Recoverable Distributed Shared Memory Using the Competitive Update Protocol *

Jai-Hoon Kim

Nitin H. Vaidya

Department of Computer Science
Texas A&M University
College Station, TX, 77843-3112
E-mail: {jhkim,vaidya} @cs.tamu.edu
Web: http://www.cs.tamu.edu/faculty/vaidya/

Abstract

In this paper, we propose a recoverable DSM that uses
a competitive update protocol. In this update protocol,
multi plecopies of each page may be maintainedat different
nodes. Howevey, itisalsopossiblefor apagetoexistinonly
one node, as some copies of the page may be invalidated.
W& propose an implementation that makes the competitive
update protocol recoverable froma single node failure, by
guaranteeing that at least two copies of each page exist.

The paper presents preliminary evaluation of the recov-
erable DSM (using simulation). It is shown that the mes-
sage overhead of making the DSM recoverable is small.

1 Introduction

Distributed shared memory (DSM) systems have many
advantages over message passing systems [19, 17]. Since
DSM provides auser asimple shared memory abstraction,
the user does not have to be concerned with data move-
ment between hosts. Many approaches have been proposed
to implement distributed shared memory (e.g., [15, 5]).
The DSM implementationsare based on write-invalidation
and/or write-update. A simple implementation of awrite-
updateprotocol islikely to beinefficient, as many copies of
apage may be updated, even if some of them are not going
to be accessed inthefuture. The competitive update proto-
col [11, 7] invalidates a copy of a page at some node A4, if
it isupdated by other nodes “too many” times before node
A accesses it. The proposed recoverable DSM is based on
the competitive update protocol, and it can tolerateasingle
node fallure without significant overhead. The proposed
approach can a so be used with other update protocol s that
selectively invalidate some copies of a page.

For future reference, note that we use the terms node
and processor interchangeably. A node may execute one
or more processes, however, failure of anode resultsin the
failureof all such processes.

2 Reated Work

This paper presents a recoverable DSM based on the
competitive update protocol [11, 7]. The competitive up-
date protocol definesalimit for each page at each node. If
the number of update messages received for a page P at
some node A — without an intervening access by node A

*This work is supportedin part by the National Science Foundation
under grant M 1P-9502563.

— exceeds the limit for page P at node A, then the loca
copy of the page a node A isinvalidated (other copies of
the page are not affected).

Many recoverable DSM schemes have been presented
in the literature. Some of them use stable storage (disk)
to save recovery data [22, 8, 18, 9], and others use main
memory for checkpointing, replicating shared memory or
loggingtheshared memory accesses [20, 2,4, 16, 6, 12, 21].
Proposed recoverable DSM bel ongsto the second category
(uses main memory). [20, 21] are based on update (full-
replication) protocol, while [2, 4, 16, 6, 12] are based on
invalidate (read-replication) protocol.

Stumm and Zhou extended four DSM al gorithmsto tol-
eratesinglenodefailures[20]. Oneof their a gorithmsisfor
an update protocol. But, implementations of our algorithm
isdifferent because their algorithmis based on update pro-
tocol where al copies of a page are updated, whereas our
scheme is based on the competitive update protocol (some
copies are invalidated to reduce overhead). Additionally,
our scheme supportsrelease consistency.

Thed and Fleisch recently presented a coherence pro-
tocol [21] that is highly available. Their scheme has an
upper bound (to reduce overhead) as well asalower bound
(for availability) on the number of copies of each shared
memory page. Unlike [21], our scheme is based on the
competitive update protocol.

Janssens and Fuchs [9] present a recoverable DSM that
exploitsrelease consistency to reduce the number of check-
points, as compared to communication-induced check-
pointing schemes for sequential consistency. Their scheme
requiresaprocessto takeacheckpoint either when perform-
ing awrite on a synchronization variable, or when another
process performs a read on the synchronization variable.
The checkpoints are stored on a storage not subject to fail-
ures. Our single fault tolerance scheme handles the non-
shared data similar to[9)]; it “ checkpoints’ non-shared data
in the volatile memory of another processor. However,
the shared data is not explicitly checkpointed —instead the
shared dataisduplicated as a part of the update protocol (if
multiple copies already exist, no additional overhead isin-
curred). Janssens and Fuchs [10] also present an approach
toreduceinterprocessor dependenciesinrecoverable DSM.

