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Recording mobile EEG in an 
outdoor environment reveals 
cognitive-motor interference 
dependent on movement 
complexity
Julian Elias Reiser  , Edmund Wascher & Stefan Arnau

Oftentimes we find ourselves in situations in which we need to perform concurrent motor and cognitive 
tasks like simple locomotion while being cognitively involved. In the present study, we investigated 

in how far cognitive and motor functioning interfere in an outdoor environment. Our participants 

performed an auditory oddball task while concurrently completing various motor tasks on the outside 

premises of our institute. Beside behavioural responses and subjective workload ratings, we also 

analysed electrophysiological data recorded with a 30-channel mobile EEG montage. We observed an 
increase of subjective workload and decrease of performance with increasing movement complexity. 

Accordingly, we also found a decrease in the parietal P3 amplitude as well as in frontal midline Theta 
power with higher motor load. These results indicate that an increased movement complexity imposes a 

higher workload to the cognitive system, which, in turn, effectively reduces the availability of cognitive 
resources for the cognitive task. Overall this experiment demonstrates the feasibility of transferring 

classical paradigms of cognitive research to real-world settings. The findings support the notion of 
shared resources for motor and cognitive functions by demonstrating distinct modulations of correlates 

of cognitive processes across different motor tasks.

Movement and higher cognitive processes go hand in hand in highly developed organisms. Even more so, per-
forming a cognitive task while in motion constitutes a great part of our daily life routine. �e mutual interdepend-
ence of concurrent movement and cognitive activities, however, is not yet fully understood. De Sanctis1 argued 
that most cognitive experiments are currently using a “minimalistic behavioural approach, reducing behaviour 
in response to task relevant stimuli to simple button presses”, thus favouring internal over ecological validity. In 
the real world, on the other hand, humans must locate their body and their actions in the environment in order 
to react to certain events2. For this reason, cognition in motion accompanied by natural behaviour can only be 
examined in su�ciently realistic environments.

�e importance of a step towards ecological validity in cognitive psychology has been debated for decades3. 
Moving out of the laboratory into natural living and working environments may allow for valuable insights into 
the nature of cognitive processing4,5. Recent research supports this notion by permitting participants to exhibit 
realistic behaviour6–8 and natural responses9,10. Several studies demonstrated signi�cant di�erences between lab-
oratory and realistic settings with respect to performance as well as with respect to electrophysiological measures. 
For example, a decreased cognitive performance accompanied by an altered re�ection of the corresponding pro-
cesses in the EEG was reported for cycling freely outdoors compared to cycling indoors on an exercise bike11,12. 
A similar result pattern could be observed for di�erent movement conditions. Debener et al.13 demonstrated 
the feasibility of outdoor dual-task studies involving a walking and a cognitive task. �e participants showed 
a decreased cognitive performance when walking outdoors on the campus as compared to sitting indoors. �e 
elctrophysiological results of Debener et al.13 also clearly show that correlates of cognitive processing in the EEG 
may look di�erent in real world settings as compared to laboratory studies.
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�is altered representation of cognitive processes in the EEG in real world settings might be due to various 
reasons. Firstly, the sensory input is vastly increased in an outdoor or workspace setting compared to a laboratory 
environment. Secondly, the embedding of a task in a sensorially rich environment may increase task complexity 
per se. Both sources of variance, as well as their interaction, most likely alter task processing by directly a�ecting 
attentional processes and the distribution of cognitive resources in comparison to simpli�ed lab settings or to 
virtually simulated experiments14. Building the foundation for real-world investigations, several studies demon-
strated that a higher ecological validity does not necessarily compromise internal validity. �is was demonstrated 
by several dual-task experiments, for example involving manual work15 or driving a real car16. Studies investigat-
ing concurrent performance in a motor and a cognitive task reported decrements for both the cognitive as well 
as the motor domain13,17,18. Decrements in either the cognitive or the motor domain due to the simultaneous 
execution of two tasks are termed interference18.

�e question why motor tasks lead to a cognitive performance decrement and vice versa is still discussed18,19. 
A traditional view is that highly automated processes – like ordinary locomotion – do not take up attentional 
resources20. A common explanation for dual-task interference involving locomotion, however, is the scarcity of 
attentional resources21,22. Relating to Baddeley23,24, the distribution of attentional resources during dual-tasking is 
guided by executive functions which are related to higher cognitive processes. In their meta-analysis, Al-Yahya et al.25  
showed that many measures of gait, especially walking speed, are negatively a�ected by a secondary cognitive 
task. �ey conclude, that both motor and cognitive processes share a common resource. Recent brain imaging 
studies revealed that areas related to executive functions are activated mainly in the prefrontal cortex area while 
or in preparation to walking, which endorses the shared resources theory26–28. �is holds also true during actual 
cognitive-motor dual-task walking29,30. Accordingly, when paired with a cognitive task, gait and coordinated 
movement have been shown to induce an additional need for processing resources1,31. �is dual-task interference 
may result in diminished performance and could therefore lead to erroneous behaviour32,33. Overall, it seems that, 
although highly automated, ordinary locomotion uses the same attentional resources as cognitive processing.

