
Recoverable Distributed Shared Memory Using the Competitive Update Protocol �
Jai-Hoon Kim Nitin H. Vaidya

Department of Computer Science
Texas A&M University

College Station, TX, 77843-3112
E-mail: fjhkim,vaidyag@cs.tamu.edu

Web: http://www.cs.tamu.edu/faculty/vaidya/

Abstract
In this paper, we propose a recoverable DSM that uses

a competitive update protocol. In this update protocol,
multiple copies of each page may be maintainedat different
nodes. However, it is also possible fora page to exist in only
one node, as some copies of the page may be invalidated.
We propose an implementation that makes the competitive
update protocol recoverable from a single node failure, by
guaranteeing that at least two copies of each page exist.

The paper presents preliminary evaluation of the recov-
erable DSM (using simulation). It is shown that the mes-
sage overhead of making the DSM recoverable is small.

1 Introduction
Distributed shared memory (DSM) systems have many

advantages over message passing systems [19, 17]. Since
DSM provides a user a simple shared memory abstraction,
the user does not have to be concerned with data move-
ment between hosts. Many approaches have been proposed
to implement distributed shared memory (e.g., [15, 5]).
The DSM implementations are based on write-invalidation
and/or write-update. A simple implementation of a write-
update protocol is likely to be inefficient, as many copies of
a page may be updated, even if some of them are not going
to be accessed in the future. The competitive update proto-
col [11, 7] invalidates a copy of a page at some node A, if
it is updated by other nodes “too many” times before nodeA accesses it. The proposed recoverable DSM is based on
the competitive update protocol, and it can tolerate a single
node failure without significant overhead. The proposed
approach can also be used with other update protocols that
selectively invalidate some copies of a page.

For future reference, note that we use the terms node
and processor interchangeably. A node may execute one
or more processes, however, failure of a node results in the
failure of all such processes.

2 Related Work
This paper presents a recoverable DSM based on the

competitive update protocol [11, 7]. The competitive up-
date protocol defines a limit for each page at each node. If
the number of update messages received for a page P at
some node A – without an intervening access by node A�This work is supported in part by the National Science Foundation
under grant MIP-9502563.

– exceeds the limit for page P at node A, then the local
copy of the page at node A is invalidated (other copies of
the page are not affected).

Many recoverable DSM schemes have been presented
in the literature. Some of them use stable storage (disk)
to save recovery data [22, 8, 18, 9], and others use main
memory for checkpointing, replicating shared memory or
logging the shared memory accesses [20, 2, 4, 16, 6, 12, 21].
Proposed recoverable DSM belongs to the second category
(uses main memory). [20, 21] are based on update (full-
replication) protocol, while [2, 4, 16, 6, 12] are based on
invalidate (read-replication) protocol.

Stumm and Zhou extended four DSM algorithms to tol-
erate single node failures [20]. One of their algorithmsis for
an update protocol. But, implementations of our algorithm
is different because their algorithm is based on update pro-
tocol where all copies of a page are updated, whereas our
scheme is based on the competitive update protocol (some
copies are invalidated to reduce overhead). Additionally,
our scheme supports release consistency.

Theel and Fleisch recently presented a coherence pro-
tocol [21] that is highly available. Their scheme has an
upper bound (to reduce overhead) as well as a lower bound
(for availability) on the number of copies of each shared
memory page. Unlike [21], our scheme is based on the
competitive update protocol.

Janssens and Fuchs [9] present a recoverable DSM that
exploits release consistency to reduce the number of check-
points, as compared to communication-induced check-
pointing schemes for sequential consistency. Their scheme
requires a process to take a checkpoint eitherwhen perform-
ing a write on a synchronization variable, or when another
process performs a read on the synchronization variable.
The checkpoints are stored on a storage not subject to fail-
ures. Our single fault tolerance scheme handles the non-
shared data similar to [9]; it “checkpoints” non-shared data
in the volatile memory of another processor. However,
the shared data is not explicitly checkpointed – instead the
shared data is duplicated as a part of the update protocol (if
multiple copies already exist, no additional overhead is in-
curred). Janssens and Fuchs [10] also present an approach
to reduce interprocessor dependencies in recoverable DSM.

Brown and Wu presented recoverable DSM, based on
an invalidate protocol, that can tolerate single point failure
[4]. A dynamic snooper keeps a backup copy of each page
and takes over if the page owner fails. The snooper keeps



track of the page contents, location of page replicas, and
the identity of the page owner. The snooper can respond
on behalf of a failed owner. Our scheme also maintains at
least two copies of a page, however, the scheme is based on
an update protocol, unlike [4].

Neves et al. presented a checkpoint protocol for a multi-
threaded distributed shared memory system based on the
entry consistency memory model [16]. Their algorithm
needs to maintain log of shared data accesses in the volatile
memory. Fuchi and Tokoro proposed a mechanism for re-
coverable shared virtual memory [6]. Their scheme main-
tains backup process for every primary process. When the
primary process sends/receives a message to/from another
process (or writes/readsa shared memory), the primary pro-
cess sends this information to backup process so that the
backup process can log the events of the primary process.

Backward error recovery on a Cache Only Memory Ar-
chitecture is implemented using invalidate protocol by Ba-
natre et al. [2]. (A similar scheme was implemented on an
Intel Paragon by Kermarrec et al. [12].) This scheme peri-
odically takes system-wide consistent checkpoints. After a
node fails, all nodes need to rollback to the last checkpoint.

