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Abstract

Large-scale phenotyping of animal behaviour traits is time consuming and has led to

increased demand for technologies that can automate these procedures. Automated track-

ing of animals has been successful in controlled laboratory settings, but recording from ani-

mals in large groups in highly variable farm settings presents challenges. The aim of this

review is to provide a systematic overview of the advances that have occurred in automated,

high throughput image detection of farm animal behavioural traits with welfare and produc-

tion implications. Peer-reviewed publications written in English were reviewed systemati-

cally following Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines. After identification, screening, and assessment for eligibility, 108 pub-

lications met these specifications and were included for qualitative synthesis. Data collected

from the papers included camera specifications, housing conditions, group size, algorithm

details, procedures, and results. Most studies utilized standard digital colour video cameras

for data collection, with increasing use of 3D cameras in papers published after 2013.

Papers including pigs (across production stages) were the most common (n = 63). The most

common behaviours recorded included activity level, area occupancy, aggression, gait

scores, resource use, and posture. Our review revealed many overlaps in methods applied

to analysing behaviour, and most studies started from scratch instead of building upon previ-

ous work. Training and validation sample sizes were generally small (mean±s.d. groups =
3.8±5.8) and in data collection and testing took place in relatively controlled environments.

To advance our ability to automatically phenotype behaviour, future research should build

upon existing knowledge and validate technology under commercial settings and publica-

tions should explicitly describe recording conditions in detail to allow studies to be

reproduced.
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Introduction

Animal behaviour is implicitly used in an informal way every day by farmers to assess the

health and welfare of the animals in their care [1]. More specifically, systematic and quantita-

tive recordings of farm animal behaviour are made by researchers, veterinarians and farm

assurance inspectors, for example using numerical scoring systems to record aspects of injury

or lameness [2–4]. Various important behavioural traits have been shown to have sufficient

heritability that genetic selection to modify them would be possible. Such traits include ease of

handling, good maternal behaviour, and reduced harmful social behaviour or vices such as

feather pecking in hens and tail biting in pigs [5,6]. To collect behavioural phenotypic informa-

tion, breeders could carry out direct observation, behavioural testing, or make indirect / proxy

measures of the consequences of behaviour such as skin lesion scores to indicate aggression

[7] or tail damage scores to indicate that tail biting has occurred [8]. With a few exceptions,

these have generally proved to be too time consuming and therefore too expensive to collect

for widespread adoption by commercial livestock breeders.

In the examples described so far, recording animal behaviour is done manually via direct

(or time-deferred by video) observations by human observers. In recent years, there has been a

surge of interest in finding automated ways of recording behavioural traits. Devices which pro-

vide information about animal behaviour include: 1) Animal-based sensors fitted on (or some-

times in) the animal, such as tags, collars or bands containing devices which sense activity (tri-

axial accelerometers; e.g., [9]) and/or location (Global Positioning System GPS, or radio-based

proximity or triangulation) and/or contain information about animal identity (radio fre-

quency identity, RFID) and 2) Environment-based sensors which can include RFID detectors,

microphones, and a variety of camera technologies including monochromatic, colour, three-

dimensional (3D), infra-red and thermal. In addition to animal behaviour, information

streams useful in farm management include sensors which provide information about the

farm environment or building control systems such as meteorological information, tempera-

ture, ventilation, the flow of water or feed, and the rate of production of eggs or milk. The con-

cept of Precision Livestock Farming (PLF), includes the integration and interpretation of

relevant sensor information enabling the management of individual animals through continu-

ous real-time monitoring of health, behaviour, production, reproduction and environmental

impact [10–12]. With the development of the Internet of Things (IoT, i.e. the interconnection

between computing devices via the Internet), decision making can be better informed by con-

necting PLF information with other data streams, and components of farm management can

be automated or even controlled remotely [13,14].

In this review we have chosen to focus on studies which attempt to automatically detect ani-

mal behaviour assess activity or identify individual animals using conventional (2D) mono-

chromatic or colour cameras or 3D cameras [15]. We believe that cameras play an important

role in the detection of animal behaviour data for PLF because: 1) a single unit can cover a

group of animals and 2) machine vision analysis of camera data has the potential to reveal

great behavioural detail and subtlety. Thermal cameras were excluded from the review because

they provide detailed information on temperature and stress response but less about behav-

iour. Moreover, we found very few papers in which their use was automated (but see for exam-

ple Franco et al., 2019 [16]).

The use of cameras to automate the recording of behaviour has already been applied to spe-

cies that are easy to manage in highly-controlled settings, for example movement tracking of

colour-labelled laboratory rodents in small groups indoors under constant artificial light in

standardised caging (e.g., Noldus, Ethovision [17]). Commercial farm conditions offer a num-

ber of challenges including group sizes and stocking density, unmarked individuals, variable
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lighting and background, and the possibility that the animal becomes soiled with dirt or faeces.

Despite these challenges, rapid strides in the automatic recording of livestock and poultry

behaviour have been made over the last few decades (Fig 1), and the rise of PLF as an interdis-

ciplinary field combining technology with agriculture has resulted in studies published in a

wide range of engineering and animal science journals. Studies published in engineering jour-

nals, or sometimes in national journals in native language specific to countries in for example

Asia, South America, and Europe, are often not discovered by animal science researchers glob-

ally and may lack information that is important to allow others to replicate and build on the

technology or to apply the technology practically in animal science settings. On the other

hand, PLF studies published in animal science journals, sometimes claim novelty when it is

not the case, and these claims may arise in part due to lack of knowledge of studies published

outside their field. With an increasing number of researchers commencing studies using PLF

there is a need for an overview of the current possibilities of technology to monitor animal

behaviours that is accessible and comprehensible to readers across disciplines.

The aim of this review is therefore to provide a systematic review of the use of machine

vision systems to automate the detection of animal behaviour traits in terrestrial farmed live-

stock and poultry using conventional and 3D cameras.

Methodology

Literature was reviewed systematically by following Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) guidelines. PRISMA [18] specifies guidelines to be fol-

lowed to collect an unbiased set of sources to use as the basis for the review question. The

PRISMA steps for the current review are shown in Fig 2, along with the number of retrieved or

retained publications at each stage.

Eligibility criteria

Literature was evaluated regardless of publication year. Only peer-reviewed publications and

peer-reviewed conference proceedings written in English were considered. Only studies on

automated (machine vision) recording of livestock and poultry behaviour based on conven-

tional or 3D cameras were included, thereby excluding any studies using animal-based (body-

worn) sensors or on non-behavioural traits such as body weight.

Information sources

The following databases were searched: Google Scholar, Web of Science, PubMed, AGRIC-

OLA, AMiner, SciVerse, and ACMDigital Library. In addition, we searched the grey (non-

commercially published) literature using Google to find additional sources of information. Lit-

erature from these databases was collected in March 2018.

Search strategy and selection of publications

Each of the databases was searched for the following search term combinations: autom�

+ behavio� + livestock; autom� + behavio� + pig; autom� + behavio� + video + livestock;

autom� + behavio� + video + pig; behavio� + detection + pig; autom� + behavio� + video

detection + pig. An asterisk was used to automatically fill the search term to include related

words such as behaviour, behavior, behavioural etc. If the database did not allow the use of the

asterisk in the search term (which was the case for Google Scholar) then the term automated

was used for autom�, and behavior or behaviour for behavio�.

Automatic behaviour recording

PLOSONE | https://doi.org/10.1371/journal.pone.0226669 December 23, 2019 3 / 35

https://doi.org/10.1371/journal.pone.0226669


Fig 1. Historical chart, obtained via scopus, for the number of publications mentioning ‘Precision Livestock
Farming’ in the title or abstract.

https://doi.org/10.1371/journal.pone.0226669.g001

Fig 2. PRISMA flow diagram. From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMAGroup (2009).
Preferred Reporting Items for Systematic Reviews andMeta-Analyses: The PRISMA Statement, PLoS Med 6(7):
e1000097. doi:10.1371/journal.pmed1000097. For more information, visit www.prisma-statement.org.

https://doi.org/10.1371/journal.pone.0226669.g002
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Initially all livestock species were taken into account, by using the search term ‘livestock’.

After it became apparent that pigs were the main study species for automated visual recording

of behaviour, the more detailed search terms with ‘detection’ and ‘video detection’ were only

used in combination with the word ‘pig’. Using the search combination ‘behavio� + autom�

+ video detection + pig’ in Google (not Google Scholar) gave 1,470,000 results, of which only

the first 10 pages of results were examined in detail as additional pages of search results did not

provide scientific papers meeting the search criteria.

All retrieved titles (n = 448) were recorded along with the database where they were found

and search terms used to locate the article. All duplicates (n = 108) were removed based on

author name, year and article title. Then, all titles and abstracts were screened. As the focus of

the review was on visual sensing we removed all publications related to wearable monitors

such as accelerometers (n = 187). From the remaining publications (n = 153), the full text was

obtained and screened for eligibility using clear, non-arbitrary rules. After irrelevant publica-

tions (n = 45) were removed, the final publications were screened for relevant references not

yet identified using the snowball method (i.e., searching references from relevant literature).

Newly identified publications obtained through the snowball method (n = 41) were screened

for the abstract and, if relevant, screened for the full text. The number of publications at each

stage is given in the PRISMA flow diagram (Fig 2).

Data extraction

From each full paper (n = 108), information was collected about the research methods and out-

comes. The full description of data collection is given in the supplementary files (S1 Table).

The data collected are presented in S2 Table. Briefly, information was recorded on the objec-

tive of the study, a detailed description of species and housing conditions, device type used for

recording, the camera and lens specifications and settings, whether animals were tracked or

not, whether tracked individuals were marked, type of behaviour recorded, the data processing

method, the method used to validate automatic detection, and results such as accuracy and

precision.

Results

The results of our systematic search of the literature for studies using visual sensing yielded

papers covering only pigs, poultry and dairy cattle. Precision livestock farming publications on

other livestock species were sensor-based, and thus were excluded from this review. We first

review the main devices and techniques used in general. Then, for each species, we describe

the methods used and types of behaviour recorded by specific age category, if relevant.

Devices

Studies up to 2014 mainly use 2D (i.e., digital) cameras, monochrome or colour, for record-

ings. Since 2014 the use of 3D (i.e., depth) cameras has increased (S1 Table). Traditional ani-

mal behaviour video recordings (i.e., those decoded by human observers) are often made by

cameras placed on a rail above the pen, creating an angular view. This creates difficulties when

automating analysis of recordings [19], and nowadays almost all studies collecting video for

automated decoding place cameras directly above the pen to create a top-down view (79 out of

108 studies report top-down-view, S1 Table).

Digital cameras (2D). Digital 2D video cameras are in widespread use, readily available

and relatively cheap. Colour 2D digital cameras essentially work via a light-sensing chip

known as a CCD (charge-coupled device) that detects the brightness of three filtered colour

channels (red, green and blue, abbreviated to RGB) at every pixel. Several compressed file
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formats (such as MPEG-4) are available to efficiently store the image data they generate. For

some applications, simpler monochrome video cameras, which use a CCD to only record light

intensity at each pixel are sufficient. Monochrome cameras typically have greater light sensitiv-

ity and are thus more ideal for recording under lower light conditions than colour cameras.

