pre-

sented in Fig. 8 (magenta line) and compared with histori-

cal values from the GTO-ECV data record (see Sect. 2 for

details). In winter 2019/2020 ozone values were slightly be-

low mean conditions most of the time until the end of Febru-

ary with respect to mean minimum TOC values (Fig. 8; ma-

genta line vs. thick black line). There were however sev-

eral short-term deviations towards even lower TOC, during

so-called ozone mini-hole events (e.g., Millán and Manney,

2017, and references therein). The most noteworthy exam-
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Figure 3. Daily (lines) and monthly (dots; in the center of each

month) mean zonal mean zonal wind (in m s−1) at 10 hPa (about

30 km altitude): the Northern Hemisphere winters 1996/1997,

2010/2011, 2018/2019, and 2019/2020 at 60◦ N from 1 Decem-

ber to 30 April based on ERA5 data are displayed in blue, green,

brown, and magenta (lines and dots); the Southern Hemisphere win-

ters 2016 and 2019 at 60◦ S from 1 June to 1 November (attention:

the respective data are shifted by 6 months) based on ERA5 data

are displayed in red and purple (lines and dots with crosses). Ad-

ditional monthly means for the Northern Hemisphere winters from

1979/1980 to 2019/2020 are shown as grey dots in the center of

each month. For simplicity, the leap day in 2020 (29 February) was

neglected in the daily time series.

ples occurred in early December 2019 (3 and 4 December),

the beginning of January 2020 (4–8 January), and the end

of January (25–27 January). Ozone mini-holes are synoptic-

scale features (with a high-pressure system in the troposphere

below the stratospheric polar vortex, i.e., a low-pressure area)

with significantly reduced TOC values. It is well understood

that ozone mini-holes primarily result from dynamical pro-

cesses (e.g., Millán and Manney, 2017). The positions of the

mini-holes correlate well with minima of potential vorticity

near the tropopause (Peters et al., 1995; James and Peters,

2002). Hoinka et al. (1996) found that about 50 % of short-

term TOC fluctuations in the NH can be explained by vari-

ations of the tropopause pressure (see also Manney et al.,

2011). Furthermore, Steinbrecht et al. (1998) showed that an

increase of tropopause height by 1 km is connected with a re-

duction of TOC by 16 DU. Figure 8 illustrates that such mini-

hole events occur regularly (the lower light grey line) during

NH winter. The ozone mini-holes very commonly develop

in the North Atlantic region and then often drift eastward

towards northern Europe within a few days (James, 1998).

This was also the case for the three examples seen in win-

ter 2019/2020, with minimum TOC found over northern Eu-

rope (not shown). Since the polar vortex already existed in

late November and early December 2019 (Lawrence et al.,

2020) with lower than usual TOC, the ozone mini-hole, for

instance on 3 and 4 December, showed very low TOC values

(170 DU; Fig. 8) at 65◦ N, northeast of United Kingdom and

west of Scandinavia.

Because the polar vortex was persistent and strong since

the beginning of the Arctic winter 2019/2020, reduced TOC

values inside the polar vortex and higher TOC values out-

side were observed from January 2020 onwards but with

TOC values clearly above 220 DU inside the vortex. As indi-

cated in Fig. 4, the polar vortex with persistent strong zonal

winds and strong PV gradients (see Fig. 2) prevented the

meridional transport of ozone-rich air from lower latitudes

towards the NH polar region. Lawrence et al. (2020) showed

that the undisturbed polar vortex acted as a strong transport

barrier. This is, among others, indicated by ozonesonde and

ground-based measurements at different NH stations, with

lower TOC values in the inner part of the polar vortex and

higher TOC values outside. Respective ozone data are avail-

able at http://www.temis.nl/uvradiation/UVarchive/stations_

uv.html (last access: 13 January 2021; van Geffen et al.,

2017) and also available at https://woudc.org/data/explore.

php (last access: 13 January 2021) and at https://www.ndacc.

org (last access: 13 January 2021; see also Wohltmann et al.,

2020 and Bernhard et al., 2020). After mid-February, low

TOC values inside the polar vortex can be identified also

in the TROPOMI data (not shown), which is indicated by

a strong horizontal ozone gradient in the vicinity of the polar

jet with the strongest zonal winds.

