{: SCISPACE

formerly Typeset

@ Open access + Book Chapter « DOI:10.1007/978-3-540-39964-3_39
Recording and Reasoning over Data Provenance in Web and Grid Services
— Source link (4

Martin Szomszor, Luc Moreau

Institutions: University of Southampton

Published on: 03 Nov 2003

Topics: Services computing, Business Process Execution Language, Web service, Workflow and Exploit

Related papers:

« Why and Where: A Characterization of Data Provenance

» A survey of data provenance in e-science

« Chimera: a virtual data system for representing, querying, and automating data derivation
» Data Provenance: Some Basic Issues

» Provenance of e-Science Experiments - Experience from Bioinformatics

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/recording-and-reasoning-over-data-provenance-in-web-and-grid-
1enhrge9n5

https://typeset.io/
https://www.doi.org/10.1007/978-3-540-39964-3_39
https://typeset.io/papers/recording-and-reasoning-over-data-provenance-in-web-and-grid-1enhrqe9n5
https://typeset.io/authors/martin-szomszor-2xrd6s7429
https://typeset.io/authors/luc-moreau-19g1qmfnr6
https://typeset.io/institutions/university-of-southampton-s7o42wnf
https://typeset.io/topics/services-computing-1fslbz8y
https://typeset.io/topics/business-process-execution-language-3avjslh5
https://typeset.io/topics/web-service-5jsci0pw
https://typeset.io/topics/workflow-1at2jgig
https://typeset.io/topics/exploit-3vohae3t
https://typeset.io/papers/why-and-where-a-characterization-of-data-provenance-1hkicechm8
https://typeset.io/papers/a-survey-of-data-provenance-in-e-science-57cb39tk25
https://typeset.io/papers/chimera-a-virtual-data-system-for-representing-querying-and-5198w6thmm
https://typeset.io/papers/data-provenance-some-basic-issues-3ztgmichq3
https://typeset.io/papers/provenance-of-e-science-experiments-experience-from-jh2rlkjtub
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/recording-and-reasoning-over-data-provenance-in-web-and-grid-1enhrqe9n5
https://twitter.com/intent/tweet?text=Recording%20and%20Reasoning%20over%20Data%20Provenance%20in%20Web%20and%20Grid%20Services&url=https://typeset.io/papers/recording-and-reasoning-over-data-provenance-in-web-and-grid-1enhrqe9n5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/recording-and-reasoning-over-data-provenance-in-web-and-grid-1enhrqe9n5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/recording-and-reasoning-over-data-provenance-in-web-and-grid-1enhrqe9n5
https://typeset.io/papers/recording-and-reasoning-over-data-provenance-in-web-and-grid-1enhrqe9n5

Recording and Reasoning over Data Provenance
in Web and Grid Services

Martin Szomszor and Luc Moreau
martinszomszor@yahoo.co.uk, L.Moreau@ecs.soton.ac.uk

School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ UK

Abstract. Large-scale, dynamic and open environments such as the
Grid and Web Services build upon existing computing infrastructures
to supply dependable and consistent large-scale computational systems.
This kind of architecture has been adopted by the business and scientific
communities allowing them to exploit extensive and diverse computing
resources to perform complex data processing tasks. In such systems, re-
sults are often derived by composing multiple, geographically distributed,
heterogeneous services as specified by intricate workflow management.
This leads to the undesirable situation where the results are known, but
the means by which they were achieved is not. With both scientific ex-
periments and business transactions, the notion of lineage and dataset
derivation is of paramount importance since without it, information is
potentially worthless. We address the issue of data provenance, the de-
scription of the origin of a piece of data, in these environments showing
the requirements; uses and implementation difficulties. We propose an
infrastructure level support for a provenance recording capability for
service-oriented architectures such as the Grid and Web Services. We
also offer services to view and retrieve provenance and we provide a
mechanism by which provenance is used to determine whether previous
computed results are still up to date.

1 Introduction

Grids and Web Services are evolving into large-scale dynamic and open environ-
ments providing services owned and managed by multiple stakeholders [5]. The
concept of virtual organisation (VO) is being anticipated by many [8,5] as the
computational model for coordinating the complex interactions of such services.
A typical VO’s lifecycle consists of the following steps: VO participants are dis-
covered, the purpose and the terms of the VO are negotiated, the VO is created
and then executed to deliver some result, before it is disbanded. At the end of
a VO’s lifetime, users potentially find themselves in the awkward situation in
which they have access to the result of the computation without any information
on why and how such a result has been obtained. The lack of information about
the origin of results does not help users to trust such open environments, and
therefore may hamper the deployment of advanced services [15].

Workflow enactment has become popular in the Web Services [14, 4] and Grid
communities [11]. Workflow enactment can be seen as a mechanism offering a
simpler form of virtual organisation: it is capable of composing Web Services,
potentially discovered dynamically, according to data and control flows specified
in a workflow language, such as WSFL [14] or BPEL4WS [4]. Similarly, users are
confronted with the problem of determining the origin of a result produced by
such enactment. Furthermore, deciding when results of computation, whether
a scientific analysis or a business transaction, are no longer valid becomes an
important concern.

Against this background, provenance is an annotation able to explain how a
particular result has been derived; such a provenance information can be used
to better identify the process that was used to reach a particular conclusion.
Specifically, in a service-oriented architecture, provenance identifies what data
is passed between services, what services are available, and what results are
generated for particular sets of input values, etc. Using provenance, a user can
trace the “process” that led to the aggregation of services producing a particular
output.