As outlined above, recent research clearly demonstrated, that sensory and behavioural complexity is sub-
stantially increased in real world compared to laboratory settings. �is a�ects the task-related executive con-
trol functioning, especially if movement is involved9. Even ordinary movement sequences like walking, cycling, 
and balancing may in�uence cognitive processing1,11,12,14,31. However, no research has been concerned with 
the cognitive underpinnings of gait movement complexity while performing a cognitive-motor dual-task in a 
non-laboratory bound investigation. Focusing on gait, we wanted to investigate, how the complexity of di�erent 
movement conditions in�uences attentional resources in a semi-standardized outdoor setting. In the present 
study, the participants had to either stand, walk, or complete an obstacle course while performing a simple, audi-
tory stimulus detection task on the lawn of the institute’s outside premises. We used a modi�ed version of the 
auditory oddball paradigm by Debener et al.13 which has been proven to be suitable for investigating outdoor 
cognitive processing. In order to gain further insights into the interplay of motor complexity and the cognitive 
task, we introduced two target probability levels in the oddball task: high target probability (HTP) with 35% tar-
get stimuli vs. low target probability (LTP) with 20% target stimuli. Since the manipulation of target probability 
showed e�ects on ERP amplitudes in earlier laboratory-based oddball studies34–36, we aimed to use this concept 
as a proof-of-concept factor in our outdoor experiment. By inclusion of target probability, we tried to answer the 
underlying question, whether we can �nd the same di�erences in standard and target ERP amplitudes which were 
found before in lab environments. We were also curious which e�ects the interaction between movement and 
target probability had on attentional resources. Overall, participants completed six conditions consisting of one of 
each factorial combination in quasi-randomized order. Besides reaction time measures and the number of target 
trial omissions, we assessed the subjective workload of the participants by using the NASA-TLX questionnaire 
a�er every task block37. Furthermore, we applied mobile EEG in order to measure electrophysiological correlates 
of task-related cognitive processes.

Over the last few years, electrophysiological recording equipment has been miniaturized to the point that 
one can measure EEG wirelessly over the period of several hours, thus enabling us to record neurophysiological 
data outside of the lab. In the present study, we investigated frontal midline �eta power as well as the fron-
tal N2 and parietal P2, N2, and P3 event-related potential (ERP) components. �e fronto-central N2 and the 
parieto-temporal P2, N2, and P3 were shown to vary with resource allocation38. �e P2 component, the second 
positive de�ection a�er stimulus presentation, was found to resemble early attentional processes in auditory 
and visual tasks39,40. �e N2 component, the second negative de�ection a�er stimulus presentation, is thought 
to re�ect con�icts in task response execution or inhibitory processes as well as general executive control mech-
anisms41,42. �e P3 component, the third positive de�ection a�er stimulus onset, has been associated with stim-
ulus updating and categorization processes43 and appears to be negatively correlated with task di�culty44. For 
all components, a high task di�culty in a dual-task setting was linked to diminished amplitudes38. �e analy-
sis of event-related spectral power o�ers an additional opportunity to assess cognitive processing in the EEG45. 
Spectral power in the �eta range (4–7 Hz) has been associated with the execution of executive control, probably 
re�ecting communication between areas featuring a fronto-central hub46,47. �erefore, a comparatively strong 
fronto-central �eta activation, being strongly related to the invested mental e�ort or resources, is typically 
observed in experimental conditions with increased cognitive control demands46,48–50.

As an error in the motor task may lead to falling and possible injuries, we expected that the participants would 
prioritize the motor task, leading to higher subjective workload ratings for more complex movement complexity 
conditions. According to the literature discussed above, we therefore hypothesize that increased movement com-
plexity will also lead to a decrease in the amount of cognitive resources that may be expended for the cognitive 
task. As a consequence, fewer attentional resources should be directed towards the cognitive task when the motor 
task demands are high. Furthermore, we expect a decreased behavioural performance in high compared to low 
movement complexity conditions due to dual-task interference. �e same logic applies to the electrophysiological 
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measures, as we analysed the EEG time-locked to the onset of the stimuli of the cognitive task. �e amplitudes of 
stimulus-locked P2, N2 and P3 components as well as frontal �eta power should be decreased with higher move-
ment complexity, as fewer attentional resources are available to the cognitive task. According to recent �ndings, 
target probability should a�ect response times. As a proof-of-concept, we correspondingly expect slower response 
times with lower target probability51. Also P2, N2 and P3 amplitudes within targets should be diminished as target 
probability is increased34–36, as should �eta power52.

Results
NASA-TLX. All dimensions on the NASA-TLX are poled and analysed with low rating values re�ecting low 
subjective workload. Figure 1 illustrates the average ratings and the standard error of all subscales of the NASA-
TLX for each experimental condition combination. All results of the separate ANOVAs are shown in Table 1.

Cognitive demand. �e target probability main e�ect showed that participants rated high target probability 
(M = 3.6, SD = 1.99) as signi�cantly more cognitively demanding (F1,19 = 6.73, p = 0.02, pcrit = 0.033, η

p
2 = 0.26) 

than low target probability (M = 3.1, SD = 1.64). Regarding the main factor of movement complexity, more com-
plex movement was linked to the higher cognitive demand rating (Mstand = 3.85, SDstand = 3.15; Mwalk = 5.20, 
SDwalk = 2.40; Mobstacle = 6.73, SDobstacle = 2.96; F1,43,27,23 = 15.70, p < 0.001, pcrit = 0.05, 

p
2
η  = 0.45). �e post-hoc 

comparisons revealed that parcours di�ered signi�cantly from standing (t38 = −5.52, p < 0.001, pcrit = 0.05) and 
walking (t38 = −3.58, p = 0.001, pcrit = 0.033), but means of standing and walking did not vary signi�cantly 
(t38 = −1.94, p = 0.059, pcrit = 0.017).

Physical demand. Only the main e�ect of movement complexity of the physical demand dimension showed 
signi�cance (F1,21,23,02 = 25.44, p < 0.001, pcrit = 0.05, η

p
2 = 0.57). �e obstacle course was rated the most demand-

ing (M = 7.45, SD = 1.97), followed by walking (M = 5.90, SD = 2.46) and standing (M = 2.40, SD = 3.19). 
Standing di�ered signi�cantly from walking (t38 = −4.82, p < 0.001, pcrit = 0.033) and parcours (t38 = −6.96, 

Figure 1. Means of subjective NASA-TLX ratings for all dimensions seperately. Error bars depict the standard 
error. HTP: high target probability (35%), LTP: low target probability (20%).