Remarkable deviations from normal Arctic conditions

were found starting in early March 2020 until early April,

when low TOC values in the north polar region were detected

(magenta line in Fig. 8): the long period of unusually low

TOC started in early March 2020, falling below 220 DU for

the first time on 2 March, and continued with similarly low

TOC – including a period of 8 consecutive days with mini-

mum TOCs below 220 DU – until 7 April. For the first time

TOC values near or below 220 DU unrelated to ozone mini-

hole events were observed for a period of about 5 weeks,

corresponding to new record low values for this time of

the year. The maximum area with TOC below 220 DU was

0.9 million km2 (= 0.9 × 1012 m2) on 12 March (Fig. 1). For

12 March, the size of the polar vortex is 21.75 million km2

(Fig. 2). This is in the order of 4 % of the polar vortex area

at the 475 K isentropic surface inside the 36 PV unit con-

tour (Wohltmann et al., 2020). In comparison with corre-

sponding values of a typical ozone hole in the Antarctic (here

2016; Fig. 8, red line; Fig. 9d) the area of low TOC (below

220 DU) is much smaller, and the minimum TOC is clearly

higher. The Antarctic ozone hole in spring 2016 showed min-

imum TOC clearly below 150 DU, and TOC values below

220 DU were found for a period of about 4 months. The

maximum area of the ozone hole was in the order of 20 mil-

lion km2 (Fig. 9d). Even the maximum area of record low

TOC values (below 220 DU), detected in the Arctic in spring

2020 (Fig. 9a), is just about 10 % of the exceptionally small

Antarctic ozone hole observed in SH spring 2019; see War-
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Figure 4. ERA5 monthly mean wind at 10 hPa (about 30 km altitude), showing a strong vortex in the north polar region, with speeds of up

to 118, 103, and 89 m s−1 for January to March 2020 respectively.

Figure 5. ERA5 monthly mean temperature at 50 hPa (about 20 km altitude) for January to March (columns 1 to 3) for year 2020 (a–c) and

the corresponding temperature anomalies (d–f) with respect to the average from 1979–2019, showing negative differences of up to −9.93 K

in January, −18.44 K in February, and −23.83 K in March 2020.
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Figure 6. Minimum values of daily (lines) and of monthly (dots; in

the center of each month) mean temperatures (in K) at 50 hPa (about

20 km altitude): the Northern Hemisphere winters 1996/1997,

2010/2011, 2018/2019, and 2019/2020 for 50–90◦ N from 1 De-

cember to 30 April based on ERA5 data are displayed by blue,

green, brown, and magenta (lines and dots); the Southern Hemi-

sphere winters 2016 and 2019 for 50–90◦ N from 1 June to

1 November based on ERA5 data are displayed in red and pur-

ple (lines and dots with crosses). The Southern Hemisphere data

are shifted by 6 months. Additionally, the minima of the monthly

mean temperature data for the Northern Hemisphere winters from

1979/1980 to 2019/2020 are shown as grey dots in the center of

each month. For simplicity, the leap day in 2020 (29 February) was

neglected in the daily time series. The dashed dark green horizon-

tal lines at 195 and 188 K mark the thresholds for the formation of

NAT-PSCs and ice PSCs, respectively (see text).

Figure 7. Daily area (in 1012 m2) with temperature less than 195 K

at 50 hPa (about 20 km altitude) in the region 50–90◦ N from 1 De-

cember to 30 April based on ERA5 data (solid lines). Daily cumu-

lative values are indicated as faint lines. The Northern Hemisphere

winters 1996/1997, 2010/2011, 2018/2019, and 2019/2020 are dis-

played by blue, green, brown, and magenta lines, respectively. For

simplicity, the leap day in 2020 (29 February) was neglected in the

daily time series.