It is our belief that provenance recording should be part of the infrastructure,
so that users can elect to enable it when they execute their complex tasks over
the Grid or in Web Services environments. Currently, the Web Services protocol
stack and the Open Grid Services Architecture [7] do not provide any support
for recording provenance, though the need has been acknowledged by that com-
munity, as illustrated by a recent workshop on provenance [18], and some Grid
projects such as myGrid (www.mygrid.org.uk). Additionally, producing prove-
nance data is of no use, if we do not provide the means of exploiting it an
activity referred to as provenance reasoning in this paper.

The purpose of this paper is to investigate the notion of provenance in
services-oriented architecture, such as Grids and Web Services, and more specif-
ically when computations are the result of workflow enactment. Our specific
contributions are:

—

A service-oriented architecture for provenance support in Grid and Web
Services environments, based on the idea of a provenance service;

. A client-side API for recording provenance data for Web Service invocation;
. A data model for storing provenance data;

. A server-side interface for querying provenance data;

U W N

. Two components making use of provenance: provenance browsing and prove-
nance validation.

This paper is organised as follows. In Section 2, we discuss the notion of
provenance and identify some of its requirements. In Section 3, we present the
architecture for provenance support in a service-oriented environment. We then
discuss some implementation aspects of our provenance system in Section 4.
Finally, in Section 5, we analyse our design and conclude the paper by identifying
issues that need further investigation.

2 Background

Provenance is primarily concerned with data derivation. It provides a proof of
origin for a segment of data and a record of its history. This section looks at
what provenance is, why it is useful and how it might be provided in a dynamic
and open environment such as the Grid and Web Services.

2.1 Provenance

Provenance allows us to take a quantity of data and examine its lineage. Lineage
shows each of the steps involved in sourcing, moving and processing the data [17].
In many of today’s modern information systems, particularly those concerned
with business and scientific data handling, data can be collated from a variety
of distributed and diverse resources and processed to form new data. We can
consider the sequence of taking a dataset, processing it and producing a dataset
product as a dataset transformation. In order to provide provenance, all datasets
and their transformations must be recorded. Saltz [19] suggests that we can
achieve a sound lineage record by recording enough information to ensure that
any dataset transformation is reproducible.

The storage and maintenance of provenance records is an important consid-
eration. Frew and Bose [10] propose the following requirements for provenance
collection:

1. A standard lineage representation is required so data lineage can be com-
municated reliably between systems (currently there is no standard lineage
format).

2. Automated lineage recording is essential since humans are unlikely to record
all the necessary information manually.

3. Unobtrusive information collecting is desirable so that current working prac-
tices are not disrupted.

The concept of providing provenance is relatively new and unexplored. It has
attracted interest from both the academic and business communities where spec-
ulation about its benefits is widespread. Scientists are often interested in prove-
nance because it allows them to view data in a derived view and make observa-
tions about its quality and reliability [3]. Goble [12] presents some notable uses
for provenance:

— Reliability and quality
Given a derived dataset we are able to cite its lineage and therefore measure
its credibility. This is particularly important for data produced in scientific
information systems.

— Justification and audit
Provenance can be used to give a historical account of when and how data has
been produced. In some situations, it will also show why certain derivations
have been made.

— Re-usability, reproducibility and repeatability
A provenance record not only shows how data has been produced, it pro-
vides all the necessary information to reproduce the results. In some cases
the distinction between repeatability and reproducibility must be made. In
scientific experiments results may be different due to observational error or
processing may rely on external and volatile resources.

— Change and evolution
Audit trails support the implementation of change management.

— Ownership, security, credit and copyright
Provenance provides a trusted source from which we can procure who the
information belongs to and precisely when and how it was created.

It could also be said that provenance significantly increases productivity by facil-
itating the discovery of existing derivations, which can save time, computational
effort and storage. With a standard lineage representation, collaboration of re-
sources is also made considerably easier [9, 6].

2.2 Workflow Enactment and Provenance

The Grid [11] and Web Services communities [14, 21, 4] have identified workflow
enactment as a key concept, essentially offering a scripted form of virtual organ-
isation [8]. Workflow enactement is the automation of a process during which
documents, information or tasks are passed from one participant to another for
action, according to a set of declarative or procedural rules. In Grid applications,
this task is often performed by a “workflow enactment engine”. The enactment
engine uses a workflow script, such as WSFL or BPEL4WS, to determine which
services to call, the order to execute them in and how to pass datasets between
them. Each of these services can be invoked by using their respective WSDL in-
terface documents. This concept can be seen in Figure 1. This diagram shows a
workflow enactment engine using a workflow script to control the flow of data
between two Web Services. Each Web Service is passed an input and returns an
output.

In terms of provenance, we can consider the input for a Web Service as
a dataset, the Web Service itself as the transformation and the result as the
data product. Therefore, provenance for a service-oriented architecture can be
provided by logging all of the Web Services invoked by the enactment engine, the
inputs given and the outputs returned. In order to meet the requirement that the
provenance records must enable the re-creation of any dataset transformations,
the wsDL documents for the services invoked must be recorded along with the
workflow script describing their invocation context.