2D cameras, however, are limited in application as they provide only a flat projection of the

animal [20] and are also influenced by distance, specific wavelength, and any applied filters

[21].

Depth cameras (3D). 3D cameras allow for broader application as they can capture addi-

tional information, depth, which represents the vertical distance between target and camera,

and are less prone to environmental influences. Our review identified 13 papers using 3D cam-

eras: 10 on pigs, two on dairy cattle and one on poultry. 3D cameras are more expensive and

typically provide lower image resolution (i.e., fewer pixels per area), but they have a number of

advantages over conventional 2D colour video cameras. They can operate regardless of the

visual light environment, including in total darkness, and they are unaffected by changing

light conditions including changes in contrast and shadow, and are less prone to errors due to

occlusion [22]. On farm, variable light conditions frequently occur over the course of a day as

part of normal light and dark schedules or due changing amounts of sunlight entering build-

ings via windows or open sides, and part or all of the surface of an animal can become soiled

with dirt, mud or faeces, changing its colour and relative contrast against the background

(which itself may also become soiled). Both variable lighting and changes due to soiling can

create challenges for successful machine vision segmentation based on differences in colour

[23].

3D cameras make segmentation (finding the animal against the background, described in

more detail below) much easier because depth information means that anything that is closer

to the camera than the floor or pen fixtures must be an animal. In commercial farm buildings,

dust in the air (and insects such as flies) can present a challenge to even this seemingly basic

first step of segmentation [24]. Once animals have been identified against the environmental

background, posture detection is also simpler with a 3D camera, since a lying animal is further

away from an overhead camera than a standing animal [25]. 3D technology also opens the pos-

sibility to reconstruct the geometry of animals’ bodies and link abnormal morphological

changes to behavioural changes [26–28]. Most 3D studies have used the relatively cheap

Microsoft Kinect 3D camera system, ideal for research use since it also came with a package of

software for developers. However, the Kinect was discontinued in late 2017, and now research-

ers are turning to other similar cheap and user-friendly systems such as the Intel RealSense.

Industrial-specification 3D cameras are also available, which are more robust to the dust,

ammonia and high pressure water cleaning systems on commercial pig farms, and these were

used by D’Eath et al. in a study describing the use of a 3D camera system to detect tail posture

as an early-warning sign of tail biting [8].

Techniques for extracting data

The challenge of detecting the behaviour of animals can broadly be divided into several steps:

segmentation, feature extraction, and behaviour definition. Segmentation is essentially sepa-

rating the animal from a non-animal background. Segmentation can also include the detection

and tracking of features specific to certain individual animals, such as segmenting pixels based

upon colour, intensity, texture, and or location. Feature extraction encompasses separation of

individual animals from each other, orientation of those animals, and aspects of detecting

motion and tracking animals across frames over time. Behavioural definition is the identifica-

tion and quantification of specific activity patterns, postures, gaits or behaviours shown by the
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animals of interest. Algorithms that have been used for these tasks across the reviewed papers

are listed in Table 1, classified by the objective for which they have been used. As many of

these papers describe work at fairly early research stages with respect to automatic data extrac-

tion, we make no distinction between systems that achieve real-time ‘live’ data processing and

those that collect sample data sets for later ‘off-line’ processing and analysis.

Useful metrics of behaviour can be obtained from each of these steps. Basic measures of

how and when space is being occupied, and thus certain types of resource use can be inferred

simply from segmentation (e.g., feeding based on presence of a pig near the feeder), although

more accuracy is possible if some feature extraction is added (e.g., determining that a moving

‘blob’ is a single standing/walking pig, tracking that it has moved towards a feeder and entered

it face first would give us more confidence that we have genuinely recorded feeder use). Track-

ing the motion of animals over frames, even if imperfectly, can generate further behavioural

metrics such as activity and acceleration. Activity measures can form the basis of more accu-

rate detection of specific behaviours such as walking, running, play or aggressive behaviours or

problems such as lameness. Various studies in our review have reached different points along

this progression. Only rarely, however, do the authors explicitly describe how their method

represents a refinement or advance over a previous approach to the same problem.

In the following three sections, we review the literature for automated detection of behav-

iour using machine vision technology in 1) pigs, 2) poultry and 3) dairy cattle in turn. Each

section begins with a brief overview that classifies the studies we found, followed by a more

detailed discussion, grouping together studies that followed a similar underlying approach.

Use of automated behaviour detection in pigs

The majority of studies attempting to use machine vision technology to automatically detect

behaviour in pigs have been conducted on groups of growing pigs, with a few studies targeting

singly-housed sows or suckling piglets. Conventional 2D cameras were the most common

camera type used (n = 54), with more recent studies beginning to use 3D depth cameras

(n = 10). A top-down view was the most common camera position (55 studies), while five stud-

ies used an angled top-down view, three studies viewed animals from the side, and one study

did not mention camera location. All monitoring took place in indoor environments. Eighteen

studies were conducted on commercial farms, 23 in indoor research facilities, 21 were con-

ducted in specially equipped test pens, and two studies observed pigs in a slaughterhouse.

Floor materials, and thus colour of the background, varied greatly among studies. Most studies

had concrete flooring (n = 35) that was ranged from solid to partially slatted or fully slatted.

Nine studies had slatted floors of various colours, while six studies had floors bedded with a

substrate. Fourteen studies failed to provide any details related to floor type or colour, which

was surprising given how central background colour is to the functioning of machine vision

algorithms that must subtract this element. Of the few studies that made any mention of light-

ing conditions, descriptions were typically vague such as ‘varied’, ‘sunny’, or ‘natural’ rather

than specifying light intensity or source type. Group sizes used for testing were generally small

(mean = 10.3 individuals, median = 9) and ranged from one to 40 pigs in a pen. Total study

population size was larger (mean = 43.4, median = 17, range = 1–667). Information generated

by the tracking software varied from the basics of segmentation of individuals (11 studies), to

tracking activity or resource use (29 studies), to detecting postures or gait scores (10 studies)

and moving up to more advanced detection of specific behaviours (11 studies).

Image segmentation. As described previously, segmentation, or the process of distin-

guishing individual animals from their background, is a necessary initial step in machine

vision methodology. The first attempt to use segmentation in the automatic detection of pigs
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Table 1. Algorithms described in the reviewed literature and objectives for which they were used.

Segmentation

Objective Method References

Aggregated points belonging to the
same object

Labelling connected domain Chen et al. 2017

Background subtraction Channel features Nilsson et al. 2014, 2015a,b

Background subtraction Isomap algorithm Zhu et al. 2014

Background subtraction Mode-base Tsai et al. 2014, 2015

Background subtraction Non-linear colour combination Poursaberi et al. 2010; Van Hertem et al. 2014a

Background subtraction Reference image Ahrendt et al., 2011; Kim et al. 2017aa; Lindt et al. 2015; Nasirahmadi et al. 2015, 2016,
2017b,c; Oczak et al. 2014; Hansen et al. 2018a; Pluk et al. 2012; Song et al. 2008; Souza et al.
2009; Aydin et al. 2013; Leroy et al. 2006

Background subtraction Gaussian mixture model Ahrendt et al., 2011; Baek et al. 2017; Chung et al. 2014

Background subtraction Maximum entropy Chen et al. 2017; Zhu et al. 2009, 2017

Background subtraction Otsu’s Chung et al. 2014; Costa et al. 2014, 2015; Kashiha et al. 2013a,b,c, 2014; Kim et al. 2017a,b,
ca; Kongsro et al. 2013; Lind et al. 2015; Ma et al. 2016; Nasirahmadi et al. 2015, 2016,
2017b,c; Ott et al. 2014; Shao et al. 2008; Shao, Xin & Harmon, 1997; Xin et al. 2002; Yu
et al. 2015; Zhu et al. 2015; Cangar et al. 2007, 2008; Sergeant et al. 1998; Zhuang et al. 2018

Background subtraction Frame difference Chung et al. 2014; Van Hertem et al. 2014a; Aydin et al. 2010

Connect separate regions Small neighborhoods Khoramshahi et al. 2014

Contrast enhancement CLAHE Zheng et al. 2018a

Correct for lens distortion Polynomial models Gronskyte et al. 2015; Lind et al. 2015

Define objects Blob Fernández-Carrión et al. 2017; Gronskyte et al. 2013, 2015, 2016

Discriminate between regions Region-based Ju et al. 2018a

Discriminate different region
between frames

Outline-based Ju et al. 2018a

Discriminate objects Hysteresis discrimination Sergeant et al. 1998; Zhuang et al. 2018

Enhance spatial correlation and
colour similarities

Mahalanobis distance Ahrendt et al., 2011

Estimation of objects and
movement

Optical flow Fernández-Carrión et al. 2017; Gronskyte et al. 2013, 2015, 2016; Colles et al. 2015; Dawkins
et al. 2009, 2012

Group pixels Line-coincidence Perner, 2001

Image enhancement Histogram equalization Chen et al. 2017; Kashiha et al. 2013a,b,c; Lao et al. 2016a; Ott et al. 2014; Weixing et al.
2010b; Zhu et al. 2017

Reduce noise Median filter Lind et al. 2015; Zheng et al. 2018a; Nakarmi et al. 2014

Reduce number of pixels Spatio-temporal interpolation Kim et al. 2017a,ba

Remove small objects and soften of
edges

Morphological filtering All

Segmentation of thermal images Topographic surface Kim et al, 2017c

Separate objects from background Colour decorrelation Gronskyte et al. 2015; Aydin et al. 2013; Pereira et al. 2013

Separate touching objects Watershed Kim et al, 2017c; Oczak et al. 2016; Nakarmi et al. 2014

Separate touching objects K-means Zhuang et al. 2018

Feature extraction

Objective Method References

2D boundary tracing Moore neighborhood Kashiha et al. 2013b,c

Activity estimation Intensity difference Costa et al. 2013, 2014; Oczak et al. 2014; Ott et al. 2014; Sergeant et al. 1998

Contour description Fourier coefficients Kashiha et al. 2013b,c; Shao, Xin & Harmon, 1997; Weixing et al. 2010a

Contour description CowEdge Van Hertem et al. 2014

Define boundaries between two
regions

Hough transform Baek et al. 2017; Zhuang et al. 2018

Define center point of an area Medial axis transform Ju et al. 2017a

(Continued)
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Table 1. (Continued)

Descriptor for local structure in
gray level

Local binary pattern Huang et al. 2018

Determine convex points in a curve Convex hull algorithm Ju et al. 2017b

Enhanced shapes Anisotropic diffusion filter Nakarmi et al. 2014

Extract contours Wavelet edge detection Ma et al. 2016

Extract contours Zernike moments Zhu et al. 2015

Extract edge information Canny operator Baek et al. 2017; Kim et al. 2017ba; Zhu et al. 2015