Figure 8. Annual cycle of the minimum total column ozone val-

ues (in Dobson Units, DU) in the north polar region between 50

and 90◦ N and in the south polar region between 50 and 90◦ S

derived from the European satellite data record GOME-type To-

tal Ozone Essential Climate Variable (GTO-ECV) from July 1995

to June 2019 and TROPOMI data from July 2019 to April 2020.

The thick black line shows the GTO-ECV mean annual cycle in the

north polar region, with the lowest ozone values in the fall season

(October, November) and the highest ozone values in late spring

(April, May). The thin black lines indicate the maximum and mini-

mum values for the complete time period of satellite measurements

starting in 1995. The light grey shading denotes the 10th percentile

and the 90th percentile, and the dark grey shading denotes the 30th

percentile and the 70th percentile, respectively. The magenta line

shows the minimum values for the TROPOMI total ozone in the

2019/2020 season. The blue and green lines show the minimum

values for the total ozone in the years 1996/1997 and 2010/2011,

respectively. For comparison, the annual cycle of the minimum to-

tal column ozone values in the south polar region is shown in the

years 2016 (red line) and 2019 (purple line). The Southern Hemi-

sphere data are shifted by 6 months.

gan et al. (2020), who reported an ozone hole area of roughly

5–10 million km2 during September and October 2019 (see

also Fig. 9e).

4 Situations in Northern Hemisphere winter and

spring 1996/1997 and 2010/2011

There are two other prominent spring seasons in the NH,

which showed similarly strong and cold stratospheric po-

lar vortices. In particular, comparable dynamical conditions

in the NH stratosphere were observed in February and

March 1997 (e.g., Coy et al., 1997; Manney et al., 1997;

Lefèvre et al., 1998; Hansen and Chipperfield, 1999) and

2011 (e.g., Manney et al., 2011; Sinnhuber et al., 2011; Kut-

tippurath et al., 2012; Hommel et al., 2014). We note that

the characteristics of the polar vortex – which in turn have

direct or indirect consequences for the TOC, either by chem-

ical ozone depletion or (meridional) transport of air masses –
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Figure 9. Monthly mean total ozone columns over the Northern Hemisphere in March 1997 (a), 2011 (b), and 2020 (c) and the Southern

Hemisphere in October 2016 (d) and 2019 (e). The plot for March 1997 is based on GOME/ERS-2 data with a limited spatial sampling,

which induces the orbit structures on the monthly mean values; the plots from 2011 and 2016 are based on GTO-ECV; and the plots from

2019 and 2020 are based on TROPOMI/S5P. Grey areas near the poles indicate missing data during polar night.

vary in different NH winters (e.g., Petzoldt, 1999; Tegtmeier

et al., 2008; see also Manney et al., 2011).

In Fig. 3 the temporal evolution of the two stratospheric

polar vortices in the NH in 1996/1997 (blue line) and

2010/2011 (green line) is indicated by the zonal mean zonal

wind speed at 60◦ N, 10 hPa. In comparison with the dynami-

cal situation in January, February, and March 2020 (magenta

line in Fig. 3), the respective time periods in 1997 and 2011

also showed a persistent polar vortex with high zonal wind

speeds, which reached values of up to more than 50 m s−1.

These values are higher than the long-term mean values,

which show an increase up to 40 m s−1 until the beginning of

January and a decrease thereafter (see also Fig. 1 in Lee and

Butler, 2020). While the temporal evolution of the dynami-

cal situation in Arctic spring 2011 was very similar to that

of 2020 with a persistent polar vortex and high zonal wind

speeds until mid-March, the period of strong zonal winds

in 1997 continued until April. The polar vortex in Decem-

ber 1996 was weak, and therefore polar temperatures were

relatively high (higher than 195 K; see next paragraph). The

evolution of the winter vortices in December 2010 and 2019

is similar, reaching zonal wind speeds of about 40 m s−1 in

mid-December. Similar values were shown by Lawrence et

al. (2020), who looked at MERRA-2 data. In this context,

Manney et al. (2011) showed that in 2011 the meridional

transport was weak at the edge of the polar vortex (i.e., a

strong barrier) throughout the winter. Less ozone was trans-

ported from lower latitudes to higher latitudes. The merid-

ional transport was enhanced in 1997 because the polar vor-

tex was weaker in December and January (Manney et al.,

2011).