2.3 Accessing Provenance Records

Assuming that a system is capable of recording provenance, we should consider
how these records are accessed and what they might be used for. A standard lin-
eage representation should be formulated that is capable of recording the diverse

.| WSFL /| BPEL4AWS document
describes workflow

Workflow B

i) i |
. . Workflow

Workflow Enactment
Inputs Engine Outputs
| |
Web Service 1 Web Service 2
Outputs Outputs

Invokes Web Service 1 Invokes Web Service 2

using WSDL document using WSDL document
|

Web Service 1 Web Service 2

Inputs Inputs

I
{-:-7 Web Service 1

i

{-:.7 Web Service 2 J

oA

WSDL document WSDL document
specifies the web specifies the web
service interface service interface

Fig. 1. Workflow Enactment

range of services possible and the multifarious data structures used. Since the
current workflow languages and service descriptions are represented using XML,
the obvious syntactic framework for a provenance record is also XML. Some form
of querying interface should be supplied that enables the retrieval of provenance
records by both content and type. For example, it would be useful to query a
provenance repository for records about a particular invoked Web Service, a spe-
cific workflow script used for enactment, or an exact observed output. It would
also be desirable to provide an automated service to reproduce datasets and
re-run dataset derivations.

2.4 Related Work

Other work [2] on provenance has concentrated on models grounded on database
architectures in which queries are used to extract information. In general, if a
query () is applied to some database D, we can obtain the view V such that
V = Q(D). In this scenario, the provenance of a specific piece of data d in
the output V' shows which parts of the database D contributed to it. In [2], the

important distinction between ‘why’ provenance (the set of tuples that contribute
to the result) and ‘where’ provenance (the location(s) in the source database from
which the result was extracted) is made. Using the explicit notions of location
defined in the deterministic model [1] and a formal query language, a precise
definition of provenance is formulated using a general data model that applies
to both relational databases and hierarchical data structures such as XML.

MyGrid (www.mygrid.org.uk) aims at providing a personalised environment
for bioinformaticians to perform in silico experiments [16]. In myGrid, prove-
nance is stored in a user’s personal repository and provenance generation is
tightly integrated with the enactment engine [13]. In that context, the focus
is not on the architecture and protocols required for supporting provenance in
service-oriented architectures, but on personalising provenance information when
presented to the scientist.

3 Architecture

A provenance capability in a Grid or Web Services environment has has two prin-
cipal functions: to record provenance on dataset transformations executed, e.g.
during workflow enactment, and to expose this provenance data in a consistent
and logical format via a query interface. In this section, we discuss the design of
a provenance architecture for Grid and Web Services, which is dictated primarily
by where the data provenance is held, how this provenance is collected, what
exactly constitutes a provenance record, and how provenance can be queried and
reasoned over.

Provenance needs to be stored, and two possible solutions can be envisaged
for storage. On the one hand, the data provenance is held alongside the data as
metadata, whereas on the other hand, the data provenance can be stored in a
dedicated repository, made accessible as a Grid or Web Service. The first solution
requires the holders of any such data to maintain the integrity of the provenance
records as transformations take place, and it imposes significant changes to any
existing data storage structures. Such a kind of provenance can be useful for a
user to remember how a result was derived, and what steps were involved. It is
unclear that such provenance can be trusted by any third party, since the data
and provenance owner has to be trusted to have recorded provenance properly.

Alternatively, the provenance service solution requires any party performing
a dataset transformation to update the provenance service, with any new deriva-
tions and how they were performed. Many provenance services may exist over
the Grid, some more trusted than others, and users may select which one to
adopt when executing their workflows. By adopting a suitable protocol to sub-
mit provenance, some desirable properties can be enforced by the provenance
service, such as non-repudiation (to be discussed in Section 5); the provenance
service could therefore be used as a generalised auditing mechanisms, which can
be trusted by any third party. While such protocols are interesting, they are
beyond the scope of the current paper; and we will only focus on provenance
being submitted by a workflow enactor.

Architecture Overview Our service-oriented provenance architecture is shown
in Figure 2. As far as provenance creation is concerned, the architecture is com-
posed of a server side and a client side. The Provenance Server holds the prove-
nance records and provides methods to access and update them via a Web Ser-
vice. The records themselves are held in a relational database. The Provenance
Client Interface is responsible for submitting to the Provenance Server prove-
nance records about any Web Service invocation executed by a client such as
a workflow enactment engine. To this end, the Client Side Interface uses the
Provenance Recording port provided by the Provenance Server.

Provenance Server updates the repository
with provenance records as they are received

from the enactment engine. These records
The Provenance Server

. are also accessed when the provenance
provides two ports, one to server is queried for provenance records
record provenance — Provenance - g P '
information and another to .| Server +
query the provenance
repository. 4 SQL through JDBC
Web Services provided using L

Apache Axis on Tomcat.

Web Services e

Provenance
Repository

The Provenance Querying
port provides operations to
retrieve Workflow Traces. Provenance Provenance

This interface is used by two Querying Recording
components which provide

visual provenance browsing
and provenance validation.

Provenance Client Interface submits
Provenance Records using Web

Provenance Service invocations.
Validation

The implementation of the Provenance
CProvenanc e Client Interfac e) Client Interface provides the means to

submit provenance re
cords to the Provenance Server.

Workflow Trace
Browsing

Workflow :

The workflow enactment engine uses
Enacl: nt ! the Provenance Client Interface to
Engine 5 make Web Service invocations.

