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Abstract. Motion blur due to camera shake is one of the predominant
sources of degradation in handheld photography. Single image blind de-
convolution (BD) or motion deblurring aims at restoring a sharp latent
image from the blurred recorded picture without knowing the camera mo-
tion that took place during the exposure. BD is a long-standing problem,
but has attracted much attention recently, cumulating in several algo-
rithms able to restore photos degraded by real camera motion in high
quality. In this paper, we present a benchmark dataset for motion deblur-
ring that allows quantitative performance evaluation and comparison of
recent approaches featuring non-uniform blur models. To this end, we
record and analyse real camera motion, which is played back on a robot
platform such that we can record a sequence of sharp images sampling
the six dimensional camera motion trajectory. The goal of deblurring is
to recover one of these sharp images, and our dataset contains all infor-
mation to assess how closely various algorithms approximate that goal.
In a comprehensive comparison, we evaluate state-of-the-art single image
BD algorithms incorporating uniform and non-uniform blur models.

Keywords: blind deconvolution, camera shake, benchmark,
motion blur.

1 Introduction

Camera motion during exposure is a major problem in handheld photography,
as it causes image blur that destroys details in the recorded photo. Especially
photos taken in low light without flash suffer from motion blur due to the neces-
sity of longer exposure times. Recently, single image blind deconvolution (BD)
has attracted significant attention. Considerable progress was made not only by
conceiving more efficient inference strategies but also by proposing more realistic
imaging models, better able to capture real camera shake. Levin at al. [1] put
together a benchmark dataset for the case of uniform (stationary) blur, allowing
objective evaluation and comparison of single image BD algorithms. The lack of
a proper benchmark for the case of non-uniform blur, however, makes it difficult
to evaluate the performance of recent blind deblurring methods that feature
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non-uniform blur models and go beyond the traditional invariant convolution
model.

To close this gap, this paper presents a new benchmark dataset that is not
restricted to translational motion, but mainly consists of example images with
non-uniform blur originating from real camera trajectories. To this end we de-
signed an experimental setup that allows the recording of unconstrained camera
motion with full six-dimensional degree of freedom at sub-millimeter precision.
Furthermore, we recorded and analysed real camera shake by humans who were
asked to take photos with relatively long exposure times. We confirm the find-
ing of [1] that real camera motion does indeed often involve rotational motion,
rendering image blur non-uniform across the image plane, however, we also find
that the amount of spatial variance of the point spread function (PSF) is often
small. In this context, we also investigate and validate recently proposed imaging
models [2,3], which consider only three (out of a possible six) degrees of freedom
to capture real camera motion.

For playing back real camera shake, we use a Stewart platform (Hexapod)
with six degrees of freedom, featuring repeatability at micrometer accuracy. This
allows the recording of a sequence of sharp ground truth images, taken along the
played-back camera trajectory.

In a comprehensive comparison, we evaluate state-of-the-art single image BD
algorithms with both uniform and non-uniform blur models.

2 Related Work and Contributions

Blind deconvolution has a long history and is subject of numerous publications
in the image and signal processing literature. Early works were motivated by
applications in astronomical imaging and include those of e.g. [4] and [5], which
date back to the early 70s. We refer to [6] for an overview of related methods.

One of the first works to apply BD to the problem of removing camera shake
from a single photograph was [7], combining the variational approach of [8]
with natural image statistics [9]. Subsequent work refined the approach [10],
introduced new inference strategies and fast optimisation techniques [11], and
proposed methods for robust kernel estimation [12,13,14]. See [1] for a compre-
hensive overview of these and related approaches.

Recent work [15,16,2,3,17,18,19] focuses on devising new imaging models that
are better capable of capturing real motion blur that often violates the uniform
blur assumption of previous methods.

Hardware-based approaches to obtain sharper images are based on manipu-
lating the way images are taken. For instance, [20] reconstruct a single sharp
image from a pair of blurred and noisy images. While [21] encodes the move-
ment of objects by “fluttering” the shutter, [22] is able to remove linear object
motion by capturing two images of the scene with a parabolic motion in two
orthogonal directions. [23] exploit inertial measurement sensor data to recover
the true trajectory of the camera during exposure.
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Contributions of this paper:

1. A new setup for recording and playing back camera shake.
2. An extensible benchmark dataset with ground truth data.
3. A comprehensive comparison of state-of-the-art single image BD algorithms.