In all 3 years, February and March dynamical conditions

led to low stratospheric temperatures in the polar cap region

(50–90◦ N). The temporal evolution of the observed daily

minimum temperatures at 50 hPa is shown in Fig. 6. The

minimum temperatures were below the threshold tempera-

ture for the formation of NAT-PSCs (195 K) in February and

March of all 3 years. Minimum temperatures at 50 hPa in

December 2019 and January 2020 most of the time were

slightly lower than the minimum temperatures in Decem-

ber/January 2010/2011. In turn, the minimum temperatures

in December/January are clearly higher in 1996/1997 than

in 2010/2011 and 2019/2020. The minimum values of the

monthly mean temperatures are given in Table 1, indicating

low temperatures in December 2019 and January and Febru-

ary 2020 (see also the colored dots in Fig. 6).

A series of studies published in the past highlight the dif-

ferences of the two winters 1996/1997 and 2010/2011, in par-

ticular regarding polar chemical processes (e.g., Manney et

al., 2011; Kuttippurath et al., 2012; Chap. 3 in WMO, 2014).

Severe chemical ozone loss was observed in spring 2011

(Manney et al., 2011). In spring 1997 the chemical ozone loss

was only moderate (Manney et al., 1997; Tegtmeier et al.,

2008). The most important reason according to these studies

was the late development of the polar vortex and late drop

of temperatures below PSC thresholds in winter 1996/1997

https://doi.org/10.5194/acp-21-617-2021 Atmos. Chem. Phys., 21, 617–633, 2021
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Table 1. Minimum temperatures (in kelvin) of the polar cap region (50–90◦ N) at 50 hPa (about 20 km altitude) based on the monthly mean

temperatures from ERA5 in December, January, February, and March of 1996/1997, 2010/2011, and 2019/2020 and the long-term mean

values (1979/1980–2019/2020), respectively.

Min. temp. 50 hPa December January February March

1996/1997 201.3 196.5 191.8 192.7

2010/2011 195.6 194.2 191.2 194.7

2019/2020 194.3 190.7 190.8 194.6

Long-term means (1979/1980– 197.0 195.6 199.5 205.5

2019/2020)

(see also Table 1 and Figs. 6 and 7). Recent studies found

that the maximum ozone loss in spring 2020 was similar to

that of spring 2011 (e.g., Manney et al., 2020; Wohltmann et

al., 2020; Grooß and Müller, 2020). These papers also found

that TOC values were lower in 2020 because chemical loss

started earlier and because of less horizontal mixing due to a

permanent strong vortex.

As demonstrated in Fig. 7, the daily areas with tem-

peratures below 195 K at the 50 hPa pressure level are

obviously larger in 2019/2020 (magenta line) than in

1996/1997 (blue line) and 2010/2011 (green line). In par-

ticular, the cumulative areas with temperatures below 195 K

at 50 hPa are markedly different: whereas in 2019/2020 the

cumulative area was about 920 × 1012 m2, in 1996/1997

it was about 370 × 1012 m2, and in 2010/2011 it was

about 650 × 1012 m2. Furthermore, in the last week of Jan-

uary 2020 the temperatures at 50 hPa went below 188 K (ma-

genta line in Fig. 6), the typical ice PSC threshold (PSC

type 2, ice PSCs; see, for instance, Fig. 4-1 of Chap. 4

in WMO, 2018). The maximum daily area with tempera-

tures below 188 K at 50 hPa was 2.8 × 1012 m2 on 30 Jan-

uary, and the cumulative area with temperatures below

188 K at 50 hPa reached its maximum of 18 × 1012 m2 on

2 March 2020. While the threshold for ice PSCs was not

reached in 1996/1997, in 2010/2011 the cumulative area with

temperatures below 188 K at 50 hPa was estimated to be

4.3 × 1012 m2.