Variable

Move TP Interaction

F p
p

2
η F p

p

2
η F p

p

2
η

C F2,38 = 17.70 <0.001 0.45 F1,19 = 6.73 0.018 0.26 F2,38 = 2.05 0.143 0.10

Ph F2,38 = 25.44 <0.001 0.57 F1,19 = 0.10 0.757 0.00 F2,38 = 0.53 0.591 0.03

T F2,38 = 2.95 0.065 0.13 F1,19 = 0.21 0.654 0.01 F2,38 = 2.03 0.168 0.10

Pe F2,38 = 6.50 0.004 0.25 F1,19 = 3.02 0.099 0.14 F2,38 = 5.47 0.018 0.22

E F2,38 = 9.53 0.002 0.33 F1,19 = 0.07 0.792 0.00 F2,38 = 0.56 0.575 0.03

F F2,38 = 0.89 0.373 0.04 F1,19 = 2.63 0.121 0.12 F2,38 = 1.74 0.199 0.08

Table 1. Results for repeated-measures ANOVAs for the factors movement complexity, target probability and 
their interaction term regarding every NASA-TLX dimension. C: Cognitive demand, Ph: Physical demand, T: 
Time demand, Pe: Performance, E: E�ort, F: Frustration, TP: Target probability.
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p < 0.001, pcrit = 0.05), though ratings of walking and the obstacle course did not deviate signi�cantly a�er correc-
tion (t38 = −2.14, p = 0.04, pcrit = 0.017). �ere was neither an in�uence of target probability on the rating of 
physical workload, nor a signi�cant interaction term.

Temporal demand. Concerning the temporal demand, only the main e�ect of movement complexity showed an 
acceptable e�ect size – but no signi�cance (F2,37,96 = 2.95, p = 0.06, pcrit = 0.05, 

p
2
η  = 0.13) – with only walking and 

the obstacle course displaying a signi�cant di�erence (t38 = −2.42, p = 0.02, pcrit = 0.05). Interestingly, ratings for 
the obstacle course were the highest (M = 5.50, SD = 2.53), followed by standing (M = 4.90, SD = 2.63) and then 
walking (M = 4.48, SD = 1.77) regarding simple means. �erefore, the hypothesized change in di�culty regarding 
movement complexity did not translate into higher ratings. Similar to the previous measure, neither target prob-
ability nor the interaction of both main e�ects revealed signi�cant di�erences.

Performance. In terms of self-evaluated performance, the main e�ect of movement complexity reached signi�-
cance (F1,90,36,02 = 6.50, p = 0.004, pcrit = 0.05, 

p
2
η  = 0.25), whereas the main e�ect of target probability did not 

(F1,19 = 3.02, p = 0.10, pcrit = 0.017, η
p
2  = 0.14). Still, target probability’s e�ect size indicates a certain shi� in 

means. Estimated performance was statistically di�erent for standing (M = 4.60, SD = 2.02) and the obstacle 
course (M = 5.73, SD = 1.84; t38 = −3.26, p = 0.002, pcrit = 0.05), and walking (M = 4.70, SD = 1.36) and the obsta-
cle course (t38 = −2.97, p = 0.005, pcrit = 0.033). Participants rated their own performance to be better for low 
target probability (MLTP = 4.72, SDLTP = 1.65; MHTP = 5.30, SDHTP = 2.49). Performance was evaluated worse for 
higher movement complexity, though signi�cant di�erences appeared only for standing and the obstacle course 
as well as walking and the obstacle course. Also, the interaction term reached signi�cance (F1,39,26,36 = 5.47, 
p = 0.02, pcrit = 0.033, η

p
2  = 0.22). Post-hoc pairwise comparisons showed that for HTP only standing (M = 4.85, 

SD = 2.05) and the obstacle course (M = 6.50, SD = 1.84; t72.93 = −3.71, p < 0.001, pcrit = 0.043) as well as walking 
(M = 4.55, SD = 1.07) and the obstacle course (t72.93 = −4.38, p < 0.001, pcrit = 0.05) were signi�cantly di�erent. 
Movement complexity manipulations did not in�uence the means of self-evaluated performance within LTP 
conditions.

E�ort. With respect to the overall e�ort, only movement complexity had a signi�cant in�uence on rating 
(F1,51,28,61 = 9.53, p = 0.002, pcrit = 0.05, 

p
2
η  = 0.33). Subjective e�ort was rated higher for higher complexity 

(Mstand = 3.85, SDstand = 3.15; Mwalk = 5.20, SDwalk = 2.40; Mobstacle = 6.73, SDobstacle = 2.96). Post-hoc tests revealed 
signi�cant di�erences for standing and the obstacle course (t38 = −4.36, p < 0.001, pcrit = 0.05) as well as walking 
and the obstacle course (t38 = −2.31, p = 0.02, pcrit = 0.033), but not between standing and walking a�er correc-
tion (t38 = −2.05, p = 0.05, pcrit = 0.017). Target probability and the interaction term did not a�ect the ratings 
signi�cantly.

Frustration level. �ere were no di�erences regarding the subjective frustration rating, neither for both main 
e�ects, nor for the interaction term.

Gate-related behavioural measures. Regarding the number of steps, only the main e�ect of movement 
complexity turned out to be signi�cant (F1,19 = 15.52, p = 0.001, pcrit = 0.05, η

p
2  = 0.45) with a higher number of 

steps taken during walking (M = 1532.80, SD = 150.64) in contrast to the obstacle course(M = 1465, SD = 163.05). 
Target probability and the interaction did not a�ect the number of steps. �e same pattern was found for the 
variability of time between steps. Here, the main effect of movement complexity was highly significant 
(F1,19 = 114.08, p < 0.001, pcrit = 0.05, 

p
2
η  = 0.86), with variability being higher for the obstacle course (M = 36.39, 

SD = 16.63) than for walking (M = 12.33, SD = 9.27; t19 = −10.68, p < 0.001, pcrit = 0.05). Considering the number 
of laps passed, no signi�cant e�ect could be observed.