Brown and Wu presented recoverable DSM, based on
aninvalidate protocol, that can tolerate single point failure
[4]. A dynamic snooper keepsabackup copy of each page
and takes over if the page owner fails. The snooper keeps

track of the page contents, location of page replicas, and
the identity of the page owner. The snooper can respond
on behalf of afailed owner. Our scheme also maintains at
least two copies of apage, however, the scheme isbased on
an update protocol, unlike[4].

Neveset a. presented acheckpoint protocol for amulti-
threaded distributed shared memory system based on the
entry consistency memory model [16]. Their agorithm
needsto maintain log of shared data accesses inthevolatile
memory. Fuchi and Tokoro proposed a mechanism for re-
coverable shared virtual memory [6]. Their scheme main-
tains backup process for every primary process. When the
primary process sends/receives a message to/from another
process (or writes/readsa shared memory), the primary pro-
cess sends this information to backup process so that the
backup process can log the events of the primary process.

Backward error recovery on a Cache Only Memory Ar-
chitectureisimplemented using invalidate protocol by Ba-
natreet al. [2]. (A similar scheme was implemented on an
Intel Paragon by Kermarrec et a. [12].) This scheme peri-
odically takes system-wideconsistent checkpoints. After a
nodefails, al nodes need to rollback to thelast checkpoint.

3 Competitive Update Protocol [11, 7]
Thebasicideaof thecompetitive update protocol [11, 7]
is to update those copies of a page that are expected to be
used in the near future, while selectively invalidating other
copies. We assume an implementation that is similar to
Munin[5], with afew modificationsto facilitatecompetitive
updates. Each node maintains an information structure for
each pageresident initsmemory. Theinformation structure
containsmany pieces of information, as summarized bel ow.

e update-counter: Counts how many times this page
has been updated by other nodes, since the last local
access to this page.

e version: Counts how many times this page has been
updated since the beginning of the execution.

o limitL: Either set by user or transparently by the DSM
protocol. Thelimit for each page determines the per-
formance of the competitive update protocol.

e last-updater: ldentity of the node that updated this
page most recently. The last-updater isidentical for
all copies of apage.

e copyset: Set of nodesthat are assumed to have a copy
of thispage.

e probOwner: Points towards the “owner" of the page
[5]. Onapagefault, anoderequeststhe pagefromthe
probOwner. If the probOwner does not have a copy
of the page, it forwardsthe request to its probOwner.
The request is thus forwarded until a node having a
copy of the pageis reached.

e back-up: used for recoverable DSM (to be explained
later).

During the execution, update-counter of each copy of
apage isincremented on receiving an update message for
the page. A copy of apageisinvalidated when its update-
counter becomes equal to the limit. Thus, the competitive
update protocol invalidates those pages that are accessed
“less frequently” — the protocol can be tuned to a given
application by a proper choice of limit L. It ispossibleto
choose adifferent limit for each copy of each page, and the
limits can be changed dynamically [13, 14].

4 Recoverable Competitive Update Protocol

Recoverable scheme for aDSM, based on the competi-
tive update protocol [11, 7], isrelatively smple. The basic
ideabehindthe proposed schemeisto maintain, at all times,
at least two copies of each page (at two different nodes)
in stead of checkpointing. This will allow the DSM to
recover from asingle nodefailurewithout significant over-
head (provided the non-shared data is a so recoverable, as
discussed later).

When thecompetitiveupdate protocol isused, itispossi-
blethat apagemay beresident in only one node. Therefore,
to tolerate a single node failure, it is necessary to modify
the competitive update protocol, to ensure that at least two
nodes have a copy of each page. Thus, there are two issues
that must be dealt with to make the DSM fault tolerant (for
single nodefailures).

1. Modification of the competitive update protocol to
guarantee two copies of each shared memory page.

2. Some mechanism needs to be incorporated to make
the non-shared data recoverable.

To ssimplify the discussion, we assume that each page
has the same fixed limit L. To make the DSM recoverable,
we must modify the competitive update protocol, such that
some copy of the page is not invalidated, even if its up-
date counter is equa to the limit L. Thisis achieved by
designating, for each update, one of the nodes asthe* back-
up”. The copy of a page a the back-up node cannot be
invalidated, irrespective of the value of its update-counter.