(-] Web Services
-

Fig. 2. Provenance Architecture

In order to provide data provenance on workflows, our approach is to record
enough information to be able to re-create any dataset transformation (cf. Sec-
tion 2.2). We are making here a simplifying assumption: we assume that all
dataset transformations are carried out by invoking Web Services or workflows.

The order in which these services are invoked, the control flow and the data
flow between services are governed by a workflow script, expressed in a work-
flow language such as WSFL or BPEL4WS. For any workflow execution, we store
records in the provenance repository defining the workflow details, with precise
information on each activity carried out. Any datasets passed to an activity will
be logged along with the outputs that are received. We define a workflow trace
as the conglomeration of provenance records for both the workflow itself and
each of the activities it executed.

As far as provenance retrieval and reasoning is concerned, two facilities are
provided. First, a browsing interface is offered so that users can navigate prove-
nance traces. Second, a provenance validation capability is provided in order
to decide if the results logged in a workflow trace are still up to date; such a
capability is for instance beneficial to users who have run a workflow, but would
like to decide if they need to re-enact the workflow because some of its services
now produce different results. Both the browsing interface and the provenance
validation capability make use of a common Provenance Querying Interface.

From a practical viewpoint, although a provenance service may result in the
redundant storage of data, it does not demand any alterations to the services
invoked by workflows; only those components which invoke these services require
modification — namely the workflow enactment engine.

Provenance Recording Port The recording port provides the means to record
a provenance trace in the provenance service. A set of key operations are pro-
vided, which we describe below. The interface was designed so as to support
asynchronous and transactional submission of provenance data. Asynchronicity
is required so that the performance of Web Services intensive workflow applica-
tion is not penalised by frequent submission of data. Transactional capabilities
provide for simple cancellation of trace recording.

The beginTrace operation is called by the Provenance Client Interface (PC1)
when a new workflow is started. It requires the workflow script, its description,
and workflow inputs as arguments. These are used to create a new trace in the
provenance database, for which a unique workflow Trace ID is returned. This 1D
must be used by the PCI in subsequent activity registrations.

The registerWSActivity operation is called by the PCI whenever a Web
Service invocation is about to be made. It requires the trace D (returned by
the previous method), the workflow activity name corresponding to this Web
Service invocation, the URL of the wsDL interface specifying the Web Service, the
operation that is going to be called and further information needed to invoke the
Web Service (the service namespace, the service name, the port type namespace
and the port type name). A unique activity 1D is returned which is used later to
register the activity inputs and outputs.

The registerSubWorklowActivity operation is called by the PCI whenever
a sub-workflow activity is executed. The trace ID and activity name are passed
as arguments along with the sub-Workflow Trace ID. A unique activity ID is
returned.

The registerWSInput operation is called by the pcI just before a Web Ser-
vice invocation is made. It takes as argument the activity 1> (allocated when the
Web Service is registered) the message parts and the operation increment. All
message parts are supposed to be encoded in XML, like they would be for the
message invocation, which allows the provenance service to be able to store any
complex data type.

The registerWSOutput operation is called by the PCI just after the results
of the Web Service invocation have been received. The arguments are the same
as the registerWSInput operation.

The commitTrace operation is called by the pc1 when the workflow enactment
has been completed. Once this operation is called, the workflow status is changed
from ‘active’ to ‘committed’. It takes the workflow outputs in XML format in the
arguments along with the trace 1D for the trace which is to be committed.

The abandonTrace operation may be called when a workflow status is ‘active’
after which it will be changed to ‘abandoned’. Once this operation has been
called, the trace is abandoned and no further logging can take place.

The interaction between the Provenance Server and the Provenance Client
Interface during workflow execution is best shown using the sequence diagram
in Figure 3. The interaction can be divided into three major phases: the first
initialises the provenance recording, the second registers workflow activities and
the third commits the workflow trace. From the perspective of the enactment
engine, the interaction is simple. When a new workflow is started, the ‘Begin
Trace’ method is called on the Provenance Client Interface. For every unique
Web Service invocation, a new client-side stub is requested from the PCI by
calling the ‘Get New Port Invoker’ method, passing the wsDL document location
and desired operation as arguments. The input message can then be created in
the usual way with the message parts being set using the ‘Set Message Parts’
method on the client-side stub. Consequently, the operation is executed using the
‘Execute Operation’ method and the result message is returned. On completion
of the workflow, the enactment engine must notify the pcI that the provenance
trace has to be committed by calling the ‘Commit’ method.

The Provenance Client Interface interacts with the Provenance Server by
making Web Service invocations on the Provenance Recording Port. When the
workflow is started, it calls the ‘Begin Trace’ operation and stores the unique
trace 1D allocated. When a new client-side stub is created, the PCI registers the
new activity with the Provenance Server by using the ‘Register WS Activity’
operation, storing the unique activity ID alloted. When asked by the enactment
engine to invoke a Web Service, the PCI first registers the inputs with the Prove-
nance Server using the ‘Register WS Input’ operation. It then invokes the desired
Web Service and registers the results using the ‘Register WS Output’ operation
before passing them back to the enactment engine.