Figure 2. Response times and omission errors for every experimental condition. Error bars depict the standard 
error. HTP: high target probability (35%), LTP: low target probability (20%).
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Response times. Figure 2 shows response times and mean accuracy for each of the six conditions. A main 
e�ect of target probability was found as response times for LTP (M = 495.42, SD = 64.71) were signi�cantly slower 
than for HTP (M = 471.94, SD = 675.65; F1,19 = 5.68, p = 0.03, pcrit = 0.033, 

p
2
η  = 0.23). For the main e�ect of 

movement, response times were increased with increasing movement complexity (Mstand = 466.14, SDstand = 55.33; 
Mwalk = 480.06, SDwalk = 61.97; Mobstacle = 504.84, SDobstacle = 61.62; F2,38 = 4.76, p = 0.02, pcrit = 0.05, 

p
2
η  = 0.20). 

Figure 3. Frontal grand average ERPs in the N2 window and interaction plots for all factorial combinations. 
(a) Grand average N2 ERPs at Fz for all movement, target type and target probability conditions. �e grey 
rectangles indicate the time windows for averaging. �e topographies underneath the ERP-plots depict 
movement complexity speci�c voltages on the scalp in the N2 time-window. (b) Interaction plots for the N2 
average amplitudes at Fz. Error bars depict the standard error. HTP: high target probability (35%), LTP: low 
target probability (20%).
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Post-hoc tests revealed signi�cant di�erences between standing and the obstacle course (t38 = −3.04, p = 0.004, 
pcrit = 0.05). When comparing means, a tendency towards slower response times in the walking as compared to 
the obstacle course condition emerges, but stays insigni�cant (t38 = −1.95, p = 0.058, pcrit = 0.033). �e interac-
tion of target percentage and movement complexity condition did not reach signi�cance.

Omission errors indicated similar results as only the main e�ect of movement (F1,64,31.24 = 3.70, p = 0.04, 
pcrit = 0.05, 

p
2
η  = 0.16) was significant. Due to the FDR-correction, target probability (F1,19 = 4.46, p = 0.05, 

Figure 4. Parietal grand average ERPs in the P2, N2, and P3 window and interaction plots for all factorial 
combinations. (a) Grand average ERPs at Pz with time windows for the P2, N2 and P3 component for all 
movement and target type conditions. �e colored rectangles indicate the time windows for averaging as 
follows: red – P2, blue – N2, grey – P3. Topographies for all component-speci�c time windows are provided 
underneath the ERPs. (b) Interaction plots for P2, N2, and P3 average amplitudes. �e error bars depict the 
standard error.
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pcrit = 0.03, η
p
2 = 0.19) turned out insigni�cant. Considering movement, the only signi�cant pairwise post-hoc 

di�erence (t38 = −2.72, p = 0.01, pcrit = 0.05) emerged between walking (M = 0.017, SD = 0.025) and the obstacle 
course (M = 0.032, SD = 0.030).

ERPs. Frontal N2 at Fz. �e frontal N2 ERP component did not vary signi�cantly with target stimulus or 
movement complexity condition. Signi�cant amplitude di�erences could be found for the factor target probability 
(F1,19 = 4.39, p = 0.05, pcrit = 0.05, η

p
2  = 0.19). HTP stimuli (M = −1.28, SD = 1.42) elicited a larger N2 response 

Figure 5. Graphs and interaction plots for frontal �eta power. (a) Grand average ERSP �eta power at Fz 
for all movement and target type conditions. �e grey rectangles indicate the time windows for averaging. (b) 
Interaction plot for �eta average power. �e error bars depict the standard error. (c) Time-frequency plots of 
target-only movement complexity conditions – not regarding target probability (TP) – for the frequency range 
between 3 and 30 Hz. Besides the e�ects in the �eta-range, one can see subtle distinctions in the Alpha- and 
low Beta-range for the movement complexity conditions.
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compared to LTP stimuli (M = −0.99, SD = 1.68). ERPs at Fz, topographies at the given time windows, and inter-
action plots of the frontal N2 amplitudes are depicted in Fig. 3.

Parieto-temporal P3 at Pz. Regarding the P3 ERP component, the main effects for movement complexity 
(F1,61,30.61 = 15.22, p < 0.001, pcrit = 0.043, η

p
2 = 0.44) as well as for target stimulus (F1,19 = 37.25, p < 0.001, 

pcrit = 0.05, η
p
2 = 0.65) were signi�cant. Target stimuli resulted in a more positive de�ection than standard stimuli. 

Paired post-hoc comparisons for movement complexity revealed signi�cantly larger P3 amplitudes for standing 
(M = 1.01, SD = 1.56) compared to walking (M = 0.32, SD = 1.26; p < 0.001) and for standing compared to the 
obstacle course (M = 0.49, SD = 1.18; p < 0.001). �ere was also a tendency towards larger P3 amplitudes in walk-
ing compared to the obstacle course that remained insigni�cant (p = 0.06). �e interaction of movement com-
plexity and target stimulus reached significance (F1.87,35.54 = 4.00, p = 0.03, pcrit = 0.036 

p
2
η  = 0.19), so we 

calculated pairwise post-hoc comparisons to evaluate speci�c e�ects within conditions. Within the target stimuli, 
standing was statistically di�erent than walking (t74.38 = 5.27, p < 0.001, pcrit = 0.04) and the obstacle course 
(t74.38 = 4.84, p < 0.001, pcrit = 0.037). Amplitudes were highest for standing (M = 1.87, SD = 1.07), followed by the 
obstacle course (M = 1.03, SD = 0.98) and walking (M = 0.96, SD = 1.04). Within standard stimuli movement 
complexity was the only signi�cant main e�ect (F2,38 = 7.05, p = 0.008, 

p
2
η  = 0.27). Again, standing (M = 0.16, 

SD = 0.67) showed the most positive amplitude, followed by the obstacle course (M = −0.06, SD = 0.62) and 
walking (M = −0.31, SD = 0.58). Signi�cant di�erences were only found for standing and walking (t74.38 = 2.73, 
p = 0.007, pcrit = 0.013). Figure 4 shows ERPs at Pz, topographies at the given time windows, and the interac-
tion plots of parieto-temporal P2, N2, and P3 amplitudes.