Maintaining the back-up

When a node A obtainsa copy of a page P from some
other node B, node B also sends identifier of the last-
updater of page P. Node A, on receiving the page, setsits
last-updater as well as back-up equal to the last-updater
received from node B.

Contents of a back-up field can change in two different
ways. Let us consider the copy of apage P at anode A.

1. Node A receives an update message for page P from
some other node, say C': Inthiscase, theback-up field
a node A is set equal to C. The node C is used as
back-up when node A updates other nodes.

2. Node A performs a release and sends update mes-
sages, for page P, to other nodes: When the other
nodes receive these update messages, they acknowl-
edge the update message, and send their update-
counters aong with the acknowledgement. Node A
finds the node, say D, whose update-counter is the
smallest (ties broken arbitrarily), and sets back-up
equa to D.

Note that, for a given page, the back-up at different nodes
may bedifferent.

The motivation behind the above procedure is to iden-
tify a node as the back-up only if it has accessed the page
recently (this, inturn, ismotivated by the principleof local-
ity). However, itispossiblethat, if themost recent access to
apageisaread, the nodethat performed the read may not
be identified as the back-up in the other nodes. This can

0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10| 11| 12| 13| 14| 15/ 16| 17| 18| 19| 20| 21| 22| 23| 24| 25

Memory Access 2L 2R[2U| 0L | 0 OU| 1L| IR| IW U} OL 0Uj oL ouj oL QU| 2L| 2R|2U| 2L | 2

Update-counter: 0

=
o

Update-counter: 1

=
o

Update-counter: 2

Lagt-updater

Back-up: 0

-
-

Back-up: 1

=
o

=)

o
olo|r|lololo|o
olo|r|lololo]le
olo|r|ololo|o
olo|r|lololo|o
olo|r|ololo|o
olo|md|lolr |k |o
oclo|md|lolr k|
olo|mv|olr oo
oclo|m|lolr ol
—lolrk |k nd|o |-
mlolr |k v|o |-
—lolr|r|v|olo

=

o

=

o

=

=)

=

=)
olo|r|lololw|o
olo|r|olo|w|o
olo|r|lololw|o
oclo|lr|lololw]|o

Back-up: 2

Figure 1: Update Counter for Recoverable DSM

happen because a read can be performed locally without
other nodes knowing about it.

Themaodified (recoverable) competitiveupdate protocol

The proposed scheme assumes that programs are data-
race-free[1]. The modified protocol isessentially identical
to the original competitive update protocol with one dif-
ference: A node that is designated as the back-up for an
update doesnot invalidatetheloca copy of the page even if
the update-counter becomesequal to limit L or exceeds L.
(Update message sent to the back-up node is tagged by a
special marker.) Any other node, whose update-counter is
> L invaidatesitsloca copy of the page. This procedure
ensures that, at any time, at least two copies of a page are
in existence,

The back-up for an update is dways a node that has
accessed the page in the recent past. Therefore, from the
locality principle, thisnode is likely to access the page in
thenear futureaswell. Themodified update protocol forces
this node to retain a copy of the page. This protocol may
be viewed as incorporating a “pre-fetch” mechanism. As
the page copy is likely to be used in the near future, the
overhead of updating the copy is often compensated by a
reduction in the number of page faults.

Note that “cost” (e.g., humber of messages) of the re-
coverable protocol can be larger than that of the non-
recoverable protocol, only when the non-recoverabl e proto-
col wouldresult in apage having only one copy. Whenever,
the non-recoverable protocol results in multiple copies of
a page, the recoverable protocol does not result in any ad-
ditiona cost. Thus, the difference between the costs of the
recoverable and non-recoverabl e protocol sisgreatest when
limitis1, and reduces as limit becomes larger.