Provenance Query Port The Query port supplies a set of operations by which
a client can retrieve workflow trace information. The operation getTraceListXML
can be used to query the workflow repository for a list of trace 1D numbers. These

Ay ;‘;ﬁﬁﬁ;"t Provenance Client Provenance
- y Interface Server
./ Engine

Begin Workflow ™ .
egin Workiiow Begin Workflow .
> Begin Trace
= -
=
© Create new entry in traceIndex _]
o table. Store WSFL document.
é Return Trace ID
Store Trace ID™
New Activity 7 Get New Port Invoker
> Register Web Service Activity
>
Add new entries in activityIndex and
‘wslInvocation tables. Collect and store =
WSDL document.,
Return Activity ID
-
3 Store Activity ID =4
i% Return Port Invoker
| Create Input
E DMessage Set Message Parts
£ >
]
S| Execute -1 .
E Execute Operation
3 Register Web Service Input
“9 Lol
&
& Create new dataset entries to]
hold the registered inputs.
PCI Invokes the Web Service
specified by the Enactment =j= = =
Engine and collects the results.
Register Web Service Output
>
Create new dataset entries to _}
Y hold the registered outputs.
Process results Return Outputs
and continue -1
workflow
Repeat above to invoke as many web services as required
End Workflow ™ Cornmit
- Commit Trace
E Finalise Workflow and .
O record output.
Workflow a X

completed

Fig. 3. A Sequence Diagram showing the interaction between the Enactment Engine,
the Provenance Client Interface, and the Provenance Server

numbers identify traces that must satisfy some properties specified in the query
interface, such as start and end time, etc.

It is possible to retrieve workflow trace information in two ways. The oper-
ation getFullTraceXML takes a trace ID as input and returns a complete XML
representation of the workflow trace. For a complex workflow, this xML docu-
ment could be very large, so a set of operations are also provided to request
parts of a workflow trace. With these operations, it is possible to extract a list

of activities composing a trace, details for each activies, including inputs and
outputs. To this end, the ProvenanceQuery Port offers a querying AP which we
use in the deployment of the provenance reasoning components.

4 Implementation

The Provenance Server receives provenance data via the Provenance Recording
port and stores it in the Provenance Repository. The repository is a relational
database that uses the tables and relationships shown in Figure 4.

activityTypes
traceIndex typeID*
1 1 description
TraceID*
description
datetimeStarted
datetimeCommitted activityIndex
status 1
enactmentScript 1 -
enactmentScrigtU'RL activitylD*
0.n| inputDataset# 0.n trace#
outputDataset# name
— type# —-—
0.n 0.n
subWorkflow
1| activity#
trace# 0.n
operationInc wsInvocation
1
wsID*
1| activity# |
wsdlDocument 0.n
wsInput wsd1lURL
operation
ws# serviceNS
0.1 4otaset# 0. serviceName
datasets operationInc portTypeNS
1 1 portTypeName
L—| datasetID*
1| datetimeLogged 1 wsOutput
partAsXML
ws# |
o datasei.:# 0.n LEGEND:
~T| operationInc * Denotes Primary Key
Denote Foreign Key

Fig. 4. Provenance Database

It is designed to store all the information necessary to provide provenance
data on workflows, activities and all datasets passed between them. There fol-
lows a brief overview of the role of each table. The traceIndex table holds the

workflow trace information for every workflow enacted. The trace 1D is automat-
ically allocated by the database incrementally and provides a unique handle to
each workflow trace. The inputDataset and outputDataset fields are references
to entries in the datasets table. The status field can take one of three values -
active, committed or abandoned. The activityIndex table links activities ex-
ecuted to their given workflow by the trace field. The type field references an
entry in the activityTypes table to specify the activity type. The activityTypes
table holds descriptions of the possible activity types. In this implementation,
there is only two types: Web Service invocations and sub-workflows. It would be
feasible to add extra activity types such as JMS or RMI providing extra tables
were created to hold the relevant provenance data. The wsInvocation table is
used to store details on activities that invoke Web Services such as the wsDL
document and operation name. The wsInput and wsOutput tables are used to
link a Web Service invocation inputs and outputs to the corresponding entries
in the datasets table. The purpose of operation increments (field operationInc)
is to accommodate activities where multiple calls are made. The subWorkflow
table is used to link activities which call sub-workflows to their respective entries
in the tracelndex table. Again, an operation increment is recorded to allow mul-
tiple sub-workflow calls. The dataset table holds any datasets recorded. These
might be datasets passed to and from Web Services or to workflow themselves.
The partAsXML field stores the dataset in a serialised XML format.

As a workflow is executed and the Provenance Client Interface updates the
Provenance Server with invocation details, the database is filled with provenance
data. With this data in place, we are able to generate workflow traces in an XML
format by querying the database using SQL statements.

An example workflow trace, as displayed by the trace browsing interface, can
be seen in Figure 5. On the left-hand side, we see a pretty-printed hierarchical
view of a trace with its inputs, outputs and invoked activities; on the right
hand-side, the XML representation is shown, with explicit representation of data
types.

4.1 Client Side Dataset Encoding

A challenging task was finding an appropriate way to submit the recorded
datasets in a structured manner. In simple cases, the inputs and outputs to
a Web Service are primitive data types such as integers and strings. However,
WSDL also provides the ability to define and use complex types, which are formed
of primitive or other complex types. As far as the client side library was con-
cerned, we needed a mechanism to convert arbitrary data types into a serialized
format that enabled easy re-creation and re-use. To this end, we adopted Java
Record Object Model (JRoM) from 1BM’s Alphaworks. This provides methods to
serialize Java Objects used in Web Service invocations into XML format.

A typical Grid or Web Service client relies on a communication layer, such
as WSIF or JAX-RPC, to invoke Web Services using using their respective wsDL
documents. We have provided a wrapper class, making use of wsir for invocation

of Web Services, and at the same time implementing the pcI for submitting
provenance data.