Frontal event-related spectral perturbations (ERSP) Theta at Fz. �e midfrontal �eta response 
exhibited a signi�cant main e�ect for the factor movement complexity (F1.54,39.24 = 16.99, p < 0.001, pcrit = 0.043, 

p
2
η  = 0.47). Post-hoc tests revealed that the frontal �eta amplitude was larger in the standing condition (M = 1.63, 

Figure 6. Depiction of (a) the obstacle course, (b) a participant with full experimental equipment, and (c) the 
elements of the obstacle course. (a) �e obstacle course had a circumference of 75 m and consisted of two stairs, 
two balancing beams and two coordination boards. Participants had to climb and descend the stairs, balance 
over the beams without touching the adjacent ground and complete the coordination boards by placing their 
feet in the hole cut-outs without touching the surrounding surface. (b) �e participant wore a 30-electrode 
cap, which was connected to a mobile ampli�er placed in a pocket at the back of the head. In the backpack a 
raspberry Pi was stored which generated auditory stimuli and trigger signals. Triggers were transferred into 
digital signals via a Trigger extension box which then was connected to the ampli�er. �e participant held a 
handle with a reaction button in the right hand. By pressing the button with the right thumb, response triggers 
were inserted into the EEG-signal via the Trigger extension. EEG-data was stored o�ine on an SD-card inside 
the ampli�er. (c) �e staircases were 0.58 m high, had a length of 3.2 m/4.1 m, and a width of 1,2 m. Balancing 
beams were 0.06 m high and approximately 7,30 m long with angles between the planks reaching from 130° to 
150°. �e coordination boards were 7.5 m long with a height of 0.08 m. Hole cut-outs were 0.4 m by 0.4 m with 
0.05 m up to 0.3 m of space in-between.
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SD = 1.00) compared to walking (M = 0.90, SD = 0.83; t38 = 4.98, p < 0.001, pcrit = 0.033) and the obstacle course 
(M = 0.88,SD = 0.78; t38 = 5.12, p < 0.001, pcrit = 0.05). �e main e�ect of target stimulus was also signi�cant 
(F1,19 = 27.91, p < 0.001, pcrit = 0.05, η

p
2 = 0.59), with target stimuli eliciting larger �eta responses than standard 

stimuli. A signi�cant interaction was found for the factors target probability and target stimulus (F1,19 = 9.99, 
p = 0.005, pcrit = 0.036, η

p
2  = 0.34). By looking at speci�c interaction e�ects within target probability factor levels, 

further post-hoc pairwise comparisons demonstrated that the di�erence between target (M = 1.29, SD = 0.91) 
and standard stimuli (M = 0.89, SD = 0.76) was larger in LTP blocks (t38 = −6.14, p < 0.001, pcrit = 0.05) compared 
to target (M = 1.56, SD = 1.01) and standard stimuli (M = 0.83, SD = 0.68) in HTP blocks (t38 = −3.35, p = 0.002, 
pcrit = 0.025). Frontal ERSPs of �eta power at Fz, interaction plots of frontal theta power, and time-frequency 
plots at Fz are depicted in Fig. 5.

Discussion
In this study, we used a mobile and lightweight EEG measurement setup and recorded subjective, behavioural, 
and electrophysiological measures of participants performing a cognitive-motor dual-task in an outdoors 
environment. While performing an auditory oddball task, the participants either stood, walked laps, or com-
pleted the laps with obstacle course elements. In contrast to previous studies on cognitive-motor interference 
dual-tasks1,14,53, we pursued an approach to investigate basic attentional mechanisms embedded in ecologically 
valid conditions. Recent advances in the technological development of recording equipment9 and stimulus pres-
entation54 increased the feasibility of mobile experiments. Also, prior studies using mobile EEG approaches out-
side of the laboratory demonstrated that high ecological validity does not necessarily decrease signal quality11–13,55.  
Since the data of all experimental conditions were collected at the same location, we kept environmental factors 
like temperature, lighting or sensory complexity comparable.

With respect to the manipulation of movement complexity the results are clearly in line with our initial 
hypothesis. �e behavioural measures indicate that a higher complexity of motor activity is accompanied by a 
decline in performance. Response latencies were signi�cantly increased in the walking and the obstacle course 
condition as compared to the standing condition. �ere was also a tendency towards slower responses in the 
obstacle course compared to the walking condition. A similar pattern emerges for omission errors, since during 
the obstacle course participants missed signi�cantly more targets than during the other movement complexity 
conditions. Keeping in mind that the motor task should be prioritized by the participants in order to reduce the 
risk of injury, this overall decrement in performance may indicate a decreased availability of attentional resources 
for cognitive performance with higher motor workload. �is interpretation is also supported by the subjective 
ratings, as the participants evaluated the cognitive and physical demand, as well as general e�ort higher and also 
rated their own performance lower with increasing complexity of the motor conditions.

�is cognitive-motor interference is clearly visible in the EEG as well. As hypothesized, the parietal P3 ampli-
tude demonstrated a signi�cant distinction between all movement complexity conditions. �e P3 amplitude in 
response to target stimuli was signi�cantly decreased in both locomotion conditions as compared to the standing 
condition. As the parietal P3 has been linked to the allocation of cognitive resources38,44, this observation further 
strengthens the interpretation of the reduced availability of attentional resources to be responsible for the decline 
of performance with increasing movement complexity. �e analysis of frontal midline �eta power revealed 
comparable results. �e event-related increase in �eta power was signi�cantly decreased in the walking and the 
obstacle course condition compared to standing, indicating a decline in focused attention for mental task execu-
tion while in motion47,56. Also, it could be shown, that in conditions with higher frontal �eta power (standing), 
participants responded fastest. By this connection �eta power might re�ect cognitive e�ort and could therefore 
allow for a connection between electrophysiology and resource allocation46. Also, when referring to the review of 
Roux and Uhlhaas57 about oscillations and working memory, there is a clear connection between working mem-
ory maintenance and �eta activation. Decreased �eta power during higher motor load could therefore indicate 
impaired working memory maintenance processes and account for the deteriorated response times. Altogether, 
regarding prior dual-task interference literature, these electrophysiological results suggest that both the motor 
and the cognitive task share a common pool of attentional resources31,58. �is is in line with previous �ndings, 
demonstrating di�erences in resource allocation for non-motor and motor tasks1,13,14,59.