3 Recording Trajectories of Human Camera Shake

Human camera shake can be characterized by a six dimensional motion trajec-
tory, with three translational and three rotational coordinates changing through
time. We decided to measure such trajectories for several subjects holding a
compact camera (Samsung WB600), since such cameras are in wide spread use.
Typically, they have a small maximum aperture, and images thus get blurred
by camera shake if the available light is insufficient and the use of a flash is
excluded. In such cases, an exposure time of 1/3 sec, as used throughout our
experiments, is realistic.

To measure the six dimensional camera trajectory we used a Vicon tracking
system with 16 high-speed Vicon MX-13 cameras running at a frame rate of
500 Hz. The cameras were calibrated to a cube of roughly 2.5m side length.

To measure the exact position of the camera during a shake, we connected
a light-weight but rigid construction with markers (reflective balls, size 35mm),
see Figure 1. We synchronized the camera shutter with the trajectory data using
the flash of the camera. As the Vicon cameras are only sensitive to infrared light,
the flash light was converted from the optical into the infrared spectrum by using
a photo diode that triggers an infrared lamp.

Fig. 1. Setup: (Left) Light-weight structure with reflective spherical markers for record-
ing camera shake with a Vicon system. (Right) Camera attached to a high-precision
hexapod robot to take pictures with played back camera shakes in a controlled setting.
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Fig. 2. Camera shake: trajectories of the rotation angles (left) and translations (right).
Figure 3 depicts the corresponding PSF.

Fig. 3. Example of a point spread function (PSF) due to camera shake. Figure 2 shows
the underlying 6D motion in detail. Best viewed on screen rather than in print.
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Six subjects were asked to take photographs in a natural way. They were aware
that the exposure time was 1/3 sec. 40 trajectories were recorded with this setup
(three subjects with ten trajectories, three subjects with five trajectories; five
trajectories had to be excluded due to temporary recording problems). Raw
captured motion data is noisy in frequency ranges that can not be due to human
motion. The noise was reduced with an appropriately chosen moving average
filter. Figure 2 shows example filtered trajectories. Figure 3 shows an exemplary
point spread function (PSF) obtained by simulating1 an image of an artificial
point grid (see Section 5.1 for details).

In the next section, we explain how such camera motions can be played back
on a robot. This allows us to assess how accurate the motion capture was, and
whether such camera trajectories can be used for a benchmark.

4 Playing Camera Shake on a Picture-Taking Robot

The six dimensional trajectories were played back on a Stewart platform (hexa-
pod robot, model PI M-840.5PD), which allows minimum incremental motions
of 3µm (x and y axis), 1µm (z axis) and 5µrad (rotations) with a repeatability
±2µm (x and y axis), ±1µm (z axis) and ±20µrad (rotations). An SLR camera
(Canon Eos 5D Mark II) that can be remote controlled was mounted to the
Stewart platform to allow synchronization of the camera trigger with the plat-
form (see Figure 1 for the complete setup). For the benchmark dataset (detailed
in the following) a printed image was mounted at a distance of 62cm from the
camera.

To qualitatively assess whether a real camera shake movement can be recorded
and played back by our setup, we took long exposure images of a point grid
of LEDs with a somewhat exaggerated camera shake (to obtain large visible
blurs). Simultaneously, we recorded the six dimensional camera trajectory. The
recorded trajectory was played back on the Stewart platform and the attached
camera recorded a long exposure of the same point grid. Figure 4 shows that the
real camera shake (left images) is correctly simulated by the Stewart platform
(right images). The existing difference in the images is caused by the fact that
different cameras were used for recording and playing back the trajectory and
that the distance camera to point-grid could not guaranteed to be exactly 62cm
at recording. Nonetheless, in both examples (upper and lower images) the true
image blurred by camera shake and the image generated by playing back the
camera trajectory are reasonably similar. This shows that our setup is able to
capture the movement of real camera shake and to play it back again.

Note that the playback on the Stewart platform was performed in slower mo-
tion (duration 1sec instead of 1/3sec) to increase the smoothness of the move-
ment — stretching time does not change the obtained PSF.