Using JROM to construct the XML representations of Java objects also has an
added advantage: The JROM API also provides methods to convert XML repre-
sentation back into JROMvalues. This allows the datasets recorded to be easily
re-used for other tasks such as provenance validation.

4.2 Logging Mechanism

There are two possible ways in which the Provenance Client Interface can sub-
mit provenance trace to the the Provenance Server. (i) In a synchronous sub-
mission, the Provenance Client blocks workflow enactment, while updating the
Provenance Server. This is the submission mode that underlies the sequence di-
agram of Figure 3. (i) Alternatively, using an asynchronous submission mode,
the enactment can continue in parallel with submission of data to the Provenance
Server, which takes place in another execution thread.

Synchronous recording can have significant detrimental effect on the perfor-
mance of the enactment engine, but it provides timeliness as the provenance
information is recorded as enactment proceeds, and therefore can be seen as a
detailed progress log. On the other hand, with the asynchronous mode, an ex-
tremely lazy manner of submitting provenance data would be only to schedule
the transfer of such provenance data at enactment time. The provenance data
to be submitted could be stored temporarily in a local database; when network
traffic is reduced, the data could then be transferred, possibly well after com-
pletion of the workflow. Such an asynchronous mode of submission is particular
appealing for large data sets.

4.3 Retrieving and Reasoning over Data Provenance

As an experiment into the uses of Data Provenance, we designed and imple-
mented two additional system components; a set of web pages to provide a
browse-able workflow trace interface and a provenance validation mechanism
which checks each of the Web Service invocations still provides the same re-
sults. A screenshot of the web page interface is supplied in Figure 5, it shows
the workflow trace for a simple workflow with only one activity that invokes a
Web Service to add two integers together. The left frame shows the workflow
trace in a familiar tree-view format, while the right frame shows the raw XML
for the trace. It is possible to use this interface to browse workflows that are still
in progress and therefore it also provides a way to monitor long and complex
workflows.

Provenance Validation allows a user to check that each Web Service invo-
cation made during a workflow still produces the same results. It iteratively
re-executes each Web Service invocation made, using precisely the same inputs
as those recorded. The output produced by the re-invocation is compared with
the output stored in the provenance trace. A difference in the result is notified

||

[}

la
B

<spIed> -
<POFBOTIULLINRA/>0'T 161160 £7-50-5007<PIRR0TOULL2Yeq>
<,,0, =peupnuuoressdn 1esereqs -
<sidingsap > -
<sindugspn/>
<jaseye(/>
<sypred/>
<yred/>
<IFNLTSU/>8<, JoBaunizeu, =adL):gsu 1aFojurTsu>
<, U1, =oUreu }Ieg> -
<yred/>
<IFWLTSU/>91<, Jo3aqurzeu, =adLy:gsu oFojup:Tsu>
<, ZIU1, =oureu jIeg> -
<SpIRg> -
<PaBBOTOMLLAYeA/>0'T 161160 $Z-50-007< PRSS0TAUILL 1R
<,0, =ywaudrouruoryeradp joseyeq:> -
<sndugsp > -
<ad{ wonyeradpy/>
<junopuoryerddo/> <junopuoryerndo>
<oureNadL] 1r0d/>[nu<aureNad4 L, j1od>
<sNodAL j0d/>1nucsnadA L jr0d>
<OUTBNDILAIDS/ > [1IU DUIBN] IITATIS>
< SNIIAIIS/ >[NUC SN LA IS >
<UOHRIOTTASM/>
[PSi JaAIBCIOTRNOTE, D/ Se01AIas/30URURA0IT 08 | §N T U030 508" ofse Uey//.d1y
<UOTYROOTTASM> -
<uoryeradp/>ppe<uoryerndo>
<, ao1ategqam, =ad£) ad£ L uoryerado> -
<, UoHIppe, =oureu , 1, =qIANANE K} ATV -
<sindyngavei]/><sindngodeiL > +
<sindupaoer]/><sindupoder] > +
<TENAIRSwUnRUF/ />[I Te-18ey 358/ S1H< TE NI U eug >
<SNYR)S/ PRI IO SRS
<POPIUUONIUILL YR/ >0'Z 16 1:60 $2-50-5007< PONIUIUIONIUILLaYe(>
<POLIRYSOUILL YR/ >0 Q06 1160 $Z-50-S00C< POIIRISIUILL 2Ye(>
<AL JUdIR /> [<AVRLL JUdIR] >
<uor)dLIsaq/>SIqUINU i PPV - | 188, Justrjeug<uondinseq:>

<, 1., =q[9%e1}) 20RL] MO[IHIOM > -

¥Z :anjep ‘nsas :aweN yed
0°2Z1:61:60 £2-50-£00¢ :pabbor swiL /=1ea O
0 ‘uawauou] uonesado ‘Jasejeq M
sindino &=
g :anjeA ‘Tu :aweN yed
9T :anjeA ‘zaur :sweN ved)
0°21:61:60 £2-50-£002 :pab601 awiL /31ea O
0 :uawauouy uonessdQ ‘yeseleq M
sinduy
IInu :awen adAL yod O
[Inu :aoedsaweN adAL yod
|Inu :3weN 3RS -
lInu :30edsawen VIARS
\135/30UBUACId /08T N DB U0Y0S SR OIseuRy//:dny 1asm O
ppe :uonesedo O
INBS GBM B
uonippe :ANADY & @
sindino &
sindup &
WX "||e-3s93/ysm/ :9jy :3dudSiusunoeuy Q-
PaniWWI0D smeys e
0°Z1:61:60 £2-50-£002 :PRRIWWOD 3w| /33ed O
0°90:61:60 £2-50-£00Z :p3yelS awll /31ed O
siaquinu 0m) ppY - T 35891 Juawioeu] :uondudseg Q-
T :90edjjualed o
T 9Je4L MOpHOM O

Fig. 5. A screen shot of the web interface showing a tree-view of a workflow trace

to the user. By re-using the existing Provenance Client Interface, we are able to
record provenance on this re-execution and hence compare it with the original.