To summarize, in all 3 years the temperatures in the

lower stratosphere in February and March were in a sim-

ilar range, showing colder conditions than usual. Decem-

ber 2019 and January 2020 were also clearly colder than

the long-term mean conditions (Table 1). Winter 2019/2020

showed a larger area below the formation temperature of

PSCs than the other two NH winters for an extended pe-

riod of time (see Fig. 7). Permanent presence of PSCs over

about 4 months enabled efficient chlorine activation. Addi-

tionally, PSCs supported strong denitrification of the lower

stratosphere by irreversible removal of total reactive nitro-

gen (NOy), in particular HNO3, by uptake of NOy on the

surface of PSCs, followed by sedimentation of PSC parti-

cles (Fahey et al., 1990). This ultimately enabled a period of

chemical ozone depletion that was longer than usual (e.g.,

Fahey et al., 1990; Rex et al., 1999; Pommereau et al., 2018).

Manney et al. (2020) analyzed the data of the spaceborne

Microwave Limb Sounder (MLS) instrument, indicating that

denitrification was stronger in 2020 than in 2011. Further, in

Manney et al. (2011) it was shown that denitrification was

clearly stronger in 2011 than in 1997.

The seasonal evolution of minimum TOC values north

of 50◦ N between July 1996 and June 1997 (blue line in

Fig. 8) and between July 2010 and June 2011 (green line

in Fig. 8) indicates normal or slightly enhanced ozone val-

ues until February with respect to the long-term mean value

(thick black line in Fig. 8). The long-term mean value is

based on satellite observations from 1995 to 2019. Typical

features of a strong polar vortex can be observed in Febru-

ary 1997 and February 2011, with low TOC values in the

polar vortex and relatively high TOC values in the collar re-

gion of the polar vortex (not shown). Around the beginning

of March 1997 and March 2011 the TOC values declined,

and low TOC values were detected in both years until early

April. In spring 1997 the dynamical conditions led to fre-

quent ozone mini-holes (Coy et al., 1997) and to a higher

tropopause that obviously contributed to lower TOC values

via dynamical processes (Manney et al., 2011).

Figure 9a–c show the TOC monthly means for

March 1997, 2011, and 2020. Low TOC values over

the polar cap can be seen in all three cases. The lowest

Arctic TOC values are detected in boreal spring 2020. In

spring 1997 and 2011 TOC values below 220 DU were not

detected over larger areas and over several consecutive days.

The monthly mean minimum TOC value for March 2020,

which is 221 DU, is much lower compared to the monthly

mean minimum TOCs for March 1997 (267 DU) and for

March 2011 (252 DU). The temporal evolution of minimum

Antarctic TOC values south of 50◦ S (the red and purple

line in Fig. 8 for 2016 and 2019, respectively) and the TOC

monthly means for October 2016 and 2019 (Fig. 9d and e)

show that the size and strength of the Antarctic ozone hole

are much larger than the corresponding values detected for

the Arctic in spring 2020.
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5 Discussion

In recent decades, Arctic and Antarctic winter and early

spring TOC variability reflects in large parts the natural fluc-

tuations of the stratospheric dynamics of the respective hemi-

spheres (e.g., Chap. 4 in WMO, 2018). In particular, dy-

namical conditions of the NH stratosphere at higher lati-

tudes in winter can range from a very disturbed polar vortex

(i.e., by strong planetary wave activity), which could lead to

high stratospheric temperatures, to conditions with a persis-

tent strong polar vortex (i.e., by low planetary wave activ-

ity), which could create low stratospheric temperatures (e.g.,

Chap. 4 in WMO, 2018).