Note that we decided against using the point grid of LEDs during the recording
of the human camera trajectories for the benchmark. We found that the small
motions of real camera shake (where the photographer tries to keep the camera

1 A distance of 62cm, focal length of 50mm were assumed.
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(a) recorded image (b) played back

Fig. 4. Two examples (first and second row) of an image with camera shake and its
counterpart generated by playing back the camera trajectory on a Stewart platform

steady) can not be seen well with the LED point grid. The grid would have to
be positioned rather close to the camera, resulting in an unnatural feeling of
tightness, normally not present while taking a photograph.

5 Analyzing Camera Shake Trajectories

5.1 Is Camera Shake Uniform or Non-uniform?

Often surprisingly, blind deconvolution algorithms for uniform blur work quite
well on real world camera shake, even though theoretically, the resulting blur
should be non-uniform, i.e. varying across the image. To study this effect with
our trajectories we generate a blurred point grid for a given camera trajectory,
see Figure 3 for an example.

We denote the camera trajectory by a point sequence p1, . . . , pT where each
point has six dimensions,

pt = [θx, θy, θz, x, y, z]
T (1)
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with the last three coordinates being the shifts in mm, the axis positioned in-
dicated in Figure 1, the first three coordinates being the rotation angle around
the indicated axis.

Given an image u showing a point grid (14 × 10 equispaced points, size
2808 × 1872), we can visualize the point spread function (PSF) of the camera
trajectory by converting each point pt in time into its corresponding homogra-
phy Ht (assuming distance of 2m for the point grid), assigning p1 the identity
transformation. Then the resulting blurry image v is the superposition of the
transformed point grids:

v =
T
∑

t=1

ht(u) (2)

where ht(u) is the image u transformed byHt. The local blur kernels of the result-
ing PSF ξ can be read off the blurry image v. To quantify the non-uniformness
(abbreviated NU) of the PSF ξ, we introduce the following measure: given four
local blur kernels ξlr, ξur, ξll, ξul of the lower right, upper right, lower left and
upper left corner, we can calculate how similar they are by comparing the lower
left with the upper right and the upper left with the lower right blur kernel:

NU(ξ) =
‖ξll − ξur‖

2 + ‖ξul − ξlr‖
2

2
, (3)

where each blur kernel is normalized to have L2-norm one. Note that the dif-
ference between two blur kernels has to be minimized over all possible shifts
(omitted in the formula for clarity). This can be achieved efficiently by noting
that ‖ξ1 − ξ2‖

2 = ξT1 ξ1 + ξT2 ξ2 − 2ξT1 ξ2, where the first summands are one due
to normalization and the inner products for different shifts are the cross corre-
lations between ξ1 and ξ2. Minimizing ‖ξ1 − ξ2‖

2 for all possible shifts is thus
done by maximizing the cross-correlation between ξ1 and ξ2.

Note that for a perfectly uniform blur (pure shift trajectory along x and
z axes), i.e. a camera that has no rotations and no y component, the non-
uniformness index NU is equal to zero. Figure 5 shows the extreme corners of
two PSF images generated from recorded camera trajectories. The left example
is the most uniform blur according to the NU criterion, the right example is
the most non-uniform blur. Also qualitatively, we observe that the NU criterion
captures non-uniformness. In the middle is the histogram of the NU values of all
40 PSFs.

5.2 How Well Can We Approximate the 6D Trajectory with 3D?

To decrease the complexity of possible PSFs, the six dimensional real camera
trajectory is often approximated with three dimensions. There are two main
approaches:

(a) ignore the shifts and model only three rotations (θx, θy, θz) [2].
(b) model only shifts (x and z) and rotation around the visual axis (θy) [3,18],
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Fig. 5. PSF images of recorded camera trajectories being most uniform (left) and most
non-uniform (right) according to the NU criterion. Histogram of all NU values (middle).
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Fig. 6. Mapping the 6D camera trajectory to 3D using Whyte et al.’s approach (a) and
Gupta et al.’s approach (b). Each image patch compares the blur due to the original
6D representation to (a) and (b). We set the focal length to 50mm and the object
distance to 2m.