A typical example of the use of this facility is the following. A user having
been informed that new data are available in a database (accessible as a Web
Service), or that a new version of a service has been deployed, may decide to use
the provenance validation facility to verify if the results produced by a previous
execution of a workflow are still up to date. The workflow activities that produce
results that differ from those stored in the provenance database indicate points
in the workflow at which re-enactment should occur.

It is important to distinguish provenance validation from workflow re-enact-
ment. The former only uses the information recorded in a provenance trace to
detect which Web Service produces outputs that do not match the ones in the
trace for the same inputs. Web Services can be invoked in any order, and this
activity does not require knowledge of the workflow script and service depen-
dencies. On the contrary, workflow re-enactment requires the understanding of
a workflow script: it typically requires the enactment engine to be provided with
a runtime state (i.e. its continuation) to resume the execution at a specific point
of the workflow.

5 Discussion and Conclusion

In this section, we study how the proposed architecture meets the requirements
identified in Section 2; we then summarise our contributions, and discuss how
our work can be extended.

The principal requirement for a provenance recording facility is that data
lineage must be recorded and stored. We adopted the position that a sound
lineage record can be achieved by logging enough information to enable the re-
creation any dataset transformation. For a service-oriented architecture, in which
Web Service invocations are used to perform these transformations, this means
collecting all the invocation details. Our Provenance Client Interface does this
autonomously, supplying the user with the option to turn provenance recording
on or off as desired. The data model put forward in Section 4 provides a means to
store this provenance, accommodating complex workflow activities and arbitrary
data types. With the client-server interaction described in Section 3, we are able
to reliably record and store all Web Service invocations carried out by a client and
hence describe all dataset transformations. We also designed our system so that
it could be integrated with any existing components simply and unobtrusively.

The second major requirement is that the data provenance is made available
through a query interface. This is provided through the Provenance Query Port;
an API that allows a user to extract data provenance according to content and
type via Web Services. The provenance records are made available in the form of
a workflow trace, an XML formated data structure that shows precise details of all
aspects of a complex data processing task such as workflow enactment. Although
our workflow trace definition is by no means an attempt at a standard lineage

representation, it does uphold the requirement that it allows data provenance to
be communicated reliably and consistently between platforms.

The greatest testament that our architecture meets the requirements is demon-
strated through the Provenance Validation component. By enabling the valida-
tion of any dataset transformation, we show that the records have been recorded
correctly, stored in a reliable format that facilitates re-use, and exposed via a
user friendly query interface.

In this paper, we have defined a notion of provenance for service-oriented
architectures such as Web Services and the Open Grid Services Architecture.
Based on this definition, we have proposed a provenance architecture, composed
of two key components: (i) a provenance server capable of recording provenance
information and offering a querying interface over the provenance information
it stores; (%) a client-side AP1 that allows clients invoking Web Services to
submit provenance records to the provenance server. We demonstrated the use
of provenance data by providing two further components making use of the
querying interface: (i) A browsing interface allows users to navigate provenance
records as they are submitted; (%) a provenance validation capability is able to
decide if the results produced by previous workflow enactments are still up to
date by re-executing all invoked services and comparing their outputs with the
ones stored in the provenance trace.

Provenance is a rather new topic in service-oriented architectures, and a num-
ber of issues still need to be addressed. In our implementation, the provenance
service is acting as a single point of contact, and therefore may become a bottle-
neck and a single point of failure. Provenance information need not be stored at
a single location, and could be distributed. It makes however life easier for the
implementor of the querying of interface if all provenance records are stored at
a single location.

In Section 3, we motivated the existence of a provenance service by the pos-
sibility of auditing provenance information by third parties. The architecture
includes a Provenance Client Interface, which allows a client, such as a workflow
enactment engine, to submit provenance records. In such a context, provenance
can only be trusted if the provenance service and the enactment engine are
trusted. It is desirable to reduce the trust assumptions so that the provenance
service can be accepted as properly auditable by third parties. In particular,
not having to trust the enactment engine to conformly execute a workflow will
make the system more attractive. To this end, we could request from the invoked
services to contribute to the provenance record submission process, in order to
certify the records submitted by the enactment engine. There is here an interest-
ing similarity with Mobile Agents having to run on non-trusted platforms [20]:
provenance protocols could be inspired by protocols designed to verify that the
results returned by a mobile agent have not been corrupted by the environments
in which it operated. Distributed systems properties are seeked such as mutual
authentication of all parties involved in the computation, and non-repudiation,
by which we can retain evidence of the fact that a service has committed to
executing a particular invocation and has produced a given result.