The NH winter season of 2019/2020 presented a situation

with significantly suppressed meridional air mass exchange

and transport into the polar vortex area in combination with

enhanced ozone depletion by heterogeneous chemical pro-

cesses inside the polar vortex (Manney et al., 2020), which

causes a clear reduction of TOC. Winter 2019/2020 shows an

extraordinary dynamical situation, with an unusual persistent

strong and cold polar vortex over the season compared to the

last 4 decades (the period of the ERA5 data set used in this

study). There is some evidence that a similar dynamical event

did not occur in the period from 1955 to 1980, i.e., before the

starting point of our analyses based on ERA5. An analysis of

historical data was provided by the Stratospheric Research

Group at FU Berlin. In Labitzke and Naujokat (2000) it was

stated that “the spring of 1997 was the coldest within our se-

ries of 45 winters”; the Berlin time series ranges from 1955

to 2000. Among others, they compared the monthly mean

North Pole temperatures at 30 hPa in all years and found that

February 1997 (190 K) and March 1997 (194 K) were clearly

colder than all other years. The second coldest spring was

detected in 1967 (February: 195 K; March: 201 K). Temper-

atures in January 1997 were near the climatological mean

value. This suggests that the dynamical situation of winter

and spring 2019/2020 has stood out since the beginning of

the monitoring of the stratosphere in the 1950s. Although the

historical Berlin data set does not have the same quality as

ERA5, it is suitable for a qualitative evaluation of the respec-

tive dynamical situations of NH winter and spring seasons.

Lawrence et al. (2020) looked at the Japanese Meteorologi-

cal Agency’s 55-year reanalysis (JRA-55), which goes back

to winter 1958/1959. Based on the zonal mean zonal wind

at 60◦ N, 10 hPa, they found that winter 2019/2020 ranked

third. The two winters of 1966/1967 and 1975/1976 (which

are indicated as moderate cold winters in the Berlin analysis)

were the strongest on record with respect to the zonal mean

wind (mean from December to March). The slightly different

order regarding record years indicates that the results depend

on the considered meteorological variable as well as the alti-

tude and latitude region. It is clear that the data before 1980

(pre-satellite era) are more uncertain. Nevertheless, it is ob-

vious that winter 2019/2020 was one of the coldest winters

in the last 65 years and that it showed an exceptionally per-

sistent strong polar vortex.

The stratospheric dynamical conditions were completely

different in the NH winter 2018/2019 (brown line in Fig. 3)

compared to 2019/2020 (magenta line in Fig. 3). In NH win-

ter 2018/2019 a sudden major stratospheric warming event

began in late December 2018. This strong disturbance of the

polar vortex by planetary waves led to a pronounced warm-

ing of the lower stratosphere (e.g., Lee and Butler, 2020),

indicating minimum temperatures in the polar cap region at

50 hPa, which were clearly above the threshold for the for-

mation of NAT-PSCs (195 K) for the complete winter season

(brown line in Fig. 6). Consequently, TOC values similar to

the long-term mean in the Arctic region were found from late

winter to early spring (not shown).

The SH spring seasons of 2002 and 2019 provide two addi-

tional examples of the importance of stratospheric dynamics

in the development of low TOC values. In September 2002

a sudden major stratospheric warming in connection with a

breakdown of the polar vortex was detected, which led to a

split of the ozone hole (Sinnhuber et al., 2003; Allen et al.,

2003; Hoppel et al., 2003; Stolarski et al., 2005). In Septem-

ber 2019 the polar vortex was also significantly disturbed

(Wargan et al., 2020; Lim et al., 2020; see purple lines in

Figs. 3 and 6). The minimum TOC values in the Antarctic

were noticeably higher in 2019 than in previous years (War-

gan et al., 2020; see the purple line in Fig. 8). Nevertheless, it

is obvious that the small ozone hole in Antarctic spring 2019

is still much larger than the area with record low TOC values

detected in Arctic spring 2020 (see also Fig. 9).

The Arctic observations in winter and spring 2019/2020

are consistent with our expectation that Arctic ozone reduc-

tions in spring are largest after stratospheric winters with a

strong, circular polar vortex in connection with low polar

lower stratospheric temperatures (Chap. 4 in WMO, 2018).

However, as can be seen in Fig. 6, the temperatures in the

Antarctic are considerably lower than in the Arctic (even

for 2019/2020), and the period of low temperatures is much

longer in the Antarctic. As a result, the record low Arctic

TOC values are much higher than the TOC values observed

in the Antarctic. This is also the case for the small ozone hole

in Antarctic spring 2019, as indicated in Fig. 8.