Extract edge information Laplace operator McFarlane and Schofield 1995

Extract features from object Area fitting Chen et al. 2017

Extract features from optical flow
vectors

Doane’s formula Chen et al. 2017

Extract features from optical flow
vectors

Modified angular histograms Fernández-Carrión et al. 2017; Gronskyte et al. 2013, 2015, 2016

Extraction of texture features Gabor filters Huang et al. 2018

Feature extraction Active shape algorithm Hansen et al. 2018a; Pluk et al. 2012; Song et al. 2008; Souza et al. 2010;Cangar et al. 2007,
2008; Poursaberi et al. 2010

Group objects Delaunay triangulation Nasirahmadi et al. 2015, 2016, 2017b

Link objects with regions Kuhn-Munkres algorithm Yu et al. 2015

Locate object Ellipse fitting Kashiha et al. 2013a,b,c, 2014; Lind et al. 2015; Ma et al. 2016; McFarlane and Schofield
1995; Nasirahmadi et al. 2015, 2016, 2017b,c; Oczak et al. 2016; Zhuang et al. 2018

Map arrays of features Elastic net regularized logistic
regression

Nilsson et al. 2014, 2015a,b

Minimal distance between points
in a region of interest

Euclidean distance Chen et al. 2017; Nasirahmadi et al. 2015, 2016, 2017b,c; Shao et al. 2008; Zhu et al. 2017;
Leroy et al. 2005

Motion detection Shading model Shao et al. 2008

Motion detection Motion history image Viazzi et al. 2014; Ahn et al. 2018

Motion detection XOR operation Xin et al. 2002

Motion smoothing Moving average filter Fernández-Carrión et al. 2017; Gronskyte et al. 2013, 2015, 2016; Lao et al. 2016a

Multi-object contour extraction Morphology processing Ma et al. 2016

Outliers filtering Dynamic linear model Kristensen & Cornou, 2011

Outline shapes Point distribution model Leroy et al. 2005, 2006

Region definition Back posture measurement Van Hertem et al. 2015

Select periods of interest in set of
images

Key frames Wang et al. 2015; Chen et al. 2017

Separation of adjacent regions Concave-convex points Baek et al. 2017; Kim et al, 2017c; Weixing et al. 2010b; Zhuang et al. 2018

Separation touching objects Normal surfaces in 3D Matthews et al. 2017a

Track object between frames Hungarian method Matthews et al. 2017a

Track objects Support maps Ahrendt et al., 2011

Track objects EthoVision software Kulikov et al. 2014a; Suster et al. 2001; Fraess et al. 2016

Track objects Particle filter Fujii et al. 2008

Track objects movement Linear angular motion Kashiha et al. 2013c

Behavioural definition

Objective Method References

Align time-series of features Dynamic time wrapping Hunag et al. 2018

Classification Support vector machine Hunag et al. 2018; Lee et al. 2016; Weixing et al. 2010a; Zhu et al. 2014, 2015; Zhuang et al.
2018

Classification Neural networks Khoramshahi et al. 2014; Oczak et al. 2014; Shao, Xin & Harmon, 1997; Zheng et al. 2018

Classification Linear discriminant Analysis Viazzi et al. 2014

Classification Viola-Jones algorithm Porto et al. 2013, 2015

Classification Weka software Pereira et al. 2013

(Continued)
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Table 1. (Continued)

Cluster together regions with
similar properties

Hierarchical clustering Chen et al. 2017

Establish relation between variables Transfer functions Kashiha et al. 2013a; Oczak et al. 2016; Leroy et al. 2005, 2006; Youssef et al. 2015

Reduce dimensionality Principal component analysis Hunag et al. 2018; Kongsro et al. 2013

Segmentation

Method Objective References

Labelling connected domain Aggregated points belonging to the
same object

Chen et al. 2017

Channel features Background subtraction Nilsson et al. 2014, 2015a,b

Isomap algorithm Background subtraction Zhu et al. 2014

Mode-base Background subtraction Tsai et al. 2014, 2015

Non-linear colour combination Background subtraction Poursaberi et al. 2010; Van Hertem et al. 2014

Reference image Background subtraction Ahrendt et al., 2011; Kim et al. 2017a; Lindt et al. 2015; Nasirahmadi et al. 2015, 2016,
2017b,c; Oczak et al. 2014; Hansen et al. 2018; Pluk et al. 2012; Song et al. 2008; Souza et al.
2009; Aydin et al. 2013; Leroy et al. 2006

Gaussian mixture model Background subtraction Ahrendt et al., 2011; Baek et al. 2017; Chung et al. 2014

Maximum entropy Background subtraction Chen et al. 2017; Zhu et al. 2009, 2017

Otsu’s Background subtraction Chung et al. 2014; Costa et al. 2014, 2015; Kashiha et al. 2013a,b,c, 2014; Kim et al. 2017a,b,
c; Kongsro et al. 2013; Lind et al. 2015; Ma et al. 2016; Nasirahmadi et al. 2015, 2016, 2017b,
c; Ott et al. 2014; Shao et al. 2008; Shao, Xin & Harmon, 1997; Xin et al. 2002; Yu et al. 2015;
Zhu et al. 2015; Cangar et al. 2007, 2008; Sergeant et al. 1998; Zhuang et al. 2018

Frame difference Background subtraction Chung et al. 2014; Van Hertem et al. 2014; Aydin et al. 2010

Small neighborhoods Connect separate regions Khoramshahi et al. 2014

CLAHE Contrast enhancement Zheng et al. 2018

Polynomial models Correct for lens distortion Gronskyte et al. 2015; Lind et al. 2015

Blob Define objects Fernández-Carrión et al. 2017; Gronskyte et al. 2013, 2015, 2016

Region-based Discriminate between regions Ju et al. 2018a

Outline-based Discriminate different region
between frames

Ju et al. 2018a

Hysteresis discrimination Discriminate objects Sergeant et al. 1998; Zhuang et al. 2018

Mahalanobis distance Enhance spatial correlation and
colour similarities

Ahrendt et al., 2011

Optical flow Estimation of objects and
movement

Fernández-Carrión et al. 2017; Gronskyte et al. 2013, 2015, 2016; Colles et al. 2015; Dawkins
et al. 2009, 2012

Line-coincidence Group pixels Perner, 2001

Histogram equalization Image enhancement Chen et al. 2017; Kashiha et al. 2013a,b,c; Lao et al. 2016; Ott et al. 2014; Weixing et al.
2010b; Zhu et al. 2017

Median filter Reduce noise Lind et al. 2015; Zheng et al. 2018; Nakarmi et al. 2014

Spatio-temporal interpolation Reduce number of pixels Kim et al. 2017a,b

Morphological filtering Remove small objects and soften of
edges

All

Topographic surface Segmentation of thermal images Kim et al, 2017c

Colour decorrelation Separate objects from background Gronskyte et al. 2015; Aydin et al. 2013; Pereira et al. 2013

Watershed Separate touching objects Kim et al, 2017c; Oczak et al. 2016; Nakarmi et al. 2014

K-means Separate touching objects Zhuang et al. 2018

Feature extraction

Method Objective References

Moore neighborhood 2D boundary tracing Kashiha et al. 2013b,c

Intensity difference Activity estimation Costa et al. 2013, 2014; Oczak et al. 2014; Ott et al. 2014; Sergeant et al. 1998

Fourier coefficients Contour description Kashiha et al. 2013b,c; Shao, Xin & Harmon, 1997; Weixing et al. 2010a

CowEdge Contour description Van Hertem et al. 2014

(Continued)
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Table 1. (Continued)

Hough transform Define boundaries between two
regions

Baek et al. 2017; Zhuang et al. 2018

Medial axis transform Define center point of an area Ju et al. 2017a

Local binary pattern Descriptor for local structure in
gray level

Huang et al. 2018

Convex hull algorithm Determine convex points in a curve Ju et al. 2017b

Anisotropic diffusion filter Enhanced shapes Nakarmi et al. 2014

Wavelet edge detection Extract contours Ma et al. 2016

Zernike moments Extract contours Zhu et al. 2015

Canny operator Extract edge information Baek et al. 2017; Kim et al. 2017b; Zhu et al. 2015

Laplace operator Extract edge information McFarlane and Schofield 1995

Area fitting Extract features from object Chen et al. 2017

Doane’s formula Extract features from optical flow
vectors

Chen et al. 2017

Modified angular histograms Extract features from optical flow
vectors

Fernández-Carrión et al. 2017; Gronskyte et al. 2013, 2015, 2016

Gabor filters Extraction of texture features Huang et al. 2018

Active shape algorithm Feature extraction Hansen et al. 2018; Pluk et al. 2012; Song et al. 2008; Souza et al. 2010;Cangar et al. 2007,
2008; Poursaberi et al. 2010

Delaunay triangulation Group objects Nasirahmadi et al. 2015, 2016, 2017b

Kuhn-Munkres algorithm Link objects with regions Yu et al. 2015

Ellipse fitting Locate object Kashiha et al. 2013a,b,c, 2014; Lind et al. 2015; Ma et al. 2016; McFarlane and Schofield
1995; Nasirahmadi et al. 2015, 2016, 2017b,c; Oczak et al. 2016; Zhuang et al. 2018

Elastic net regularized logistic
regression

Map arrays of features Nilsson et al. 2014, 2015a,b

Euclidean distance Minimal distance between points
in a region of interest

Chen et al. 2017; Nasirahmadi et al. 2015, 2016, 2017b,c; Shao et al. 2008; Zhu et al. 2017;
Leroy et al. 2005

Shading model Motion detection Shao et al. 2008

Motion history image Motion detection Viazzi et al. 2014; Ahn et al. 2018

XOR operation Motion detection Xin et al. 2002

Moving average filter Motion smoothing Fernández-Carrión et al. 2017; Gronskyte et al. 2013, 2015, 2016; Lao et al. 2016

Morphology processing Multi-object contour extraction Ma et al. 2016

Dynamic linear model Outliers filtering Kristensen & Cornou, 2011

Point distribution model Outline shapes Leroy et al. 2005, 2006

Back posture measurement Region definition Van Hertem et al. 2015

Key frames Select periods of interest in set of
images

Wang et al. 2015; Chen et al. 2017

Concave-convex points Separation of adjacent regions Baek et al. 2017; Kim et al, 2017c; Weixing et al. 2010b; Zhuang et al. 2018

Normal surfaces in 3D Separation touching objects Matthews et al. 2017

Hungarian method Track object between frames Matthews et al. 2017

Support maps Track objects Ahrendt et al., 2011

EthoVision software Track objects Kulikov et al. 2014; Suster et al. 2001; Fraess et al. 2016

Particle filter Track objects Fujii et al. 2008

Linear angular motion Track objects movement Kashiha et al. 2013c

Behavioural definition

Method Objective References

Dynamic time wrapping Align time-series of features Hunag et al. 2018

Support vector machine Classification Hunag et al. 2018; Lee et al. 2017; Weixing et al. 2010a; Zhu et al. 2014, 2015; Zhuang et al.
2018

Neural networks Classification Khoramshahi et al. 2014; Oczak et al. 2014; Shao, Xin & Harmon, 1997; Zheng et al. 2018

(Continued)
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from images was in the nineties when McFarland and Schofield attempted to track recently

weaned pigs [29]. They distinguished piglets from their background by modelling them as

ellipses based on blob edges obtained from image differencing between successive frames;

however, they encountered difficulties because the frame speed of the camera was too low to

accurately capture the piglets’ rapid movements. This issue has now been overcome with

improvements to cameras, and high-speed cameras can now capture hundreds of frames per

second.