Figure 1 illustrates how the back-up is maintained. For
this example, assume that the limit L is3. The systemis
assumed to contain three nodes, 0, 1 and 2. In the figure,
+L and U denote acquire and release operations.t Also,
1R and :W denote read and write operations performed on
thispage by node:. Initialy, the pageisloadedinthelocal
memory of two nodes (0 and 1 in our example), and one of
them (node0) isconsidered to bethelast-updater. Back-up
at nodesOand lisinitializedto 1 and O, respectively. The
memory access row in Figure 1 presents a total ordering
on the accesses to the page under consideration. The next
threerowspresent val ues of the update-countersat thethree
nodes at varioustimes, e.g., the update-counter:0 row cor-

1Althoughwe obtainedthe notationiL andiU by abbreviatingi-Lock
and i-Unlock, it shouldbe noted that acquire and release operationsin
release consistency are not necessarily equivalentto lock and unlock.

responds to node 0. (The valuesin column ¢ correspond to
the update-countersafter the memory accessin columniis
performed.) The next row of thetableliststhe last-updater
variable at each node (it isidentical at all nodes). The last
threerowslist thevalue of theback-up variablefor the page
at each node. Note that last-updater and back-up change
only when arelease isperformed, wheress, update-counter
at anode A changeswhen either (i) node A performsalocal
access to the node, or (i) another node performs an update
to the page. A “blank” in the table implies that the cor-
responding node does not have a copy of the page at that
time, and the X in the figure denotes an invalidation.

4.1 Duplicate Copy for Non-Shared Data

When it is necessary to ensure that the faulty node can
be recovered, the non-shared data > must also be dupli-
cated. When a node writes shared data and updates other
copies of the data, the non-shared data a the node can be
sent, along with the update message, to any one node. Al-
though no additiona messages arerequired, the size of one
of the messages will be larger. The amount of non-shared
data transferred can be reduced by sending only the mod-
ifications to the local data since the most recent update
performed by the node. Thisincremental approach makes
recovery more complicated, as the non-shared data of a
node can be scattered at various nodesin the system.

Analternativeisto specify for eachnode(say A), another
node (say B) to which the incremental changesin the non-
shared data are sent, when node A performs an update to
some shared data. While this will simplify recovery, it
may increase the number of messages.

4.2 Recovery

Theproposed DSM systemisrecoverablefromall single
node failures (fail-stop) because all shared memory pages
and non-shared memory pages (if necessary) have at least
two copies. Therecovery isstraightforward. After asingle
node failure, the shared memory remains available. If the
faulty nodeistoberecovered, thenitsnon-shared dataisob-
tained from other nodes (the non-shared dataiis duplicated,
as described above). Two issues need further elaboration.

e Since failure can occurs a any time, contents of the
copies of the same page may be different (if the fail-
ure occurs while an update is in progress). In this
case, some copies are out-of-date. This problem can
be resolved by searching the most up-to-date copy —
to facilitate this, aversion number is attached to each
page to count the number of updates performed to the
page from the beginning of execution. The copy with
thelargest version number isthe most up-to-date copy
(thisis similar to [2Q]). If a node fails after it has
writtento apage, but beforeit has performed arelease
then the modifications made by the node are | ost when
the node fails. Thisis acceptable, as the system state
will still be consistent after the failure. However, if
anode fails after the node sent update messages only
for the part of pages to be updated on a release, the
nodemay not restart from the previous consi stent state
because old version of the updated pages may not ex-
ist. This problem can be solved by new mechanisms.

2The non-shared data includes process status, e.g., contents of stack
and registers.

One possibilityisfor the updating node to send al up-
dates in one message to another node which will send
update messages to other nodes. By thisindirect up-
date mechanism, all pages can be updated atomically
in spite of asingle node failure. Another mechanism,
lazy-decoding, postpones decoding of update message
for a page until the first access of the data to be mod-
ified by the decoding. Lazy-decoding alows every
page being updated on a release to have at least one
copy of old version of the page until all updates finish
on therelease. (The updates are sent immediately on
arelease, but not decoded immediately.)

e It is necessary to ensure that, after recovery, each
shared memory page has at least two copies. There-
fore, after failure, if only one node has a copy of a
page, then another copy is created on any other node.
Now we assume that two copies of each page exist.
The recovery agorithm must also ensure that all the
last-updater and back-up fields are correct. We now
illustrate how this can be achieved. Consider a page
P. Two cases are possible.

(a) If thelast-updater for page P fails, then any other
node having the pageisdesignated asthelast-updater,
and its update-counter is cleared to 0. All relevant
nodes are informed of the new last-updater. These
nodes set their last-updater as well as the back-up
fields to point to the new last-updater. The new last-
updater sets its back-up field to point to any other
node that has a copy of the page.

(b) If some node other then the last-updater isfaulty,
then it is possible that the back-up field at the last-
updater may be pointing to the faulty node. It isonly
necessary to set the back-up to point to any other node
that has a copy of the page.