The dynamical conditions in the Arctic stratosphere in

February and March 2020 were similar to the conditions in

early spring 1997 and 2011. All 3 years showed low TOCs in

March (Fig. 8). Minimum TOC values were below 220 DU

for several days in March 2020, which was not the case

for March 1997 nor 2011, although the stratospheric chlo-

rine content was higher in 1997 (about 15 %) and slightly

higher in 2011 (Chap. 1 in WMO, 2018). Especially in De-

cember 2019 and January 2020 the area of temperatures be-

low 195 K in the lower stratosphere was larger than in the

two other years discussed here (see Fig. 7). In 2019/2020

the minimum polar cap temperatures at 50 hPa were below

195 K (the threshold for formation of NAT-PSCs) in Decem-
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ber, January, February, and the beginning of March (Fig. 6).

In this context, Manney et al. (2020) identified an activa-

tion of chlorine already in the beginning of December. The

daily areas allowing for the formation of PSCs at 50 hPa

were clearly larger in 2019/2020 in comparison with the win-

ters 1996/1997 and 2010/2011. This finding is in line with

the results presented by Lawrence et al. (2020). The ERA5

data set also indicates minimum temperature values in win-

ter 2019/2020, which were slightly above or below 188 K for

a week (in particular at the end of January 2020), providing

conditions for the formation of ice PSCs (see also Manney et

al., 2020).

The observed minimum TOC values in March 2020, with

new low TOC records for the NH polar cap, are related to

substantial ozone depletion in spring (Manney et al., 2020;

Wohltmann et al., 2020). Since the polar vortex in winter and

spring 2019/2020 provided continuous conditions for the for-

mation of PSCs, significant denitrification of the stratosphere

occurred (Manney et al., 2020). This contributed to the 5-

week period of significant TOC reduction by an extended

phase of active stratospheric chlorine (Manney et al., 2011).

Here, we note again that 2020 also started with lower base

values of TOC (inside the polar vortex; see Fig. 8), which

might have been caused by a reduced meridional transport of

ozone from lower to higher latitudes due to the strong polar

vortex during this winter. This might have also contributed

to the fact that the spring TOC values in the Arctic region in

2020 were clearly lower than those found in 1997 and 2011.

Record low stratospheric ozone values over the Arctic in

2020 are not an unequivocal result of climate change. The dy-

namical situations in February and March of 1997, 2011, and

2020 were similar. The cold stratosphere in December 2019

and January 2020 as a single event does not point towards

climate change due to increasing greenhouse gas concentra-

tions. The NH winter 2019/2020 is a perfect showcase for a

NH winter with low planetary wave activity and for a per-

sistent strong vortex with low temperatures. This could be

a sign of climate change if similar conditions were to occur

more regularly in the next years. Although the stratosphere

is cooling due to increasing greenhouse gas concentrations

(Maycock et al., 2018; Steiner et al., 2020), consequences

for stratospheric dynamics, particularly in winter and ozone

depletion in spring, are still under debate (e.g., Bednarz et

al., 2016; Ivy et al., 2016; Pommereau et al., 2018). For in-

stance, the empirical quantification of the relation between

winter–spring loss of Arctic ozone and changes in strato-

spheric climate by Rex et al. (2004) showed that cold (NH)

winters may possibly get colder in the future. The investiga-

tions by Wohltmann et al. (2020) seem to support this hy-

pothesis. It is possible that the cooling of the (lower) strato-

sphere could delay the recovery of the ozone layer (Pom-

mereau et al., 2018). However, this statement is in contra-

diction with results derived from chemistry–climate model

predictions (e.g., Dhomse et al., 2018), indicating that cli-

mate change in the NH will accelerate stratospheric ozone

recovery instead of delaying it (see also Chaps. 3 and 4 in

WMO, 2018). Since the changes of stratospheric temperature

are affected not only by radiative cooling due to enhanced

greenhouse gas concentrations, but also by atmospheric cir-

culation changes (e.g., Langematz et al., 2014), the quanti-

tative determination of the net effect on ozone still remains

a challenge. Furthermore, model calculations by Waibel et

al. (1999) more than 20 years ago showed that higher degrees

of Arctic denitrification in future, related to stratospheric

cooling by enhanced greenhouse gas concentrations, could

lead to larger seasonal ozone depletion despite the projected

decline in inorganic chlorine.