Additional early segmentation studies applied the technique to assess thermal comfort of

piglets [30–32]. Automated monitoring of thermal comfort has potential to improve animal

welfare by recognizing pigs’ behavioural attempts to thermoregulate and responding with

appropriate environmental adaptations. The initial studies examining this problem first cre-

ated binarized images using thresholding, edge detection, and morphological filtering tech-

niques [33]. Extraction of features using a combination of Fourier coefficients, moments,

perimeter and area were able to successfully identify spacing between the pigs—a behavioural

indicator of whether pigs were cold (tightly clustered together) or too warm (widely spaced

apart). About a decade later, in another effort to measure thermal comfort, Shao & Xin devel-

oped a method to identify individual pigs lying down using a predefined threshold of intensity

ratio to determine if motion had occurred between successive frames [34]. Any moving pigs

were removed, along with small objects, and then feature extraction was performed on the

resulting images to measure the compactness of the lying pigs.

Segmentation to resolve touching pigs into separate individuals can be difficult, as classical

segmentation techniques cannot recognize boundaries between pigs. One research group pro-

posed a method using concave points and edge information generated from continuous video

frames transformed into a one-dimensional time-series [35–37]. This allowed for accurate sep-

aration of touching pigs in a crowded room environment. An alternative method was pro-

posed by Oczak et al. [38]. This group employed a Watershed algorithm [39] to binarized

greyscale images to find boundaries between piglets and between piglets and a sow (irrespec-

tive of their shape). This allowed researchers to accurately estimate the number of piglets at

farrowing.

Otsu’s commonly used greyscale method, developed in the 1970s, works well in controlled

environments, with large contrast between the pigs and the background [40]. However, this

method struggles in real world applications with variable lighting, multi-coloured pigs, or

non-contrasting pig and floor colours. Nilsson et al. reported an improved method for seg-

mentation of pigs [41] that processed the raw colour image in multiple different ways by look-

ing for colour contrast, areas of maximum colour change and colour gradients in various

directions, as well as a max-min filter and a modification of Otsu’s method. The optimal com-

bination of these channels was then found using a learning-based approach to structured

Table 1. (Continued)

Linear discriminant Analysis Classification Viazzi et al. 2014

Viola-Jones algorithm Classification Porto et al. 2013, 2015

Weka software Classification Pereira et al. 2013

Hierarchical clustering Cluster together regions with
similar properties

Chen et al. 2017

Transfer functions Establish relation between variables Kashiha et al. 2013a; Oczak et al. 2016; Leroy et al. 2005, 2006; Youssef et al. 2015

Principal component analysis Reduce dimensionality Hunag et al. 2018; Kongsro et al. 2013

aDenotes publications utilizing 3D cameras.

https://doi.org/10.1371/journal.pone.0226669.t001
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prediction and fitting an elastic net regularized logistic regression. Nilsson et al. validated their

approach by estimating the number of pigs in a region of the pen (the dunging area) in a

5-minute video sequence and found good agreement when comparing this against human

observer counts [42,43].

Another advanced segmentation technique was developed by Ma et al. to better cope with

the light changes that are common in pig barns [44]. Their method used adaptive elliptic block

and wavelet edge detection after performing two-dimensional Otsu threshold segmentation.

To investigate pig boundary detection in dirty pen environments with insufficient lighting,

Buayai et al. applied adaptive thresholding using an integral image for segmentation and used

adaptive partitioning with connected components [45]. This step was followed by using the

maximum entropy threshold of each partition, and merging the results from both steps, creat-

ing a more robust segmentation procedure. A further segmentation study implemented a neu-

ral network classifier (supervised machine learning technique) to identify individuals within a

group [46]. This method demonstrated effective segmentation of a sow’s body, even when she

was partially occluded by the crate elements. Tu et al. addressed the issues of dynamic back-

ground objects, light changes, and motionless foreground objects in their study of sows in

free-farrowing pens using a Gaussian mixture model for background subtraction and dyadic

wavelength transformation, and then performed tracking using the centre of mass [47].

Occupation and movement. Individual and group activity levels and location within a

pen can be estimated using pixel analysis obtained from digital video. An occupation index

can be obtained by measuring the percentage of pixels above a defined threshold. This can be

done at the pen level, or on focal regions within the pen. An activity index can also be obtained

by measuring the amount of pixel change between consecutive images. Optical flow analysis

can also estimate motion and relative velocity of an object through comparing consecutive

frames.

An early study conducted by Bloemen et al. used activity and occupation levels to explore

pigs’ responses to their microenvironment [48]. Similarly, Guo et al. applied threshold seg-

mentation methods to detect pigs from their background in targeted areas of the pen, with

potential application of predicting resource use [49,50]. Pixel analysis can also be utilized to

automate detection of sick pigs [51] and has been tested on groups of pigs administered apo-

morphine to elicit a predictable change in locomotion levels [52]. An additional study pro-

cessed subsequent frames to estimate an activity index, which was compared to human

observations and found high agreement for pig activity (static activity, locomotion, and loco-

motion plus activity) [53].

Costa et al. described the validation of the eYeNamic system in pigs, which generates activ-

ity and occupation indices, and compared it with conventional observations by a human

observer using an ethogram [54,55]. Good correspondence was found between this ‘gold stan-

dard’ and the software results, and environmental conditions including temperature, humid-

ity, air speed and ventilation rate, were able to be related to various pig behaviours relating to

thermoregulation, for example huddling (reduced occupation index) and lying spread out

(increased occupation index). Kashiha et al. developed an Image Activity Status method as an

alternative to eYeNamic, which performed more accurately in tests, proving to be more robust

against variation in body shape; however, it still had difficulty under high stocking density situ-

ations [56]. Another potential application for image analysis of activity is the detection of the

circadian rhythm. Chung et al. collected activity data at the group level in a commercial farm

pen with 22–24 pigs per pen [57]. Circadian rhythm was calculated by assessing the repeatabil-

ity of the 24-hour activity data across days while adjusting for pigs’ growth curve. Additionally,

one study simply used webcam zone trigger software (alerted when an object entered a prede-

fined region of interest) to track the location of an individual within a pen [58].
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Amore advanced monitoring method of movement involves optical flow to assess pixel

changes from consecutive frames of video, but with respect to an identified object, returning

more detailed information such as direction or velocity of movement. Gronskyte et al. applied

optical flow analysis to assess pig welfare in the slaughterhouse by detecting abnormal (trip-

ping or stepping on one another) versus normal movement [23,59]. Optical flow vectors from

a pig were summarized into a modified angular histogram, which then allowed the application

of a support vector machine (SVM) to identify movements of interest. In another attempt to

detect significant changes in pigs’ motion, Fernández-Carrión et al. used an SVM on optical

flow vectors from images of pigs infected with the African Swine Fever virus [60]. This method

could serve as an early warning system, as changes in activity were recognized before the pres-

ence of clinical signs.

Using 3D cameras, as described above, Kulikov et al. tracked minipigs in an open field test

using EthoStudio software (http://ethostudio.com/new/en/about/) [61] whereas Matthews

et al. designed a system to segment and track pigs [62]. Tracking was achieved by first reducing

each pig to the centre point of its detected space (centroid) and then minimising the move-

ment of these over subsequent frames using the Hungarian algorithm [63]. Assuming that the

speed of movement of pigs is not too great, a method to minimise the distance moved by pig

centroids between subsequent frames is a simple but effective way to track individual pigs. The

tracking was then able to produce metrics of speed and distance of movement (on the flat XY

plane) and clustering (spatial entropy). The system also determined pig posture as stand or

non-stand (sit, lie), which in combination with spatial location, enabled some metrics of

resource use (e.g., standing at the feeder could be used to imply feeding). However, standing at

the drinker could not be validated against ‘ground truth’ human video watching. An additional

study employed depth video to track pigs, detect standing and lying, as well as estimating size

and weight, which could serve as metrics to improve tracking ability [64].

Gait score estimation and posture detection. Lameness in pigs is a significant welfare

concern. To develop a vision system capable of evaluating pig locomotion, Kongsro used

object extraction which then generated a map image using Matlab software [65]. They then

characterized structural soundness through multivariate image analysis. Alternatively, Weix-

ing & Jin utilized image sequences captured from a side-view camera to model gait informa-

tion based upon movement of body points and joint angles [66]. Motion analysis was then

performed after extracting these key features in order to classify abnormal gait.

Depth information provided by 3D cameras has also been used for automatic detection of

pig gait [67]. A marker was attached to each pig’s neck as it walked under a runway, and the

trajectory of this marker was compared between a basic Kinect system, and a ‘gold standard’

six camera Vicon system (Vicon T20, Oxford, UK). Good agreement was found between the

systems, but only if the marker was used, suggesting that the system would need further devel-

opment for use in a commercial farm setting where pigs are unmarked. Two further studies

detected pig posture through Zernike moments (image property representation with high

accuracy for detailed shapes and magnitudes invariant under rotation), SVM (supervised

learning models) [68], and thresholding depth images to detect standing [69]. Depth cameras

have also been utilized to detect posture information in lactating, crated sows [70,71]. Depth

cameras have the advantage of functioning in the absence of light and have been used to detect

standing pigs at night [24,25]. Finally, the posture of body parts can be detected using depth

information: D’Eath et al. used a proprietary machine vision system with 3D cameras to accu-

rately (73.9%) detect pig tail posture, and validated this indicator as potential early warning

sign of tail biting [8].

Behavioural detection. Through different combinations of segmentation techniques,

location, and posture information, more complex pig behaviours can be detected through
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image analysis. One study was able to detect respiration by implementing a concave and con-

vex recognition method [72]. Through use of the animal tracking program EthoVision, pigs’

lying proximity, orientation (parallel, antiparallel, or perpendicular), as well as nosing around

the ear of another pig were detected [73]. In a series of papers, Nasirahmadi et al. developed a

machine vision approach to record pig lying behaviour [74]. After segmentation, moving pigs

were eliminated using previously discussed methods. The clustering of the remaining lying

pigs was defined as close, normal, or far using Delaunay triangulation. This, along with pig

location within the pen was correlated with changes in pen temperature. Nasirahmadi et al.

built on this approach by using a neural network with a back propagation algorithm to find

the optimal combination of different metrics from the Delaunay triangulation to best describe

the different lying patterns of pigs to identify cool, ideal or warm temperatures [15]. Nasirah-

madi et al. strategically altered pen activity through the provision of feed to test the perfor-

mance of their algorithm [75]. In a different application of their approach, to detect mounting

behaviour, Nasirahmadi et al. repeated their approach to fitting ellipses to monochrome pig

outlines [76]. Greyscale thresholding failed to separate mounted pigs, as the model tried to fit

an ellipse to a mounted pair as though it were a single pig. However, the resulting ellipse is

then either unexpectedly long (mounting from rear), or too wide (mounting from side- T

shaped outline), allowing mounted pairs to be identified. Kashiha et al. employed an innova-

tive approach to estimate water use of fattening pigs in real-time [77]. Pigs were segmented,

then body contour was analysed to identify the pig’s head. A drinking event was detected

when the pig stood still for a period of at least two seconds with its head at the drinker.