5 Performance Evaluation

5.1 Methodology

We measured overhead for maintaining recoverable
shared data® by comparing the “cost” for non-recoverable
protocol and recoverable protocol. The*cost” metricsused
here are (i) number of messages, (ii) amount of informa-
tiontransferred between thenodes, and (iii) number of page
faults. These resultsare very preliminary and a more com-
plete evaluation of the proposed scheme will be performed
by means of an implementation.

Asapreliminary test, we generated synthetic trace data
by using an event generator. (Possible events are read,
write, acquire, and release.) The event generator can pro-
duce synthetic trace data according to the memory access
behavior which we can define as input. We also modi-
fied the Proteus [3], execution-driven multiprocessor sys-
tem simulator, to produce trace data. The modified Proteus
produces trace data for shared memory operations, read,

3We did not measure the overhead (the number of messages and the
amount of data) for non-shareddata. However, no additional messages
arerequired for non-shareddataif the non-shareddatais sent alongwith
an updatemessagefor shared data. Asfor the amountof data, we believe
that the amount of data transferred due to non-shared data is relatively
small as comparedto shared data, in many scientific applications.

write, acquire, and release. The trace data are used as in-
put for our simulator which computed the cost (the number
of page faults, the number of messages, and the amount of
datatransferred). We assume that the DSM system consists
of 16 nodes, and that the page size is 1024 bytes.

For the simulation, we assume an implementation simi-
lar to Munin, i.e., based on the dynamic distributed owner-
ship mechanism [5].

5.2 Cost Measurement

On apagefault, the number of messages required varies
because of the dynamic distributed ownership mechanism.
The page request is forwarded aong the probOwner link
until a node that has a copy of the page is reached (when
L > 1), or till the page “owner” isreached (when L = 1).
We assume that an acquireand release are implemented as
special procedures using amessage passing library —an ac-
quire is assumed to require three messages. On arelease,
two messages are required per copy of the modified pages
—one for sending a request and the other for acknowledg-
ment. Some application programs traced using Proteus use
semaphores to achieve synchronization — we appropriately
interpreted these as acquires and releases.

Message sizefor an update at arelease isproportional to
on thenumber of writes performed sincetherecent acquire.
Other short messages (e.g., acknowl edgement) are assumed
to be 8 bytes.

5.3 Results

Figures 2, 3, and 4 show the result of our experiments
with synthetic trace data. We assumed distributed shared
memory system of 16 nodes. 10,000 memory accesses
(each access reads or writes 8 bytes) for a single page
of 1024 bytes are smulated for three different read ra-
tios (70%, 80%, and 90% uniform distributi on) to compute
overhead for the recoverable scheme. The results of the
simulation converge by 10,000 accesses. In the figures,
“non-recoverablexx%” means the cost for the competitive
update protocol without recoverable scheme at x% read ra-
tioand " recoverable:x%” meansthecost for therecoverable
competitive update protocol at x% read ratio.

Figure 2 showsthat the number of page faults decreases
as the update limit (L) increases because the number of
page copies increases by allowing more updates. Observe
that the number of page faults of recoverable scheme is
less than that of non-recoverable scheme for low limit (L).
Maintaining at least two copies for the recoverable scheme
causes page “pre-fetch” effect which reduces the number
of page faults.

Figure 3 shows that the number of messages increases,
especialy at high limit (L), as read ratio decreases. At
low limit (L), the number of messages for the recoverable
scheme isgreater than that of non-recoverable scheme, be-
cause recoverable scheme needs extramessages to maintain
at least two copies. However, note that the increase in the
number of messages is not too large.

Figure 4 shows that small amount of datais transferred
between the nodes, per memory access, a high limit (L)
and/or high read ratio. (A page fault needs to copy the
whole page, whereas, the amount of data transfer needed
due to updates is small for the synthetic traces.) For small
L, the recoverable scheme requires less data transfer, asit
reduces the page fault rate.