Both approximations achieve good results, as can be seen in Figure 6, so we would
like to analyze whether this is in correspondence with our recorded trajectories.
To this end, we transform the trajectories to three dimensions following the two
approaches. Note that the influence of the angles on the shifts and vice versa
depends on the distance d of the object to the camera:
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Assuming an object distance of d = 2m we transform all 40 camera trajecto-
ries to three dimensions using mapping (a) and mapping (b). Figure 6 shows
based on two examples that both 3D transformations are qualitatively valid. For
future research it might be interesting whether there exists another canonical

transformation from 6D to 3D which preserves the PSFs.
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6 Benchmark Dataset for Real-World Camera Shakes

6.1 Recording Images with Played Back Camera Shake

As described in Section 4 the image blurs created by the Stewart platform are
good approximations to real image blurs. So we create a benchmark dataset of
images blurred by camera shake by playing back human camera shakes on the
hexapod for different images, see Figure 7.

We randomly selected two blur trajectories of each of the six subjects applying
them to four images (Figure 7) resulting in 48 blurry images. Some local blur
kernels turned out rather large. We decided to leave those blur kernels in the
benchmark, as they reflect natural camera shake, probably caused by holding
the camera too relaxed and not paying attention to hold it still, as could hap-
pen in real imaging situations. Even though such images are often erased, it is
interesting whether current or future deblurring algorithms can cope with such
large blur kernel sizes.

Fig. 7. The four original images used in the benchmark

As discussed in Section 5.1 some of the blurs are approximately uniform and
some are not. Eyeballing the generated PSFs (included in the supplementary
material), the blur kernels numbered 1,3,4,5,8,9,11 (see table 1) tend to be ap-
proximately uniform, while blur kernels 2,6,7,10,12 appear non-uniform, in ac-
cordance with the NU criterion. Kernels 8 and 11, although having a high NU
value still visually appear to be uniform. The non-uniformness detected by the
NU value is not clearly visible due to the large size of the kernels.

For recording the image database, the Steward platform was placed inside a
light-tight box. The SLR camera was set to ISO 100, aperture f/9.0, exposure
time 1sec, taking images in the Canon raw format SRAW2. A Canon EF 50mm
f/1.4 lens was used. The illumination inside the box was adjusted to the camera
parameters and kept constant for all images taken. The true sharp image was
mounted as a poster at a distance of 62cm to the camera. The complete setup
is shown in Figure 1.

The recorded SRAW2 images (16bit) were processed by DCRAW2, generating
8bit images without correcting gamma. From the center of the image, a 800×800
patch was cropped. The blurry images are named (i, j) for the i-th image blurred
with the j-th camera trajectory.

2 DCRAW was called with parameters -W -g 1 1 -r 1.802933 1.0 2.050412 1.0 -b 4)
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6.2 Recording Ground Truth Images

Even though the original images are available since we printed them onto posters,
comparing these images with deblurred images from some algorithm is not easy,
because of different image resolution, different lighting, and possible color differ-
ences due to the printing process. Instead our robotic setup allows us to generate
ground truth images along the trajectory by playing the camera trajectory step
by step and taking an image per step.

Using this strategy, we recorded for each of the 48 blurry images (12 camera
shakes each blurring 4 images) 167 images along the trajectory. Additionally, we
created 30 images at intermediate positions calculated by the hexapod during
playback. We denote the ground truth images by u∗

1, . . . , u
∗
N .

6.3 Measuring the Deblurring Performance

To compare similarity between two images a and b (represented as vectors), we
first estimate the optimal scaling α̂ and translation T̂ such that the L2 norm
between a and b becomes minimal3, i.e. α̂, T̂ = minα,T ‖a − T (αb)‖2. We then
calculate the peak-signal-to-noise ratio (PSNR) as

PSNR(a, b) = 10 log10
m2

〈‖ai − T̂ (α̂bi)‖2〉i
(4)

with 〈.〉i denoting an average over pixels and m being the maximal possible
intensity value, i.e. m = 255 as we work with 8bit encoding. Given a sequence
of ground truth images u∗

1, . . . , u
∗
N along the trajectory, we define the PSNR

similarity between an estimated image û and the ground truth as the maximum
PSNR between û and any of the images along the trajectory,

SIM = max
n

PSNR(u∗
n, û). (5)

7 Comparing State-of-the-Art Algorithms in Motion

Deblurring

In the following comparative evaluation, we present the results of current state-
of-the-art algorithms in single image BD on our benchmark dataset. The algo-
rithms can be divided into two groups:

– Algorithms which assume a uniform blur model and account for translational
motion only [7,10,11,12,13].