Interestingly, when looking only at standard stimuli, P3 amplitude was signi�cantly negatively enhanced only 
for walking, possibly indicating cognitive processing of no-go stimuli. Our participants also exhibited a signi�-
cantly smaller number of omission errors while walking as compared to the standing and obstacle course condi-
tions. �ese results may in theory indicate a non-linear variation of task-di�culty from standing to walking to 
obstacle course, at least with respect to speci�c task-demands. �e analysis of the gait-measures, however, does 
not support this interpretation. Participants took more steps and had a higher variability between steps during the 
obstacle course compared to normal walking, but completed a similar number of laps. Considering the review by 
Al-Yahya et al.25 these results might indicate a di�erence of overall workload induced by the movement complex-
ity, especially since the obstacle elements forced a certain gait-pattern onto the participants, so that a signi�cant 
di�erence in workload might be caused by correct task-execution itself.

�e analysis of the experimental factor target probability partially suggested the replication of previous lab-
oratory �ndings. Being in line with our hypothesis, subjective ratings indicated less cognitive e�ort and a better 
subjective performance for the LTP condition. Adversely, response times were slower for LTP stimuli, while par-
ticipants made less omission errors. In contrast to our expectations as well as to previous �ndings36,52, the frontal 
�eta power and the parietal P3 amplitude were not modulated by the factor target probability. �e N2 amplitude, 
however, revealed a main e�ect of target probability with larger negative de�ections in the LTP compared to the 
HTP condition. Target-probability e�ects for the N2 have rarely been researched and adverse �ndings have been 
reported from the visual34,60 and auditory domain61. It may be that higher N2 amplitudes in the LTP condition 
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reflect a greater need for cognitive control41,62 when there are less targets, which might also explain slower 
responses. We also observed a signi�cant interaction of the factors target stimulus and target probability for 
frontal �eta power, re�ecting higher �eta power for targets within LTP compared to HTP as hypothesized52. In 
summary, participants rated themselves to be better, had more negative N2 amplitudes and higher �eta power, 
but showed slower response times during the LTP conditions. It thus seems that a higher target probability does 
not in�uence cognitive workload, but seems to in�uence the cognitive system in a rather general manner. �us, 
certain e�ects of target probability found in a laboratory setting were present in this study, main �ndings of target 
P3 amplitude variation could not be replicated.

Overall, the results clearly show that executing a well-known laboratory paradigm in a natural environment 
is feasible, which is in line with previous �ndings12,14,55,59. Besides replicating the oddball e�ect outdoors, the data 
provides new evidence on the topic of cognitive-motor interference. Firstly, a clear limitation of the presented 
approach is that the task is very basic and therefore lacks ecological validity. Secondly, presenting auditory stim-
uli over passive noise-cancelling headphones might induce additional cognitive demand, since perception of 
naturally occurring environmental stimuli and, consequentially, orientation in said natural environment in can 
be impaired. Due to the jittered stimulus presentation these additional cognitive demands should not induce 
systematic error variance though. Finally, to keep results comparable to prior literature, we ensured that exter-
nal in�uences (temperature, lighting etc.) were similar during each conduction of the experiment which might 
restrict ecological validity further. Future research should address this limitation by investigating cognition in 
more complex and application-related scenarios. Nevertheless, it could be shown that a manipulation of move-
ment complexity led to distinct e�ects in subjective, behavioural and electrophysiological measures. �e fact that 
motor complexity and not speed was manipulated provides strong evidence that an increased motor load reduces 
the cognitive resources available for cognitive processes.

Methods
Participants. In this study 29 healthy subjects participated. All of the participants were free of prior or pres-
ent neurologic or psychiatric conditions, right-handed, and had normal or corrected-to-normal vision. None 
of the participants reported hearing de�ciencies. Due to problems concerning trigger generation in early stages 
of the experiment, only datasets of 20 participants (11 male, 9 female) could be used for further analysis. �e 
subjects’ age in the concluding sample ranged from 20 to 30 years (M = 24.10, SD = 3.08). Subjects were paid 
10 € per hour and gave their informed consent. �e study was approved by the local ethics committee of the 
Leibniz Research Centre for Working Environment and Human Factors and was conducted in accordance with 
the Declaration of Helsinki.

Apparatus and stimuli. �e whole data acquisition took place on the outside terrain of the institute between 
June 26th and August 29th 2018. �e obstacle course used for implementing the most complex motor task con-
sisted of two small staircases, two balancing beams, and two boards with punched-out holes (Fig. 6c). �e course 
for the walking and the obstacle course condition had a circumference of 75 meters. �e obstacle course was situ-
ated on the lawn on the outside premises of the institute, so subjects walked on a grass �eld with common surface 
irregularities during the walking or obstacle course conditions. �e outside temperatures at the beginning of the 
experimental procedure ranged from 15 °C to 28 °C.

To be able to record EEG data in this natural setting, a mobile setup for stimulus generation and data acqui-
sition was used. A Raspberry Pi 2B (Raspberry Foundation, UK) with custom OpenSesame Scripts63 was used 
for stimulus presentation and – in combination with the LiveAmp Sensor and Trigger Extension (Brain Products 
GmbH, Gilching, GER) – for trigger generation. To enable behavioural responses by the subject, a self-made han-
dle with a response button was used which was connected to the Trigger Extension. �e subjects were instructed 
to operate the handle with their right hand (Fig. 6b). �e devices were stored in a small backpack which the par-
ticipant wore for the duration of the experiment. �e picture shows the �rst author of this manuscript during a 
pilot study. Written informed consent to publish this picture was obtained. In order to prevent induction currents 
due to cable sway64, all wires were prepared not to cross each other and were taped together for protection from 
movement.