0.9

The Number of Page Faults

08
0.7
06
05
04
03 r

0.2

Number of Page Faults per Memory Access

01r

'1. non-recoverable:70%’ ——

o, '2. recoverable:70%' -+---
x B '3, non-recoverable:80%' -

% '4. recoverable:80%'
: '5. non-recoverable:90%' -+--

¥ b X O 4
i

:} § '6. recoverable:90%' -*-- |

25 30

Figure 2: The number of page faults (synthetic trace)

The Number of Messages

Number of Messages per Memory Access
(2]

35

"1. non-recoverable:70%’ ——
'2. recoverable:70%’ -

'3. non-recoverable:80%' -
'4. recoverable:80%'

¥ b X O 4
i

'6. recoverable:90%’ -x---

'5. non-recoverable:90%' - |

Figure 3:

5 10 15 20 25 30
Updates Limit (L)

The number of messages (synthetic trace)

35

g The Amount of Data
g 900 T T T T
> A '1. non-recoverable:70%' ——
S 800 5= 2. recoverable:70% -+
5 X%, ’3. non-recoverable:80%’ -
= 700 '4. recoverable:80%' -
g PN '5. non-recoverable:90%’ -«--
% 600 6. recoverable90%' -x-- -
& 500 |
3 L
5 400
‘B
S 300 |
5
g 200
[a)
k] 100 -
g
o O L L L L L L
s 0 5 10 15 20 30
Updates Limit (L)
Figure4: The amount of data (Synthetic trace)

35

Four application programs (MP3D, Floyd-Warshall,
FFT, and Gauss-Jacobi) were used to eval uate the overhead
of recoverable competitive update protocol. These appli-
cations are simulated on the modified Proteus to produce
trace data, and our protocol simulator is executed with the
trace data to evaluate the overhead. Due to lack of space,
we present the results for only one application in Figure 5
(Notethat Figurerefmp3d plotstotal cost over theentireap-
plication) —the other applicationsyield similar results[13].
Observe that, in most cases, the recoverable scheme has
a comparable or smaller “cost” than the non-recoverable
protocol.

As noted previoudly, the difference in the “cost” of the
recoverable protocol and the non-recoverable protocol is
likely to bethe greatest when thelimit, issmall. The simu-
lation resultssuggest that thecost of therecoverable scheme
is comparable or smaller than that of the non-recoverable
scheme, for al values of the limit.

6 Conclusion and Future Work

This paper presented a scheme to implement a software
DSM that is recoverable in the presence of a single node
faillure. Our scheme differsfrom the previouswork in that
the proposed scheme is based on the competitive update
protocol, which combines the advantages of invalidate as
well as traditiona update protocols. In addition, our ap-
proach isintegrated with the rel ease consistency model for
mai ntaining memory consistency. In the basic competitive
update protocol, the number of copies of a page varies dy-
namically —in the extreme, only one node may have a copy
of the page or al nodes may have a copy of the page. Our
approach is based on the simple observation that, to make
the DSM recoverable fromasinglefailure, itisadequateto
ensurethat each page hasat |east two copiesat all times. To
achieve thiswe suggest amodification to the basic competi-
tive update protocol. Recovery issimple because an active
back-up copy exists for each page. The proposed scheme
isapplicableto other updated-based protocol sthat i ncorpo-
rate mechanisms to selectively invalidate some pages. Itis
also applicableto generalizations of the competitive update
protocols where the limit may be different for each page,
and vary with time [13, 14].

Preliminary performance eval uation resultsindicate that
the proposed scheme does not significantly increase the
number or size of messages required by an application.
Further analysis is necessary to fully evauate the pro-
posed scheme. The proposed recoverable DSM scheme
is presently being implemented on a network of worksta-
tions.

Acknowledgements: We thank the referees for their
detailed comments.

References

[1] S. V. Adve, Designing Memory Consistency Models for
Shared-Memory Multiprocessors, PhD thesis, University of
Wisconsin-Madison, Dec. 1993.

M. Banatre, A. Gefflaut, and C. Morin, “Tolerating node
failures in cache only memory architectures,” Tech. Rep.
853, INRIA, 1994,

E. Brewer and C. Dellarocas, Proteus User Doc., 1992.

L. Brown and J. Wu, “ Dynamic snooping in a fault-tolerant
distributed shared memory,” in Symposium on Distributed
Computing Systems, pp. 218-226, 1994.

(2]

(3]
[4]

The Number of Page Faults (MP3D)
180000 T T

160000 - "1. non—r‘eooverablé’ ——
140000 |
120000
100000
80000 |

60000 | |

Total Number of Page Faults

40000

20000 -

0 L L L

'2. recoverable’ -+

0 5 10 15 20 25 30
Update Limit (L)

The Number of Messages (MP3D)
550000 T T T T T

35

500000 |
450000 -
400000 -
350000 -
300000 |
250000
200000
150000 [
100000
50000

0 . . .