– Algorithms which assume a non-uniform blur model. In particular, [2,19]
assumes rotational motion (yaw, pitch and roll), while [18] considers trans-
lations and in-plane rotations only.

3 We allow for integer pixel translations only, which we estimate with the Matlab
function dftregistration by [24].
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Table 1. PSNR values of various state-of-the-art motion deblurring algorithms for all
48 images of our benchmark dataset. Color code : blue corresponds to low PSNR (poor
performance), green to intermediate and red to high PSNR values (good performance).

Blurred Cho [11] Xu [12] Shan [10] Fergus [7] Krishnan [13] Whyte [19] Hirsch [18]

(1,1) 27.577 33.948 33.236 31.366 20.994 33.849 33.999 33.161
(1,2) 30.529 32.971 34.202 32.290 33.451 33.721 34.276 32.975
(1,3) 35.034 33.164 35.003 33.921 37.436 34.609 37.880 35.776
(1,4) 30.234 31.521 33.720 31.532 34.466 33.095 34.364 33.527
(1,5) 26.643 33.008 34.259 28.419 19.434 30.038 33.940 33.723
(1,6) 27.617 31.171 33.310 32.129 26.480 27.702 33.729 33.358
(1,7) 27.222 33.460 33.899 30.528 21.229 28.152 31.680 32.902
(1,8) 22.120 24.940 26.328 21.683 21.282 15.978 21.791 21.989
(1,9) 22.541 29.056 28.681 26.154 22.142 24.742 22.561 26.672
(1,10) 23.248 25.937 26.748 24.144 22.334 23.211 22.816 23.507
(1,11) 25.582 26.949 28.354 25.857 20.935 24.679 26.534 24.365
(1,12) 27.059 31.187 31.953 25.002 26.726 26.765 27.241 28.256

(2,1) 21.611 28.516 28.522 26.002 16.730 28.448 27.883 29.830
(2,2) 24.692 29.155 29.542 25.229 26.672 29.921 27.790 30.036
(2,3) 28.996 27.812 29.028 27.471 24.965 28.549 30.120 29.731
(2,4) 25.148 27.298 28.290 24.272 25.726 27.934 27.698 29.248
(2,5) 20.858 28.096 28.704 23.091 13.769 24.382 28.056 28.987
(2,6) 21.889 26.611 26.985 21.284 20.845 22.278 27.060 22.944
(2,7) 21.907 27.305 27.838 22.336 19.711 22.909 26.744 27.624
(2,8) 16.438 20.809 20.411 16.432 15.572 13.186 16.422 16.302
(2,9) 17.023 26.745 26.322 19.799 15.357 20.096 17.051 20.367
(2,10) 17.269 22.139 23.451 18.221 15.062 18.104 17.063 17.192
(2,11) 19.578 22.568 24.853 21.998 14.356 19.697 20.585 22.057
(2,12) 20.249 25.295 25.737 19.572 15.523 20.037 27.084 24.562

(3,1) 27.530 35.754 35.551 31.976 29.262 33.454 36.249 33.804
(3,2) 30.435 33.519 34.555 29.240 32.388 32.535 35.884 32.498
(3,3) 35.483 34.369 33.196 33.139 37.719 34.487 35.972 36.822
(3,4) 30.928 33.654 34.383 31.559 32.972 32.189 35.216 33.842
(3,5) 34.807 34.493 35.062 34.527 34.909 34.227 35.636 34.490
(3,6) 28.295 33.551 32.445 28.171 24.555 25.843 34.188 33.122
(3,7) 28.199 33.543 33.862 28.898 27.216 29.232 33.058 32.325
(3,8) 22.386 22.611 22.782 21.989 20.188 17.546 20.877 22.122
(3,9) 21.716 29.673 31.490 24.093 21.177 22.752 21.629 25.560
(3,10) 23.405 25.334 24.856 22.163 20.733 21.344 24.333 22.218
(3,11) 26.147 26.289 26.667 26.106 17.128 22.863 27.209 24.490
(3,12) 26.282 32.974 32.502 25.459 18.292 24.657 33.331 28.387