Pig aggression, another behaviour critical to animal welfare and production efficiency, has

been successfully detected through machine vision techniques. Oczak et al. used the output of

a relatively simple pixel based ‘activity index’ as the basis for a system to detect activity indica-

tive of aggressive behaviour (fighting) in pigs [78]. Features such as the maximum, minimum

and average activity over successive seven second periods were used as inputs into a multilayer

feed forward neural network. This was trained with 24 hours of video of unfamiliar pigs mixed

into a new group and was able to learn the characteristic activity patterns that indicate aggres-

sion. It was over 90% accurate at identifying aggression in a different group; however, the sys-

tem was not tested against other high activity events such as locomotor play by young pigs in a

new pen. From the same group, Viazzi et al. weaned piglets into groups of 12 pigs per pen and

recorded the interactions over 60 hours to detect aggression in pigs [79]. Aggressive interac-

tions were labelled manually and related to the Motion History Image from which the mean

intensity and the occupation index were used. Linear Discriminant Analysis was then used to

classify aggressive interactions. The algorithm resulted in 89% accuracy when validated against

the manually labelled data. The work on aggression was continued by Chen et al., using a

vision-based method to separate fighting pigs from the other individuals in the pen [80]. Chen

and co-authors studied the acceleration between adjacent frames, as aggression typically con-

sists of rapid movements. The algorithm could reliably detect high velocity aggression (97%

accuracy) and medium aggression (95.8%). There is a risk, however, that low velocity aggres-

sion is not detected accurately and that high velocity non-aggressive behaviours, such as play,

are misclassified as aggression. In a contrasting approach, Lee et al. segmented standing pigs

and tracked them using Euclidian distance between subsequent frames under some threshold

[22], and an index algorithm developed by Zuo et al. [81]. Various movement metrics (fea-

tures) were then generated (minimum, maximum, mean and standard deviation of velocity,

and distance between the pigs). They then used a machine learning approach, training support

vector machines with instances of different types of aggressive behaviour manually labelled by

a human observer. There were two support vector machines used in sequence, one to identify
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aggression from non-aggression (which was 95.7% accurate in this study) and a second to

identify sub-types of aggression such as head knocking (88.9%) and chasing (91.5%).

Individual tracking and identification. An early attempt to segment pigs and track them

over multiple frames using their centre of gravity was reported by Perner [19]. This system

also included components to deal with partial occlusion of pigs by pen bars. Another early

attempt was conducted with limited success by Zelek & Bullock through use of blob tracking,

or identifying regions in an image with significantly different visual properties (i.e., white pigs

on a dark background) [82]. Ahrendt et al. developed a system to find and track individual

pigs in a group of three [83]. After a human user had identified the initial start point of each

pig, their location was updated frame by frame using five channels- RGB colour, and x, y co-

ordinate, identifying a blob of similar pixels on the back of each pig. The inclusion of a contin-

ually-updating colour model was intended to avoid some of the problems of tracking using

colour cameras such as variable light intensity, shadow and light from windows. Tracking of

three pigs for eight minutes was achieved, although if pigs mounted, jumped or spun rapidly,

tracking could be lost. Kashiha et al. used monochrome video to record images of 10 pigs in

each of four pens that had been marked with blue paint sprayed on their backs in an individu-

ally distinctive way (lines, crosses, rectangles or blobs of paint in specific locations) [84]. Each

pattern always included a triangle sprayed on the neck. Marked pigs were then segmented and

an ellipse was fitted to the outline of each pig. The location (relative to the neck triangle) and

shape of the paint markings was then binarised and extracted, and Fourier transforms per-

formed to produce Fourier descriptions. The system was able to identify individual pigs with

88% accuracy, failing to assign an ID 11% of the time, and misidentifying 1%. Errors resulted

from pig body posture and paint fading. Individual identification was then used in combina-

tion with spatial co-ordinates to generate data for each pig’s location in four quadrants of the

pen. Similarly, individual recognition of marked piglets in the farrowing pen by video was

achieved by distinguishing them based on spray marked colours [85]. Nine piglets per litter

had a different colour mark by which the programme could detect the location (X, Y coordi-

nate) of the piglets after initial manual introduction of the colours to the programme. The pro-

gramme could then detect 72.5% of the piglets, of which 89.1% were correctly identified.

In a more ambitious paper, Huang et al. attempted to individually identify unmarked pigs

based on the texture of the hair on their backs [86]. Seven pigs were used, which appear from

photos in the paper to be quite different in colour and texture. Pigs were segmented and

binarised using the method of Guo et al. [50]. The authors combined two methods of charac-

terising texture—Gabor wavelet at a range of scales and local binary pattern for small details.

Using machine learning, a structured vector machine was then trained to recognise the dis-

tinctive features of each individual pig. They were able to achieve recognition accuracy of 92%.

Zhu et al. implemented machine vision to recognize drinking behaviour [87] of individual pigs

within a drinking zone by colour moment features and the extraction of geometric features

such as area and object contour perimeters. This method of image processing allowed for indi-

vidual pig recognition without the need for individual marking of animals. Drinking behav-

iour was confirmed by measuring contact between the pig and the drinker nipple and time

spent in contact. This top view monitoring system used a colour camera operating in real time

and correctly recognized drinking events for individual pigs 90.7% of the time. An additional

study that found success in tracking individual, unmarked animals in a group was conducted

by Yu et al. [88]. This group similarly created an algorithm that used colour, texture, and edge

features to differentiate among pigs using video from top down colour cameras. A Kuhn-

Munkres algorithm was employed to generate movement and trajectory information. This sys-

tem was able to track individuals with an accuracy of 92.3%. One of the benefits of this method

is its robustness when pigs are in crowded situations.
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The use of automated behaviour recording in poultry

The use of image-based analysis techniques in poultry has focused primarily on detecting and

tracking birds’ positions and calculating the amount of activity and their distribution pattern.

The typical aim of these studies is to provide automated measures of birds’ behaviour and to

link these with their health and welfare status.

Laying hens. The application of image-based techniques in lying hens first focused on

detecting hens’ locations in the early 2000’s, and in recent years, studies have shifted towards

tracking of individual hens. The final aim of both techniques is to extract features that allow

specific behaviours to be characterised.

Location. In the literature search, we identified three studies focusing on the location of

caged hens. In all of them, image pre-processing for image segmentation was performed, using

techniques described in the previous sections. Leroy et al. used the reference image method

[89,90], while Cronin et al. and Kashiha et al. applied Otsu’s method [91,92]. Leroy et al. aimed

to develop an image-based analysis technique to recognize five different behaviour pheno-

types: standing, sitting, grooming, scratching and pecking [89,90]. Using top-view monochro-

matic 2D images of single caged hens, an ellipse fitting technique was applied, and features

such as the centroid, rotation angle and the major and minor axes were extracted. Afterwards,

a dynamic linear model was used to monitor the time evolution of these features. Labelled

example image sequences for the five behavioural phenotypes were used to train the model. In

a validation dataset, sleeping and standing were the most accurate detected behaviours, with

96 and 90% accuracy, respectively. Difficulty in tracking hens’ heads lead to a lower accuracy

(ranging between 70–96%) for pecking.

Cronin et al. developed an image-based technique to count hens’ legs in the cages and to

detect foreign objects in the belt to collect eggs [91]. In order to do that, a camera, together

with an infra-red light, were attached to the automatic feeder system that moves in front of the

cages and also placed on top of the egg belt. 79% of hen legs and 95% of foreign objects in the

egg belt were counted correctly. The IR light reflected well from chicken legs but also from

reflective surfaces in the environment. In combination with the movements of the hen legs

between images, this affected the accuracy of results. The image processing software was not

fully described, but the authors claim that it should be possible to relate the output to other

monitored variables to define activities and link them to hen health and welfare. Finally,

Kashiha et al. performed an environmental preference test for hens by applying different levels

of ammonia in a system built by four connected cages [92]. Top-view images from four cam-

eras, each one on top of each compartment, were recorded. After image segmentation, the

image-based method for ellipse fitting developed in Zhang et al. was used [93]. Once the ellipse

was fitted, features such as centroid, orientation and major and minor axes are estimated. A

negative trend between occupation level, calculated by the image system, and ammonia level

in the cage was found. The image-based system was able to track a hen in different chambers

with 95.9% of success rate.

Tracking. As in the previous section, three studies were found regarding tracking of hens

using image analysis. Two of them aimed to track individual hens in small groups, and the

remaining study attempted to estimate activity levels in small groups of hens.

Zakarmi et al. developed a system based on 3D images to identify and track individual hens

living in small groups (five to 10 individuals) in an experimental setting [94]. The aim was to

monitor behaviours such as locomotion, perching, feeding, nesting, and drinking. Images

were segmented using the Watershed algorithm and morphological filtering, then the objects

of interest were defined and tracked. As backup, an RFID system was used to track individual

hens. The image-based processing technique sometimes lost identification when sudden
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movements occurred or hens were together in the nest and one suddenly leaves. In such situa-

tions, the RFID information was used to re-identify the lost hen. Thus, the fusion of these two

approaches enabled both tracking of a hen and characterisation of behaviours by monitoring

trajectories and time budgets. In a more recent study, Wang et al. developed an algorithm

based on a Hybrid Support Vector Machine (HSVM) for automatic tracking of individual lay-

ing hens in a layer group raised in a floor system by using an experimental platform [95]. The

image-based system consisted of three steps: initialization, tracking and updating. The initiali-

zation was done manually by fitting a hen’s contour in the initial image. Then, the tracking

was performed using three HSVMmodels. A binary HSVM detected the tracking object; a

regression HSVM located the target more accurately and a one-class HSVM distinguished

between individual targets via an appearance model, considering a non-rigid body movement

for the hen. Experimental results demonstrated that the HSVM tracker was robust, and it out-

performed state-of-the art tracking algorithms such as the Frag (fragment-based tracking

method), the TLD (Tracking-Learning-Detection), the PLS (object tracking via partial least

squares analysis), the MeanShift, and the Particle Filter algorithms.

In summary, current image-based analysis techniques developed for lying hens have

focused on the identification and tracking of individuals. These systems perform well in terms

of individual hen identification, but successful long-term tracking remains challenging. Occlu-

sion situations, together with the erratic behaviour and rapid movements of birds, make it

extremely difficult to develop robust tracking systems.