'2. recoverable’ -+

Total Number of Messages

'1. non-recoverable’ —— |

0 5 10 15 20 25 30
Update Limit (L)

The Amounts of Data (MP3D)
1.3e+08 T T T T

1.2e+08 "1. non-recoverabl ;’ ——
1.1e+08
1e+08
9et+07
8e+07
7e+07
6e+07

5e+07

Total Amounts of Data (Bytes)

4et+07

3e+07 5 : 3

'2. recoverable’ -+ |

0 5 10 15 20 25 30
Update Limit (L)

Figure 5: Overhead for Recoverable Scheme (MP3D)

35

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

J. B. Carter, Efficient Distributed Shared Memory Based
On Multi-Protocol Release Consistency. PhD thesis, Rice
University, Sept. 1993.

T. Fuchi and M. Tokoro, “A mechanism for recoverable
shared virtual memory,” 1994.

H. Grahn, P. Stenstrom, and M. Duboais, “Implementa-
tion and evaluation of update-based cache protocols under
relaxed memory consistency models,” Future Generation
Computer Systems, vol. 11, pp. 247-271, June 1995.

G. Janakiraman and Y. Tamir, “ Coordinated checkpointing-
rollback error recovery for distributed shared memory mul-
ticomputer,” in 13th Symp. on Rel. Distr. Syst., 1994.

B. Janssensand W. K. Fuchs, “Relaxing consistency in re-
coverable distributed shared memory,” in Proc. 23rd Int.
Symp. on Fault-Tolerant Computing, pp. 155163, 1993.

B. Janssensand W. K. Fuchs, “ Reducing interprocessor de-
pendencein recoverabledistributed shared memory,” in 13th
Symposiumon reliable Distributed Systems, Oct. 1994.

A. Karlin et al., “Competitive snoopy caching,” in Proc. of
the 27'th Annual Symposium on Foundations of Computer
Science, pp. 244-254, 1986.

A.-M. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and
1. Puaut, “A recoverabledistributed shared memory integrat-
ing coherence and recoverability,” in Proc. 25th Int. Symp.
on Fault-Tolerant Computing, pp. 289-298, 1995.

J.-H. Kim and N. H. Vaidya, “Distributed shared memory:
Recoverableand non-recoverablelimited update protocols,”
Tech. Rep. 95-025, Texas A&M Univ., College Stn., 1995.

J-H. Kim and N. H. Vaidya, “Towards an adaptive dis-
tributed shared memory,” Tech. Rep. 95-037, Texas A&M
University, College Station, 1995.

K. Li and P. Hudak, “Memory coherence in shared virtual
memory systems,” ACM Transactions on Computer Systems,
vol. 7, pp. 321-359, Nov. 1989.

N. Neves, M. Castro, and P. Guedes, “A checkpoint protocol
for an entry consistent shared memory system,” in Symp. on
Principles of Distr. Comp., pp. 121-129, Aug. 1994.

B. Nitzberg and V. Lo, “Distributed shared memory: A
survey of issues and algorithms,” |EEE Computer, vol. 24,
pp. 5260, Aug. 1991.

G. Richard and M. Singhal, “Using logging and asyn-
chronous checkpointing to implement recoverable dis-
tributed shared memory,” in 12th Symposium on Reliable
Distributed Systems, 1993.

M. Stumm and S. Zhou, “Algorithms implementing dis-
tributed shared memory,” |EEE Computer, pp. 54—64, May
1990.

M. Stumm and S. Zhou, “Fault tolerant distributed shared
memory algorithms,” in Int. Conf. on Parallel and Distr.
Processing, pp. 719-724, 1990.

O. Theel and B. Fleisch, “Design and analysis of highly
available and scalable coherence protocols for distributed
shared memory systems using stochastic modeling,” in Int.
Conf. on Parallel Procesing, vol. |, Aug. 1995.

K.-L. Wu and W. K. Fuchs, “ Recoverabledistributed shared
virtual memory: Memory coherenceand storagestructures,”
in Int. Symp. on Fault-Tolerant Comp., pp. 520-527, 1989.