(4,1) 22.828 31.753 32.476 28.346 15.523 30.540 31.329 31.367
(4,2) 25.732 31.796 32.033 26.353 25.011 28.197 31.702 24.839
(4,3) 29.834 30.409 31.643 28.560 25.919 29.030 33.348 33.449
(4,4) 26.061 31.094 31.650 27.034 24.748 29.853 32.016 31.905
(4,5) 34.587 33.937 33.879 34.125 34.921 33.688 34.063 34.067
(4,6) 23.083 28.715 28.985 25.834 17.495 22.537 29.567 28.715
(4,7) 22.423 29.349 29.994 25.547 14.634 22.919 27.213 24.414
(4,8) 17.270 20.995 20.623 16.667 16.236 14.670 17.265 17.531
(4,9) 17.990 26.506 26.893 21.556 16.794 20.987 18.031 21.396
(4,10) 18.077 22.413 21.414 17.413 16.747 17.938 17.823 17.823
(4,11) 20.274 22.338 23.612 20.291 15.380 19.475 19.919 22.675
(4,12) 21.818 26.461 27.859 25.001 19.912 21.822 27.209 26.048

low PSNR high PSNR
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For fair comparison, we asked the authors of the tested algorithms to run their
code on our benchmark dataset and to provide us with their best deblurring re-
sults. The results reported for [10,12,18,19] were provided by the authors, while
for [7,11,13] we used provided code to yield the deblurring results ourselves. Re-
garding parameter settings, we followed the provided instructions or the personal
advice of the authors and did our best to optimally adjust the free deblurring
parameters incl. kernel size (and image patch in the case of [7]). Table 1 reports
the PSNR for all of the 48 benchmark images, where we computed the PSNR
according to Eq. (5) as detailed in the previous section. For better visual as-
sessment we color coded the results from blue (low PSNR, poor performance),
green (intermediate PSNR) to red (high PSNR, good deblurring performance).
All deblurred images incl. the estimated kernels are shown in the supplementary
material.

Insights:

– Not all deblurring algorithms are able to improve image quality, which is
due to artifacts which arise during the deblurring process.

– Overall performance is content specific as evident by the horizontal band
structure in Table 1. In particular, image motives 1 and 3 yield consistently
better deblurring results.

– All except for the methods of [11,12] have difficulties with large blur (kernel
8-11).

– The algorithm of Xu et al. [12], which features a robust two-phase kernel
procedure, performs best despite its assumption of a uniform blur model,
followed by the recently proposed algorithm of Whyte et al. [19] which allows
for non-uniform blur.

– More recently proposed algorithms yield a better overall performance, being
evidence of the progress in the field.

Although runtime is a critical factor and a discriminantive feature of deblurring
algorithms, we do not report any runtimes here as the results were obtained
by heterogenous implementations (e.g. Matlab vs. C) and different hardware
systems (e.g. CPU vs. GPU).

8 Discussion and Conclusion

In this paper, we presented a new benchmark dataset for evaluating single image
BD algorithms. To this end we first recorded and analysed real camera shake
and investigated how well currently employed imaging models approximate and
capture true motion blur. To mimick real camera shake we employed a robot plat-
form featuring six degrees of freedom and therefore fully capable of replaying the
recorded camera trajectories, while at the same time providing the opportunity
to sample the true camera motion trajectory with steady image captures to yield
a sequence of ground truth images.

The benchmark has been designed to be extendable. In ongoing work we
further investigate the limitations of current approaches by adding complexity
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to the imaged scenes such as varying depth. We intend to extend our benchmark
for new sets of images and camera shakes where current methods fail to give
satisfactory results. At the same time we examine other quality measures than
PSNR, some of which hold the promise to better resemble human perception.

Another interesting future direction is to study whether users exhibit repeat-
ing camera shake patterns. Such a finding would motivate to learn personalized
priors which ultimately could facilitate BD.

The benchmark dataset is publicly available at the accompanying project
webpage4. We hope that it will find widespread acceptance within the community
as a useful tool to evaluate the performance of new BD algorithms, rendering it
a valuable resource for monitoring the state-of-the-art in the field.
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