Broilers. Image-based analysis techniques developed for broilers have focused mainly on

two aspects, tracking of individuals and monitoring of activity and distribution patterns in

broiler flocks. The ultimate purpose of these studies has been to automatically evaluate broiler

behaviour and establish links with health and welfare.

Tracking. Studies focusing on tracking of individual birds in a flock have mostly been per-

formed on small groups (< 15 birds). The first attempt was the study by Sergeant et al. [96]

who developed an algorithm to be applied to 2D images. This image-processing technique

used a reference image to perform background subtraction and morphological filtering. After-

wards, using the curvatures of the contour points, the centroids and regions of interest were

determined to identify the different individual birds present in the image. Finally, a correspon-

dence between these centroids was assigned over successive video images to track each individ-

ual bird’s movement. This algorithm was tested with 13 birds and proved to be accurate for

centroid estimation, with only 5% of centroids showing an error higher than five pixels. How-

ever, it was not able to deal with occlusion events.

Fujii et al. developed a poultry tracking system to analyse the behaviour of chickens infected

with avian influenza [97]. The algorithm was also developed on a small flock (10 birds), and

similar to the previous study, a background/foreground separation was performed followed by

segmentation by ellipse fitting. However, to tracking the birds, particle filtering was applied to

efficiently separate chickens from each other. The particle filter was based on a model to esti-

mate the likelihood of a certain target. The active ray and contour models used performed well

when there was close contact between chickens; however, this strategy was not optimal when

dealing with occlusion events. On the other hand, the particle filtering based on colour and

contour features, together with information from previous trajectories, allowed discrimination

between individual birds after occlusion events. However, this combined system was able to

recognize and track poultry for only a limited amount of time (around 30 seconds) before

errors began to accumulate. Broiler behaviour has a higher degree of randomness than, for

instance, human behaviour. Thus, the development of algorithms to predict the location of

broilers after overlapping or sudden changes in direction becomes harder. Therefore, the
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problem of tracking individual birds remains unsolved and upscaling these approaches to

larger size flocks is challenging.

Activity and distribution estimation. There have been several studies, based on different

image-based analysis techniques, which calculate activity and distribution patterns to establish

a link between broiler behaviours and health and welfare. These techniques have the advantage

of working at flock level without the need for individual tracking.

For example, Bloemen et al. developed an image-based technique to calculate activity and

occupation levels by broilers [48]. In this work, occupation was defined as the percentage of

pixels in each individual image that are above a certain defined threshold to determine whether

there is an object captured by that pixel or not. Activity was defined as the amount of pixels

that have changed from background to object or vice versa by comparing two consecutive

images. This approach was used to evaluate the response of broilers, pigs and water fleas to

changes in the environment, and was able to define accurately the occupation and activity of

these species as defined above.

In the work of Kristensen & Cornou, a similar technique was employed to estimate broiler

activity [98]. Their aim was to detect deviations in the activity level of groups of six broilers in

experimental pens from 2D top-view images, and to link these deviations with problems affect-

ing the broilers. The image processing technique was refined in this work; each image was

divided in blocks and activity measurements were calculated for each block. Then, a multi-pro-

cess dynamic linear regression was applied to remove outliers, and another dynamic linear

process was used to estimate normal activity levels. Afterwards, deviations were determined

using a V-shape mask approach. In these experimental conditions, the technique was able to

define the daily activity patterns and to detect deviations from them. Kashiha et al. used this

image-based technique to estimate the expected distribution of broilers in a commercial house

[99]. An algorithm was developed to detect deviations from this expected distribution index

and raise an alert for the farmer. Then, these alerts were linked to management problems in

the house, such as, power failures and block feeder or water lines. This early warning system

showed an accuracy of 95%. This was developed further by Peña Fernández et al. who applied

the same early warning system to detect deviations in broilers activity and occupation patterns

[100]. This technique was applied in a commercial setting to estimate the percentage of time

broilers have spent in an alert situation throughout the growth period. The percentage of time

spent in alert situation by broilers was correlated with welfare issues, such as footpad lesions

and hock burns. Moreover, applying this image-based technique splitting the image in specific

areas in the broiler house it was possible to provide an indication to the farmer as to which

areas were affected by the event detected. Moreover, this splitting can be performed in such a

way that specific behaviours, such as feeding, drinking or resting are expected to be performed

more often in certain parts of the building. Combining this image-based technique with a

transfer function model allows monitoring both the location of the event and its impact on a

specific behaviour.

Using this image technique to calculate activity, several studies have been performed in

order to determine if monitoring broiler activity is a potential way for assessing gait score level

at commercial farms [101–103]. In Aydin et al., the aim was to investigate the activity levels of

broiler chickens in relation to their gait scores under laboratory conditions [101], and gaits

were scored on a 0–5 scale, with 0 indicating no signs of lameness and 5 indicating the most

severe lameness [104]. They found that broilers with gait score three showed significantly

more activity than birds with other gait scores, possibly due to their need for more feed. Broil-

ers scored as four or five for gait showed significantly lower activity. Lighting, camera charac-

teristics, background and test subject’s traits, all influence the ability of the system to recognize

the broiler and record its movement accurately. Therefore, in Aydin et al. the previous analysis
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was refined by using spatial information besides activity levels [102]. Activity was calculated

similarly, but colour image features are used to define spatial use by broilers. Thus, in each

image a colour filter was applied to enhance the red colour component. Moreover, a threshold

was applied to define the broiler position and estimate the centre of mass. Similar results as in

the previous study were obtained, but also, broilers scored as zero and three for gait seemed to

explore more of the building. Aydin developed a new method to assess the lameness of broilers

using 3D images [103]. Depth image information was used to define a chicken entering or

leaving the recording area. Then, applying a lower and upper threshold to the depth matrix,

the broiler’s body was segmented. Afterwards, the contour and orientation of the broiler was

estimated. Besides, using the depth information, the back posture of the chicken along the ori-

entation axis was defined. Then, the highest point from this back posture was used for further

analysis. This image-processing technique allows detecting the number of lying events (NOL)

based on the information of the distance between animal and the 3D camera. In addition,

latency to lie down (LTL) of broilers was estimated. Comparing these results with visually

assessed manual labelling data (reference method), 93% of NOL were correctly classified from

data of 250 broiler chickens. Furthermore, the results showed a significant positive correlation

between NOL and gait score (r = 0.934) and a significant negative correlation between LTL

and gait score level of broiler chickens (r = -0.949). Therefore, it seems that this 3D machine

vision monitoring method can be used as a tool for assessing lameness of broiler chickens.

Finally, the work of Youssef et al. investigated the effect of different temperature and venti-

lation conditions on behaviour [105]. A small, ventilated test chamber, populated with nine

seven-day old chickens, was used. A digital CCD camera was mounted on the top of the cham-

ber to capture the birds’ positions and motion. Chickens occupied zones with lower air veloci-

ties (< 0.20 m s-1) under cooler conditions (<29˚C), preferring zones with higher air velocities

when they were undergoing heat stress (>39˚C). When the ambient temperature inside the

test chamber deviates from the comfort zone, broilers start to move (sudden increase in the

global activity index) from the zones of poor comfort conditions to others of more suitable

conditions. A first-order dynamic transfer function model is suitable (R2 = 0.89 and YIC =

-11) to describe this dynamic response. Moreover, changes in the estimated model parameters

in relation to the changing ambient air temperature were able to reflect the thermal status (in

relation to the bird’s thermoneutral zone), as well as the behaviour of the broilers.

In summary, image-based analysis techniques which depend on the number of pixels esti-

mated to be birds, and changes in those pixels allows estimates of activity and occupation levels

in broiler houses, both in experimental and commercial setups, and these have been validated

with respect to specific behaviours and aspects of welfare status. However, these basic image-

based techniques become limited once birds are reaching around one kilogram of weight

under commercial stocking densities. As broilers become bigger, they begin to occupy most of

the area covered by the camera, making activity and occupation indices less reliable. There can

be a lot of activity in the flock, as there are only a few free pixels left in the image, then the

activity index will be much lower than it is in reality. Due to this limitation, other techniques

to estimate broiler activity and occupation have been proposed.

Dawkins et al. used a different image-based technique known as optical flow [106]. Optical

flow is based in detecting the rate of change of brightness in each area of an image frame, both

temporally and spatially. This allows the calculation of local velocity vectors to define this opti-

cal flow. Then, optical flow statistics, such as mean, variance, skewness and kurtosis can be

used as characterizing features. In this work, this technique was tested using images from a

CCTV system inside the broiler house and on-farm outcomes related to broilers welfare were

obtained. For example, negative correlations between gait score and the mean and variance of

optical flow were found, while positive correlations were found with skewness and kurtosis. In

Automatic behaviour recording

PLOSONE | https://doi.org/10.1371/journal.pone.0226669 December 23, 2019 20 / 35

https://doi.org/10.1371/journal.pone.0226669


further work, Dawkins et al., went on to show that skew and kurtosis optical flow statistics

could discriminate between the small differences in movement of broilers if they were lame or

exhibiting hock burns [107]. Colles et al. used 2D colour images of broiler flocks and reported

that alterations in optical flow mean and kurtosis statistical daily values could predict when a

flock would go on to have a later diagnosis of Campylobacter [108]. The authors speculated

that changes in behaviour due to poorer health and welfare for reasons other than Campylo-

bacter might also be detected using optical flow. Thus, optical flow seems to be a robust,

image-based technique that can be used to estimate flow movement dynamics that can be

related to health and welfare issues affecting a flock. However, this technique requires high

light levels to perform optimally, and it is also affected by the size of the birds and their dis-

tance to the camera lens. So far, this technique has been applied to broilers of a specific age,

and further studies are needed to generalize it to other birds, sizes and stocking densities.

Posture characterization. Characterising the posture of broiler chickens may allow spe-

cific behaviours to be identified. Pereira et al. investigated the use of behavioural parameters to

assess the welfare status of commercial broiler breeders [109]. Using an ethogram, a trained

observer viewed video images and found that two to five frames were required to identify

defined behaviours, such as wing spreading, bristling, drinking, scratching, resting, stretching

and preening. A library of these image sequence samples was collected with examples of birds

expressing each behaviour of interest. The red, green, blue (RGB) encoded image was first

translated to a hue, saturation, intensity (HSI) encoded image to enhance colour contrast.

Then a segmentation process was performed, followed by feature extraction of different beha-

vioural movements and postures. Finally, a behavioural classification tree was developed using

these image features, by means of the software tool Weka (model J48), and validated. This

technique was then applied to differentiate body shapes from a sequence of frames as the birds

expressed their behaviours. An accuracy of 70.8% in the cross-validation dataset was achieved.