Auditory stimuli were presented to the participants via passive noise-cancelling in-ear headphones (Bose 
QC25, Framingham, USA). �e tones presented consisted of pure sine waves (low: 600 Hz, high: 900 Hz) with a 
length of 62 ms (10 ms rise/fall time). Stimuli were presented with an inter-stimulus interval of 2000 ms with a 
jitter of +/−250 ms.

Procedure. Upon arrival between 8 and 9 am, the participants read the experiment information and signed 
the informed consent. Subsequently, they were �tted with a 30 electrode actiCap setup (actiCAP Slim electrodes 
& actiCAP Snap cap, Brain Products GmbH, Gilching, GER) as well as the backpack and were accompanied out-
side to the obstacle course track. For each participant the preparation took approximately 1 hour.

At the course the participants were fully instructed about the task execution. For the dual-task approach 
participants had to perform a cognitive and a motor task simultaneously. �e cognitive task consisted of a sim-
ple signal-detection auditory oddball task. Participants were either presented with a low-pitched standard-tone 
(600 Hz) at an average sound level of approximately 65 dB(A) or with a high-pitched target-tone (900 Hz) at an 
average sound level of approximately 72 dB(A) in a randomized stream of stimuli. Sound levels were measured 
directly at the earphones’ earmold sound outlet. �e participants were instructed to respond to a target tone by 
pressing the response button and to withhold a response when hearing a standard tone. �e stream of stimuli pre-
sented to the participants consisted either of 80% standard and 20% target tones in the LTP condition or of 65% 
standard- and 35% target-tones in the HTP condition. For the motor task, participants had to either stand still 
on a predetermined spot (stand) in the lower le� corner of the obstacle course, walk around the obstacle course 
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(walk), or include the obstacles of the course while walking (obstacle course, see Fig. 6a). Whether a participant 
performed the motor task clockwise or anticlockwise was quasi-randomized and counterbalanced across partici-
pants. �e sequence of tasks was quasi-randomized using a six factorial latin square design.

A�er each task, the participants’ subjective task-load was assessed via the NASA-TLX37,65 questionnaire. �e 
participants also had the possibility for a short rest. For each factor combination of the 2 (target probability) × 
3 (movement complexity) design the subjects were presented with 450 Stimuli. Each experimental block had a 
duration of 15 minutes, totalling to an overall duration of 1.5 hours. A�er �nishing the task, the subjects were 
escorted back into the laboratory, where the electrode cap and the backpack were removed. Overall, the experi-
mental procedure took roughly 3.5 to 4 hours per participant.

Electrophysiological data acquisition. Since mobile and real-world EEG setups are quite new, this sec-
tion will explain the EEG equipment and subject preparation in higher detail than usual66. EEG data was acquired 
via 30 active electrodes in a standard 10–20-system montage (Fp1, Fp2, F3, F4, F7, F8, Fz, FC1, FC2, FC5, FC6, 
C3, C4, Cz, T7, T8, CP1, CP2, CP5, CP6, P3, P4, P7, P8, Pz, PO9, PO10, O1, O2, Oz). To fully prepare a partic-
ipant for recording, a tight �tting, �exible cap with electrode holders was pulled over the subject’s head at �rst. 
Sizes of caps ranged from 54 to 60 cm in circumference. �en, actively shielded electrodes were inserted into the 
electrode holders and �lled with conductive gel until they reached an impedance of 10 kΩ or below. Because of 
the low weight, pro�le, and centre of gravity of the electrodes, mechanical electrode displacement was prevented 
to a considerable degree. Additionally, electrode cables were carefully aligned to not cross each other or sway 
around while the participant was moving. �erefore, all cables were routed through speci�c cable mounts of the 
actiCap next to the participant’s ears. To further reduce cable motion, we bundled cables from the le� and the 
right side and taped them together respectively. �ese cables were then routed to the mobile ampli�er which 
was placed in a pocket at the back of the participant’s head. Data were recorded with a LiveAmp ampli�er (Brain 
Products GmbH, Gilching, GER) with a sampling frequency of 500 Hz and a bit depth of 24 bit. All data were 
stored on a micro SD card inside the ampli�er while the online signal could be viewed via a Bluetooth connection 
on a windows laptop running the Brainvision recorder so�ware (Brain Products GmbH, Gilching, GER). A�er 
the experiment the data from the SD card were transferred to the laptop’s hard drive with the help of the LiveAmp 
File Converter so�ware (Brain Products GmbH, Gilching, GER). FCz was used as online reference and AFz 
served as the ground. Head movements were recorded simultaneously with the help of the LiveAmp’s built-in 
gyro sensors.

Data processing. �e recorded and converted EEG data were pre-processed o�ine using custom Matlab 
and EEGLab scripts67. Separate pre-processing parameters and routines were used for event-related potentials 
(ERP) and event-related spectral perturbations (ERSPs). In general, the pre-processing was handled similarly to 
lab-based experiments. Previous research showed that artefactual data is produced mainly because of mechanical 
cable displacement and cable crossing64, which we prevented by proper cable management and cable relief mech-
anisms. Also, strong displacement artefacts were formerly shown to be elicited only by exceptional movement 
intensity like in a running task14. Comparable data quality and P300 classi�cation for indoor seated and outdoor 
movement conditions were reported by Debener et al.13 as early as 2012. Additionally, ERPs and ERSPs should not 
be prone to direct movement artefacts due to the averaging process. Only when a movement is locked to a speci�c 
point in time related to the task this should pose a problem to the validity of the outcome.

For ERPs, the data were bandpass-�ltered between 0.5 and 20 Hz using a fourth-order IIR Butterworth �lter 
with DC-o�set removal. For ERSP analysis, data were bandpass-�ltered between 0.5 and 30 Hz. �en, two statis-
tical channel rejections were performed with the �rst excluding all channels with a kurtosis of 8 SD or higher and 
the second excluding all channels with a probability higher than 5 SDs. �ese channels were excluded from both 
the ERP and ERSP dataset. �en the data were average-referenced to the remaining electrodes. On average, 2,2 
channels were excluded per subject.