Finally, based on our current knowledge, we deem it un-

likely that the observed enhanced CFC-11 emissions in re-

cent years (Montzka et al., 2018) have significantly influ-

enced the strength of ozone depletion in the NH in 2020

(Dameris et al., 2019; Fleming et al., 2020; Keeble et al.,

2020).

6 Conclusions

This study presents a description of the NH winter and

spring season 2019/2020 and considers the dynamical sit-

uation of the stratosphere and the evolution of the ozone

layer in the Arctic region. Record low TOC values around

220 DU were detected over a large area (up to 0.9 mil-

lion km2) as well as for an extended time period (of about

5 weeks). The situation in 2019/2020 is compared with other

years which showed similar stratospheric dynamics in spring.

We have used recent meteorological data from ERA5 and

TOC data from GTO-ECV (based on the satellite sensors

GOME/ERS-2, SCIAMACHY/ENVISAT, OMI/Aura, and

GOME-2/MetOp) in combination with recent TOC data from

TROPOMI (on board Sentinel-5P). The detected Arctic area

of record low TOC values is much smaller in comparison

with a typical Antarctic ozone hole, which is of the order

of about 20 to 25 million km2 from early September until

mid-October and shows TOC values below 220 DU for up

to about 4 months (WMO, 2018). The Arctic TOC observa-

tions in spring 2020 were extraordinary because TOC values

below 220 DU were not observed in previous years over a

period of 5 weeks in the Arctic. The persistent strong polar

vortex in 2019/2020 (from mid-December to early April) led

to particularly cold stratospheric conditions throughout the

complete winter and early spring season, which likely sup-

ported enhanced ozone depletion compared to other years

(Manney et al., 2020; Wohltmann et al., 2020). The special

dynamical situation in winter 2019/2020 is the cause for the

significant reduction of the TOC in spring 2020.

We note that numerous studies of the 2019/2020 winter

season can be found in a special issue of Geophysical Re-

search Letters and Journal of Geophysical Research: Atmo-

spheres (e.g., Manney et al., 2020; Wohltmann et al., 2020;

Lawrence et al., 2020; Grooß and Müller, 2020; Inness et
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al., 2020; Bernhard et al., 2020), which are based on ob-

servational, reanalysis, and modeling data. Our results agree

with these published studies about the Arctic winter season

2019/2020.

If the regulations of the Montreal Protocol regarding the

prohibition of CFCs are strictly implemented, one can ex-

pect a full recovery of the ozone layer including the polar re-

gions by the middle of this century (Chaps. 3 and 4 in WMO,

2018). In recent years, the beginning of ozone recovery has

already been detected (e.g., Solomon et al., 2016; Weber et

al., 2018). However, in winters with a cold and strong polar

stratospheric vortex, a persistent region of low TOC might

also develop again in the NH in the future. The recovery of

the ozone layer and its interactions with climate change must

be watched carefully, as discussed for instance by Dameris

and Loyola (2011). Continued monitoring of stratospheric

ozone with a suite of instruments will be key to understand

the future development of Arctic ozone. This capability is

crucial to allow for an evaluation of specific events in the

light of the Montreal Protocol.

Data availability. Meteorological data are based on ERA5

from ECMWF (https://cds.climate.copernicus.eu//#!/search?text=

ERA5&type=dataset, last access: 1 October 2020; Copernicus

Climate Change Service, 2017), which is available at the Climate

Data Store (CDS). This work contains modified Copernicus

Climate Change Service information (Copernicus Climate Change

Service (C3S), 2017; Hersbach et al., 2018, 2019a). Neither the

European Commission nor ECMWF is responsible for any use that

may be made of the Copernicus information or data it contains.

In particular, subsets, i.e., wind and temperature data, from the

pressure level data sets of monthly averaged data (Hersbach et

al., 2019a) and hourly reanalysis data (Hersbach et al., 2018)

have been used. Daily mean data are produced using hourly

data on pressure levels and using CDO (Climate Data Operators;
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