Lighting conditions affected the performance of the image-based technique developed. Indi-

vidual tracking to use information of a bird’s trajectory is expected to improve the algorithm’s

performance. Five years later, the work of Zhuang et al. aimed to developing a real-time moni-

toring based on posture changes in sick broilers to detect disease outbreaks [110]. Bird flu

virus was inoculated intra-nasally into healthy broilers placed in isolator cages. Colour side-/

angle-view video images were collected. An image-based technique was used to segment broil-

ers from the background. Then, the outline and skeleton information of the broilers was

extracted. Finally, the postures of the broilers were analysed by machine learning algorithms,

and the diseased broilers vs healthy controls were predicted. Using some of the features pro-

posed in this research, accuracy rates of 84.2%, 60.5% and 91.5% were obtained, but using all

the features together with a Support Vector Machine (SVM) model an accuracy rate of 99.5%

was achieved.

To sum up, flock-level analysis of broilers using image-based techniques can be done suc-

cessfully. Using either activity and occupation measurements or optical flow techniques, it is

possible to characterize flock dynamics and detect deviations from normal patterns, which can

be linked to management, health or welfare problems affecting a broiler flock. Therefore, it is

possible to gather useful information at the group-level using image-based techniques in the

absence of individual tracking, which remains challenging, in terms of both identification and

long-term tracking of individuals in large flocks.

The use of automated behaviour recording in dairy cattle

In dairy cattle, there is widespread use of technology to reduce human workload (e.g., milking

robots), and behavioural monitoring using image technology has been studied since the early
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2000s. Therefore, this discussion of using computer vision technology in this species has been

handled a bit differently than the sections on pigs and poultry, with the review examining

three applied areas: reproduction, lameness and daily management.

Reproduction. Much research has focussed on the economically important questions of

heat detection and calving in dairy cattle, to identify the optimal time for artificial insemina-

tion and to identify difficult calvings that might require human assistance, respectively. Cangar

et al. monitored pre-calving dairy cows and successfully used image analysis to quantify the

changes in lying and standing that indicate the onset of calving [111]. Images were recorded

from the top- and side-view using 2D cameras during 6 hours within the 24-hour period prior

to calving. Side-images were labelled by an ethologist and used as the gold standard to train

the algorithm. Applying an algorithm, which fit a 2D model of the dairy cow body’s configura-

tion using the top-view images, first body features were extracted then motion features were

extracted over consecutive images. This work was extended to determine the need of human

intervention at calving [112]. Van Hertem et al. attempted to quantify activity and calving time

[113]. In this study, five different segmentation algorithms were used to extract cows’ body

contours from the background of 2D side-view images when cows were walking along a corri-

dor (algorithms listed in Table 1). It was concluded that none were suitable for reliably extract-

ing the cow’s body contour from images with the dynamic background of the corridor.

However, when cows walked in front of a solid wall, the algorithms’ ability to extract body con-

tours significantly improved.

A system for oestrus detection using image analysis was developed by Tsai et al. [114] from

2D top-view images recorded in a roofed cow shed. Image processing was applied to define the

presence of mating and oestrus events by capturing occurrences of following behaviour and

mounting behaviour. The algorithm firstly detected areas with high levels of motion across

video frames; then foreground segmentation and partitioning of this region of interest enabled

creation of a rule to detect oestrus. While the system was successful in capturing oestrus, man-

ual verification by the farmer of approximately 2 minutes of video was required per day to

remove false positives. Finally, Ahn et al. proposed detecting the optimal time of insemination

by using a support vector machine (SVM) classifier with motion history image (MHI) feature

information [115]. 2D images were gathered via a real-time video stream using a fisheye cam-

era. Area information indicating the amount of movements was then extracted fromMHI,

instead of motion direction, which has been widely used for person action recognition. The

method was partly successful, identifying cow-mounting behaviour with a detection rate of

72%.

Lameness. Several studies have attempted to automatically detect lameness, which is both

an economic and welfare problem that is prevalent in the dairy industry. Song et al. developed

an automatic system for continuous on-farm detection and prediction of lameness using

machine vision. They captured the location of the cows’ hooves to automatically calculate a

hoof trackway, which was compared with human assessments of locomotion scores [116].

Recorded 2D side-view videos were split into sequences of bitmap images. After background

subtraction, binary image operations, calibration and hoof separation, the trackway informa-

tion containing hoof location in the real world and its related time in the video was calculated.

The mean correlation coefficient of all measurements was 94.8%. Poursaberi et al. used also

image analysis techniques for early lameness detection [117]. In each frame, a hierarchy back-

ground/foreground exaggeration was used to segment the cow in each frame and track it in

video. Then, the back posture of each cow during standing and walking was extracted auto-

matically, and a lameness score was generated based on back curvature. Pluk et al. designed a

combined method using image analysis and pressure mat data together to identify lame cows

[118]. 2D side-view images were gathered while cows moved along a corridor in which the
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pressure mat was set on the ground. Using this combination, touch and release angles and the

range of motion was calculated for each cow. These feature variables were associated with indi-

vidual lameness scores with an average accuracy of 76%. Starting with a similar approach for

detecting early signs of lameness, Viazzi et al. developed a different algorithm to define an indi-

vidualized dairy cow body movement pattern [119]. Again, 2D colour side-view video record-

ings were first gathered while cows walked along a corridor, and the back posture

measurement developed by Pousaberi et al. was used [117]. However, in this study an individ-

ual threshold for lameness detection was then defined for each individual cow based on her

specific movement pattern, leading to detection accuracies above 85%. Viazzi et al. then com-

pared the efficacy of their previous 2D side-view camera system against a 3D top-view camera

setup for measuring back posture [120]. Improved accuracies of 90% were achieved with the

3D setup using a validation dataset, which the authors attributed to overcoming the dynamic

background issues when using the side-view 2D camera system. Further, the 3D system was

able to work in real-time with a fully automatic procedure for segmentation of the images. Van

Hertem et al. then assessed the 3D top-view camera system on a commercial farm [121,122],

and achieved accuracies of 81.5% when consecutive measurements from an individual cow

were used to classify her lameness score. Hansen et al. also used 3D top-view images from the

posterior parts a dairy cow’s body to develop a method for simultaneously estimating body

condition and weight and to assess lameness incidence using back curvature [123].

Daily management and health monitoring. Other studies using image analysis have

focused on monitoring behavioural anomalies in dairy cattle that could indicate ill health. For

example, animals in poor health are generally less active than healthy counterparts. Souza et al.

developed software to evaluate the behaviour of confined dairy cows in free stalls by processing

digitally 2D angled top-view images, then compared the results with manually labelled image

sequences [124]. The software worked by mapping the RGB image to define the location of the

cow, and in combination with her location in the barn, assigned the most likely behaviour to

occur in that location. However, the number of cows in the image and the changing lighting

and background conditions hampered the performance of this approach. Porto et al. devel-

oped a machine vision system to quantify lying, feeding and standing behaviours of cows in

free stall barns [125,126]. Their aim was to relate behaviour to milk production, fetal develop-

ment, oestrus detection and lameness. Four cameras were used to record overlapping 2D pan-

oramic top-view video images from the lying area. Image segmentation and feature extraction

techniques, based on the Viola-Jones algorithm, were used to determine if the cows were per-

forming one of the three behaviours of interest. Such an approach can work well if the colour

of the animal’s body animal images contrasts strongly with the background and the back-

ground is constant background. However, as dairy cattle are often patterned with a mix of

white and black (or red) and the alleys and stalls of farms may be of varying colours and

change with deposition of manure, conditions on commercial farms are not typically ideal.

Despite this, when compared with manual labelling of the images, the method exhibited a sen-

sitivity of 92% for lying, 86% for feeding and 87% for standing.

Our literature search revealed two descriptive papers that describe the potential to apply

vision-based PLF technologies in the dairy sector. Zin et al. outlines a framework for the use of

image analysis techniques [127]. Norton & Berckmans lay out a systematic approach on how

to develop and implement precision livestock techniques in livestock, using image analysis to

detect lameness in dairy cattle as guiding example [128]. Further, Fontana et al. and Tullo et al.

used image analysis of 2D top-view images from video recordings inside dairy cows barns to

validate the performance of a commercial RFID-based indoor positioning system [129,130].

The match between the labelled activity identified by image analysis and the one obtained

through the positioning system varied from 92% to 97% depending on the activity. Location
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and activity data from this system could be extended to identify health, welfare and production

status of the monitored cows, although this was not done in this study.

Discussion

Diversity of algorithms used

Table 1 provides a summary of the diverse array of algorithms used for image processing and

behavioural association. The segmentation and feature extraction sections present algorithms

related to image processing, while the section on behavioural definition groups algorithms

related to approaches taken to classify or relate image variables to biologically meaningful cate-

gories. In most of the papers included in this review, segmentation algorithms refer specifically

to techniques used to separate and define the object/s of interest from the rest of elements in

the image, usually described as background. If the main purpose of an algorithm is to further

characterize those elements, then those algorithms have been allocated in the feature extraction

section in the table. However, there are many algorithms that are useful for both segmentation

and feature extraction tasks, so the distinction between categories is not clear. These algo-

rithms both segment the objects from the background and generate some information about

object features as a by-product of this process. Those features can then later be used in the

behavioural classification process.

It is evident from Table 1 that there has been considerable variety in the choice of initial seg-

mentation algorithms used to separate animals from the background. The main reasons for

development of so many segmentation algorithms relate to differences in background com-

plexity and whether the background is static or dynamic. However, once the background has

been removed, the choice of different morphological filters applied for feature extraction is

more limited and homogeneous across studies. Afterwards, depending on the animal species

studied and the segmentation aim, there are also several techniques to refine the final segmen-

tation. They are based on previous knowledge about the shape of the intended object, colour

differences and more. Even though there are a large variety of segmentation algorithms, clus-

ters of methods based on the same working principle (but making use of it in slightly different

way) can be defined.

There may be several reasons for the diversity of approaches used to automatically detect

behavioural information about animals. On one hand, many studies start from scratch when

addressing a particular problem, instead of building on what was already known from previous

studies. In some cases this may have come about because similar studies were performed and

published within a short time of one another. Alternatively, researchers may have been unable

to freely access previously published work, or they may not have been able to locate relevant

studies despite searching online databases. Inability to find relevant articles could be due to dif-

ferences between the terminology used to search and that used in articles published in journals

of different scientific or engineering fields. Further, despite increased ability to locate content

online even with via searches using standard web browsers, some content may simply not be

found without knowing where to look.

Another reason for the diversity of approaches used may be that the conditions under

which the studies were performed also varied greatly, not only from species to species but also

from experimental to farm conditions. The context in which recording takes places certainly

has an impact on performance of an algorithm and may dictate which refinements or exten-

sions need to be applied to existing algorithms.

Regarding techniques applied to perform feature extraction and establish behavioural links,

it is difficult (and perhaps not even desirable) to achieve a uniform approach. The selection of

one technique over another depends on the reason for which features are being extracted and
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the behaviours of particular interest. The animal species under consideration can also affect

the selection of the methods used to detect its behaviour. For example, slower moving dairy

cattle, with their distinctive black and white appearance, may be more amenable to individual

tracking than densely packed finisher pigs or rapidly-moving hens.