Section 4.2 evoked the problem of large data sets, for which the transfer of
data could be performed asynchronously. In some cases, it may not be desirable
to duplicate the data either because it is too large, or because of copyright or
intellectual property reasons. The data owner would have to commit to archive
such data, and a unforgeable digest could be submitted instead. The protocol
should be extended to accomodate such cases, and incorporate data owners in a
network of trust.

We propose a provenance validation component capable of re-invoking Web
Services and compare their results with the results stored in the provenance
server. Currently, our comparison relies on a strict syntactic equality check, but
this has some restrictions. Some services can be based on stochastic processes
(e.g. Monte-Carlo simulation), and therefore generated results may not be syn-
tactically equal, though they could be considered equivalent. To be generic, a
provenance architecture must be able to support domain specific comparisons, so
that from a domain’s viewpoint, one can decide whether two results are similar.

6 Acknowledgments

Thanks to colleagues for discussions on provenance including Syd Chapman,
Omer Rana, Carole Goble, Matthew Addis and Mark Greenwood. This research
is funded in part by EPSRC myGrid project (reference GR/R67743/01).

References

[1] Peter Buneman, Alin Deutsch, and Wang-Chiew Tan. A deterministic model for
semistructured data. In Workshop on Query Processing for Semistructured Data
and Non-Standard Data Formats, 1998.

[2] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and Where: A
Characterization of Data Provenance. In International Conference on Database
Theory (ICDT), 2001.

[3] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Computing provenance
and annotations for views, October 2002. Published at [18].

[4] Francisco Curbera, Yaron Goland, Johannes Klein, Frank Leymann, Dieter Roller,
Satish Thatte, and Sanjiva Weerawarana. Business process execution language for
web services (bpeldws). http://www.ibm.com/developerworks/library/ws-bpel/,
2002.

[5] David de Roure, Nicholas R. Jennings, and Nigel Shadbolt. The semantic grid: A
future e-science infrastructure. International Journal of Concurrency and Com-
putation: Practice and FExperience, 2003.

[6] 1. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A virtual data system
for representing, querying and automating data derivation. In Proceedings of the
14th Conference on Scientific and Statistical Database Management, Edinburgh,
Scotland, July 2002.

[7] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiol-
ogy of the Grid — An Open Grid Services Architecture for Distributed Systems
Integration. Technical report, Argonne National Laboratory, 2002.

(8]

[9]

[10]
[11]
[12]

[13]

[14]
[15]

[16]

[17]
[18]

[19]
[20]

21]

Tan Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid. En-
abling Scalable Virtual Organizations. International Journal of Supercomputer
Applications, 2001.

Tan Foster, Jens Vockler, Michael Wilde, and Yong Zhao. The virtual data grid:
A new model and architecture for data-intensive collaboration, October 2002.
Published at [18].

James Frew and Rajendra Bose. Lineage issues for scientific data and information,
October 2002. Published at [18].

Grid computing environments working group at the global grid forum.
http://www.computingportals.org/, November 2002.

Carole Goble. Position statement: Musings on provenance, workflow and (semantic
web) annotations for bioinformatics, October 2002. Published at [18].

Mark Greenwood, Carole Goble, Robert Stevens, Jun Zhao, Matthew Addis, Dar-
ren Marvin, Luc Moreau, and Tom Oinn. Provenance of e-science experiments -
experience from bioinformatics. In Proceedings of the UK OST e-Science second
All Hands Meeting 2008 (AHM’03), 4 pages, Nottingham, UK, September 2003.
Frank Leyman. Web Services Flow Language (WSFL). Technical report, IBM,
May 2001.

Michael Luck, Peter McBurney, and Chris Preist. Agent Technolgy: Enabling Next
Generation Computing. AgentLink, 2003.

Luc Moreau, Simon Miles, Carole Goble, Mark Greenwood, Vijay Dialani,
Matthew Addis, Nedim Alpdemir, Rich Cawley, David De Roure, Justin Fer-
ris, Rob Gaizauskas, Kevin Glover, Chris Greenhalgh, Peter Li, Xiaojian Liu,
Phillip Lord, Michael Luck, Darren Marvin, Tom Oinn, Norman Paton, Stephen
Pettifer, Milena V Radenkovic, Angus Roberts, Alan Robinson, Tom Rodden,
Martin Senger, Nick Sharman, Robert Stevens, Brian Warboys, Anil Wipat, and
Chris Wroe. On the Use of Agents in a Biolnformatics Grid. In Sangsan Lee,
Satoshi Sekguchi, Satoshi Matsuoka, and Mitsuhisa Sato, editors, Proceedings of
the Third IEEE/ACM CCGRID’2008 Workshop on Agent Based Cluster and Grid
Computing, pages 653—661, Tokyo, Japan, May 2003.

Dave Pearson. Data requirements for the grid - scoping study report, February
2002. Status Draft.

Data provenance/derivation workshop.

http://people.cs.uchicago.edu/ yongzh/position_papers.html, October 2002.

Joel Saltz. Data provenance, October 2002. Published at [18].

Hock Kim Tan and Luc Moreau. Extending Execution Tracing for Mobile Code
Security. In Klaus Fischer and Dieter Hutter, editors, Second International Work-
shop on Security of Mobile MultiAgent Systems (SEMAS’2002), DFKI Research
Report, RR-02-03, pages 51-59, Bologna, Italy, June 2002. DFKI Saarbrucken.
Satish Thatte. Xlang, web services for business process design, 2001.