In a next step, the ERP data were sampled down to 125 Hz and saved in a separate dataset solely for the pur-
pose of independent component analysis (ICA). �e downsampling was necessary to facilitate ICA computation. 
Before running the IC decomposition, data from the ERP and ICA dataset were segmented into epochs ranging 
from −0.3 to 1.2 seconds relative to the stimulus onset.

For the ERSP data, the signal was sampled down to 250 Hz and epochs were created ranging from −1s to 2 s 
regarding stimulus onset. �e downsampling was executed due to data handling purposes and the facilitation of 
further computations.

With the help of an automated trial rejection (voltage threshold: 1000 µV, probability threshold: 5 SD, max-
imum percent of total trials to reject per iteration: 10%), artefactual trials were detected in the ERP dataset and 
subsequently deleted from all separate datasets (ERP, ICA, ERSP). A�er trial rejection, an extended ICA was 
performed on the ICA dataset.

�en, IC-weights were transferred back to the original ERP- and ERSP-data. To reduce individual bias in data 
cleaning, independent components (ICs) representing artefacts were detected via the ADJUST plugin68. �ese 
artefactual ICs were then deleted from the ERP and ERSP data. Subsequently, previously excluded EEG-channels 
were spherically interpolated.

Questionnaires and behavioural data. For subjective workload evaluation a German translation of the 
NASA-TLX was used. Raw scores without factor weighting were passed on for statistical evaluation for each of 
the six dimensions. Behavioural responses were calculated as the latency di�erence between the stimulus-onset 
and right-hand button press. Only correctly detected target trials were considered for subsequent analyses. A trial 
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was counted as correct, if the participant pressed the button following a target stimulus. Further analyses regard-
ing incorrect responses and omission errors were not pursued, given the small proportion of errors (max 2.7%).

Walking data was analysed using the ampli�er’s gyro sensor data. For walking and the obstacle course condi-
tions, a�er band-pass �ltering between 0.1 Hz and 20 Hz, average stepping frequency was detected by identifying 
the power-peak of the gyro acceleration between 0.5 Hz and 3 Hz. �en the original gyro data was �ltered using 
a wavelet at this peak-frequency. At last, positive peaks of this �ltered signal were used as step-markers for calcu-
lating number of steps and step interval variability.

EEG signal processing and analysis. ERPs: Using the EEGLab study design, correct standard and target trials were 
averaged for the six conditions across subjects. �e baseline interval ranged from −200 ms to 0 ms pre-stimulus. 
For statistical analysis frontal N2- as well as parietal P2-, N2-, and P3-voltages were quanti�ed as averages in 
speci�c time windows. To obtain speci�c frontal N2 and parietal P2 and N2 time-windows, grand-averages were 
calculated for each movement complexity condition’s target trials irrespective of target probability. By detecting 
the maximum voltage for these grand average ERPs frontal N2 between 150 ms and 300 ms relative to stimu-
lus onset, the N2 time window was determined by placing a 50 ms window around the peaks (stand: 264 ms 
+/−25 ms, walk: 266 ms +/−25, obstacle course: 266 ms +/−25 ms). �e N2 was then parameterized as the mean 
amplitude in these time windows for each factor combination. �e same procedure was performed for parietal P2 
(search between 100 ms and 200 ms) and N2 (search between 150 ms and 300 ms) to obtain grand average peaks. 
Distinct peaks were found for both the parietal P2 (stand: 126 ms, walk: 124 ms, obstacle course: 126 ms) and 
N2 (stand: 168 ms, walk: 176 ms, obstacle course: 178 ms). A time window of +/−20 ms was applied around the 
peaks to parametrize parietal P2 and N2 mean voltages. Due to the lack of temporal speci�city, the P3 amplitude 
measure was parameterized as the mean amplitude in the time window ranging from 250 ms to 500 ms relative 
to the stimulus onset.

ERSPs: Similarly to ERP measures, only correct standard and target trials were used for ERSP computation. 
ERSP data was calculated using an EEGLab study. 28 Wavelets with three cycles and a cycle shortening factor of 
0.5 were computed for frequencies between 3 Hz and 30 Hz. �e baseline was set for the interval between −500 
ms and −200 ms relative to stimulus onset. �eta power was averaged between 4 and 7 Hz before determin-
ing the movement complexity conditions’ peak latencies analogously to the N2. �e determined time-windows 
were 268 ms +/−150 ms for the standing condition, 256 ms +/−150 ms for the walking condition and 256 ms 
+/−150 ms for the obstacle course condition. �eta power was then averaged in these time windows for each 
factor combination.

Statistical analysis. Statistical analyses were carried out using R version 3.4.369 and the ez-package70. For 
subjective and behavioural data 2 × 3 repeated measures analyses of variance (ANOVAs) were calculated using 
movement complexity condition and target probability as within factors. Regarding physiological measures, we 
used 2 × 3 × 2 repeated measures ANOVAs with movement complexity condition, target probability, and stimu-
lus type (target/non-target) as within factors. For the testing of statistical signi�cance, p-values equal to or below 
0.05 were considered as signi�cant. To account for family-wise error accumulation, signi�cances within each 
ANOVA were corrected for false discovery rate (FDR) as indicated by Cramer and colleagues71. Post-hoc tests for 
movement complexity conditions were calculated using pairwise paired t-test comparisons for all factorial levels. 
Post-hoc test probabilities were also corrected for FDR. In cases of FDR-correction, adjusted critical p—values 
(pcrit) are provided. �e ANOVAS’ e�ect sizes are reported in η

p
2. Statistical plots and �gures with a signi�cant 

main e�ect of target probability display all possible factors; for measures without a signi�cant TP main e�ect, 
plots were produced without splitting the graphs into TP-levels to facilitate comprehensibility and to declutter the 
plots.

Data Availability
�e datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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