Next steps

Provide explicit details. In order to make published work on using machine vision for

automated detection of behaviour more useful for those wishing to expand up on it or to

apply it in practice, the reporting standards for scientific publications on the topic must

improve. Specifically, many papers lack detailed descriptions in the material and methods

section that would be useful for other researchers to know, such as the type of camera, exact

experimental conditions or details of the type and number of animals used in the experi-

ment. Authors may be unintentionally omitting details depending on their perspective and

what they consider to be important for replicating the work. For example, a computer scien-

tist may not consider the age or breed of an animal important while an animal scientist may

omit details about lighting type or level. Authors should be encouraged to describe in more

explicit detail the features of the experimental setup (e.g., lighting source and intensity, back-

ground), animals (e.g., age or weight), and other pertinent conditions (e.g., presence or

absence of marks used for tracking), as this lack of information is one of the key difficulties

for allowing repeatability, validation or building from a solid starting point. Articles with

accurate and descriptive titles and keywords will be make it easier for new researchers to

locate previously published work. Detailed description of the condition in which work was

conducted would allow researchers embarking on new studies to be better informed about

the advantages and/or limitations of the algorithms used previously, determine if the

approach followed in that study is useful for their objectives, and to adapt accordingly to suit

conditions of a new study. It is also critical to explicitly present negative results. Other fields,

such as medicine and insect science [131], have recognized the importance of publishing

null results and readily accept publications of this nature. By being honest about difficulties

encountered, pitfalls, and limitations of approaches, naïve readers may be averted from

thinking the technique will work perfectly off the shelf under any conditions, as many do

after reading publications which describe their findings so optimistically.

Communicate and collaborate. It was striking to us as we performed this review, how

rarely studies referred to the work of other labs working on similar aims in the same species,

and instead authors referred more to work published on general image analysis. Going for-

ward, we recommend that researchers perform a thorough search of the literature to locate

publications on previous work performed in their area of interest to avoid repetition and to

learn from what has worked previously and what has not. Such searches should be performed

not only in the disciplinary journals with which the researchers are familiar but also by using

broader search engines or deliberately searching journals of other relevant fields related to

using machine vision to detect behaviour.

We encourage collaborative research and publication among machine vision researchers

(e.g., computer scientists, engineers, etc.), who can provide expertise on the algorithm choices

and development, and animal scientists, who can provide expertise on the study animals and

their housing, husbandry and sample sizes needed for biological validation. Increasing com-

munication and cooperation between research groups working on behavioural detection

within a species will provide a more robust perspective on the problems to be solved and on

solutions that are practical so that progress can be made more quickly, and it seems there is a

trend towards achieving this goal (e.g., [8,15,60]).
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Scale up and expand. Research in automated behaviour detection using computer vision

has mainly been carried out in experimental situations and with a limited number of animals.

However, if the goal is to scale these techniques up to work on commercial farms, it will be

important to keep in mind the on-farm conditions that will influence the performance of

methods developed and tested at experimental level. Increasing the size of animal groups from

several animals to several hundred or thousand animals will introduce additional challenges

for automated detection techniques (e.g. [107]). For instance, individual tracking techniques

suffer when occlusion events happen, such as when one animal mounts or rests on another

(e.g. [56]). More animals in a group will lead to an increased number of occlusion events,

greatly affecting the performance of individual tracking algorithms. Furthermore, larger spaces

on real farms can add further challenges as regards image resolution, ‘fish-eye’ lens distortion

or combining images from multiple cameras (e.g. [115]). Thus, effort should focus on defining

which aspects of the developed methods are affected by scaling up from experimental to com-

mercial level and how to improve them (e.g., incorporating RFID sensors in complement with

image analysis), rather than refining details at experimental level that may already be robust

enough for commercial settings.

Knowledge gaps

As seen in this review, machine vision approaches for monitoring animals and their behaviour

are developing at a rapid pace. This is not only the case for farm animals, but also domestic

animals (pets and working dogs) and wildlife (reviewed by Jukan et al. [132]). Some of the dif-

ficulties faced in the early stages of automatic detection of behaviour using machine vision

have been solved by the availability of better quality and more advanced cameras, such as 3D

and high speed. There are, however, still plenty of knowledge gaps to address. One of the cur-

rent key knowledge gaps is how to track individual animals in a pen and record their behav-

iour while continuously recognizing the individual, especially when dealing with unmarked

animals without wearable sensors. In dairy cattle, these problems can be overcome by, for

example, identifying individuals based on coat patterns; however, this option is less viable for

more nearly identical looking animals such as all-white laying hens, except in test settings

where the manual labelling of a few animals is possible. Combining methods of automated

video analysis with other on-going technological advancements may in future allow us to over-

come this problem. For example, animals’ faces can be recognised when they come to the

drinker or feeder space, allowing tracking of an unmarked animal for a limited amount of time

thereafter [77], and facial recognition of pigs is being used in practice in China and also in

Europe [133].

Another challenge is to validate the algorithms in larger groups of animals. As mentioned

in the section on limitations, many of the reviewed studies had small sample sizes. It has yet to

be demonstrated whether the algorithms that work well at the small scale can perform as well

when the number of animals per pen increases to levels typically housed in commercial opera-

tions. Sharing of algorithm information to enable testing by multiple research groups will

increase the true accuracy across contexts. However, confidentiality of such information may

be a limiting factor.

From experimental tests to on farm application

At this stage, moving from using machine vision to automatically detect the behaviour of a few

animals in a test pen to recording hundreds or thousands of animals housed indoors in a com-

mercial situation is still a hurdle to overcome for many approaches. However, other Precision

Livestock Farming technologies have already made their way into commercial practice.
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Sensors, for example, are now common in the dairy sector (reviewed by Neethirajan [134]).

Audio surveillance systems are also gradually making their way onto farms as a way of detect-

ing disease, particularly respiratory diseases, at an early stage (e.g., pigs: [135]; [136]; poultry:

[137]; cattle: [138]). In fact, an automated sound detection system (SoundTalks) can detect the

onset of disease better than humans can, and therefore use of technology enables more timely

and efficient treatment [139].

The ability to move automated detection of behaviour using machine vision into practice

on farm for indoor-housed animals still has some practical obstacles. Even if all technical diffi-

culties with image analysis under varied farm conditions were solved, the implementation of

automated behaviour analysis would still depend partly on considerations related to the cost

and maintenance of cameras. For example using machine vision to count piglets is useful on

farm for monitoring mortality [38], but requires a video camera above each pen (or every few

pens). In poultry, a few cameras can be used to cover a whole barn for detecting optical flow

patterns, from which flock behaviour related to welfare issues can be recognised [107]. How-

ever, in all cases cameras in barns need maintenance—at the very least to regularly remove

dust and insects from lenses to ensure unimpaired vision. However, the benefit of being able

to automatically detect behaviour can outweigh the costs and effort of camera installation and

maintenance; for example as when damaging behaviours such as cannibalism in laying hens

and tail biting in pigs that result in major production losses and costs could be deterred by

early detection. The development of automated detection of low hanging tails in pigs [8], a pre-

cursor for tail biting outbreaks, is therefore a promising avenue for having cameras routinely

recording on pig farms. In the future, as machine vision technology and cameras get cheaper,

and as systems are integrated to offer multiple benefits in one package (such as accurately

counting, identifying, and weighing/condition-scoring animals while detecting a range of pro-

duction, health and welfare issues including deviations from normal posture, gait, location or

behaviour), these combined benefits will begin to outweigh their cost, making such systems

more viable. Other than the cost / benefit issue, there are other factors which affect the uptake

of PLF by farmers. The ‘mindset’ of farmers as innovators vs. traditionalists, the scale of their

farming enterprise, and the perceived amount of time taken to engage with decision support

systems [140]. As such we agree with Van Hertem and others [141] that it is crucial to engage

with the end-users of PLF technologies, including farmers, vets and advisors, to develop user-

friendly and informative decision support systems, with real-time data visualisation, supplied

to the devices that they find convenient to use (smartphone, tablet or PC). There is also a need

for further social science research into understanding the possible behaviour change barriers

to PLF uptake by these end-users [142].

Conclusion

In conclusion, a range of algorithms have been used to approach problems related to using

machine vision to automatically track animal behaviour. The diversity of approaches reflects,

in part, the diversity of research aims and number of species being studied. However, it is also

symptomatic of a lack of communication among research teams or disciplines working in the

relatively young space of precision livestock farming. Nonetheless, important advances have

been made in using machine vision approaches to detect behaviours of interest in indoor-

housed poultry, pigs and dairy cattle. Machine vision research in the poultry sector has to date

typically focussed on the question of how to monitor large animal group sizes. As shown in the

review, these applications quantify the apparent motion and distribution of the animal group

from the brightness pattern within a 2D video. This inevitably results in lost information on

motion of individual animals and future effort should aim at achieving multiple object (bird)
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detection and monitoring in such machine vision applications. For monitoring of pigs, typi-

cally done in much smaller group sizes than chickens, machine vision research has now

achieved more accurate link between group-level image features and ethograms of important

welfare related behaviours. Further work is needed to link this automatic detection with indi-

vidual tracking and automatic identification of the perpetrators and victims of poor behaviour.

Finally, for dairy cattle the focus has been mostly on monitoring animal motion on an individ-

ual level. In this case significant progress has been made in identifying and extracting informa-

tive image features linked with gait. In this field, research algorithms that combine gait

monitoring with individual identification and social behaviour of cattle should be the focus of

future research.

There are three important next steps that could benefit the progress of the research in this

field. Firstly, researchers are encouraged to search thoroughly to find previous work done in

relation to their question of interest to avoid unintentional repetition, and instead use knowl-

edge of what has previously been done to build on the successes and failures of others. The

increasing number of recent reviews on aspects of PLF [143–146] can play a major contribu-

tion here. Second, improving the reporting standards in scientific publications related to using

machine vision for automated detection of behaviour will make articles more useful and infor-

mative so other researchers can and will use them as they progress in their own work. Finally,

it will be beneficial to potentiate communication and collaboration between research groups

with similar interests, but potentially different perspectives and expertise, to speed our ability

to problem solve. Taking these steps will allow us to focus on addressing critical knowledge

gaps, such as identifying and tracking nearly identical looking unmarked animals in large

groups, and in moving machine vision applications more rapidly and efficiently from experi-

mental to practical settings.
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58. Martı́nez-Avilés M, Fernández-Carrión E, López Garcı́a-Baones JM, Sánchez-Vizcaı́no JM. Early
detection of infection in pigs through an online monitoring system. Transbound Emerg Dis. 2017; 64
(2):364–73. https://doi.org/10.1111/tbed.12372 PMID: 25955521

59. Gronskyte R, Clemmensen LH, Hviid MS, Kulahci M. Monitoring pig movement at the slaughterhouse
using optical flow and modified angular histograms. Biosyst Eng. 2016; 141:19–30.

60. Fernández-Carrión E, Martı́nez-Avilés M, Ivorra B, Martı́nez-López B, Ramos ÁM, Sánchez-Vizcaı́no
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