3 Competitive Update Protocol [11, 7]
The basic idea of the competitive update protocol [11, 7]

is to update those copies of a page that are expected to be
used in the near future, while selectively invalidating other
copies. We assume an implementation that is similar to
Munin [5], with a few modifications to facilitate competitive
updates. Each node maintains an information structure for
each page resident in its memory. The information structure
contains many pieces of information, as summarized below.� update-counter: Counts how many times this page

has been updated by other nodes, since the last local
access to this page.� version: Counts how many times this page has been
updated since the beginning of the execution.� limit L: Either set by user or transparently by the DSM
protocol. The limit for each page determines the per-
formance of the competitive update protocol.� last-updater: Identity of the node that updated this
page most recently. The last-updater is identical for
all copies of a page.� copyset: Set of nodes that are assumed to have a copy
of this page.� probOwner: Points towards the “owner" of the page
[5]. On a page fault, a node requests the page from the
probOwner. If the probOwner does not have a copy
of the page, it forwards the request to its probOwner.
The request is thus forwarded until a node having a
copy of the page is reached.� back-up: used for recoverable DSM (to be explained
later).

During the execution, update-counter of each copy of
a page is incremented on receiving an update message for
the page. A copy of a page is invalidated when its update-
counter becomes equal to the limit. Thus, the competitive
update protocol invalidates those pages that are accessed
“less frequently” – the protocol can be tuned to a given
application by a proper choice of limit L. It is possible to
choose a different limit for each copy of each page, and the
limits can be changed dynamically [13, 14].

4 Recoverable Competitive Update Protocol
Recoverable scheme for a DSM, based on the competi-

tive update protocol [11, 7], is relatively simple. The basic
idea behind the proposed scheme is to maintain, at all times,
at least two copies of each page (at two different nodes)
in stead of checkpointing. This will allow the DSM to
recover from a single node failure without significant over-
head (provided the non-shared data is also recoverable, as
discussed later).

When the competitive update protocol is used, it is possi-
ble that a page may be resident in only one node. Therefore,
to tolerate a single node failure, it is necessary to modify
the competitive update protocol, to ensure that at least two
nodes have a copy of each page. Thus, there are two issues
that must be dealt with to make the DSM fault tolerant (for
single node failures).

1. Modification of the competitive update protocol to
guarantee two copies of each shared memory page.

2. Some mechanism needs to be incorporated to make
the non-shared data recoverable.

To simplify the discussion, we assume that each page
has the same fixed limit L. To make the DSM recoverable,
we must modify the competitive update protocol, such that
some copy of the page is not invalidated, even if its up-
date counter is equal to the limit L. This is achieved by
designating, for each update, one of the nodes as the “back-
up”. The copy of a page at the back-up node cannot be
invalidated, irrespective of the value of its update-counter.

Maintaining the back-up
When a node A obtains a copy of a page P from some

other node B, node B also sends identifier of the last-
updater of page P . Node A, on receiving the page, sets its
last-updater as well as back-up equal to the last-updater
received from node B.

Contents of a back-up field can change in two different
ways. Let us consider the copy of a page P at a node A.

1. Node A receives an update message for page P from
some other node, sayC: In this case, the back-up field
at node A is set equal to C. The node C is used as
back-up when node A updates other nodes.

2. Node A performs a release and sends update mes-
sages, for page P , to other nodes: When the other
nodes receive these update messages, they acknowl-
edge the update message, and send their update-
counters along with the acknowledgement. Node A
finds the node, say D, whose update-counter is the
smallest (ties broken arbitrarily), and sets back-up
equal to D.

Note that, for a given page, the back-up at different nodes
may be different.

The motivation behind the above procedure is to iden-
tify a node as the back-up only if it has accessed the page
recently (this, in turn, is motivated by the principle of local-
ity). However, it is possible that, if the most recent access to
a page is a read, the node that performed the read may not
be identified as the back-up in the other nodes. This can



1

0

0

1

0

0

0

Memory Access

Last-updater

Back-up: 0

Back-up: 1

Back-up: 2

Update-counter: 0

Update-counter: 1

Update-counter: 2

2R

0

0

0

0

1

0

0

2U2W2L2U2R2L0W0L0U0W0L0W 0U0L1U1W1R1L0U0W0L 0U

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1

1 1

1 1 1 1 1 1 1 1

2 2 2

2 2 2

2

3 3

3

4

1

0

0 0

0

22 2

0

0

00

1

0

1

0

0

10

1 1

0

1

0

0

0

1

0

00

1

0

1

1 1

0

1

3 3

0 2

0

0

0 0

00

1

0

3

0

1

0 0 1 1 0 1

0

12

1

0

3

1

0W

10 0 0 0

0

0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2L 2U

0

0

0

0

1

0

0

0

0

1

0

0

1 1

Figure 1: Update Counter for Recoverable DSM

happen because a read can be performed locally without
other nodes knowing about it.

The modified (recoverable) competitiveupdate protocol
The proposed scheme assumes that programs are data-

race-free[1]. The modified protocol is essentially identical
to the original competitive update protocol with one dif-
ference: A node that is designated as the back-up for an
update does not invalidate the local copy of the page even if
the update-counter becomes equal to limitL or exceeds L.
(Update message sent to the back-up node is tagged by a
special marker.) Any other node, whose update-counter is� L invalidates its local copy of the page. This procedure
ensures that, at any time, at least two copies of a page are
in existence.

The back-up for an update is always a node that has
accessed the page in the recent past. Therefore, from the
locality principle, this node is likely to access the page in
the near future as well. The modified update protocol forces
this node to retain a copy of the page. This protocol may
be viewed as incorporating a “pre-fetch” mechanism. As
the page copy is likely to be used in the near future, the
overhead of updating the copy is often compensated by a
reduction in the number of page faults.

Note that “cost” (e.g., number of messages) of the re-
coverable protocol can be larger than that of the non-
recoverable protocol, only when the non-recoverable proto-
col would result in a page having only one copy. Whenever,
the non-recoverable protocol results in multiple copies of
a page, the recoverable protocol does not result in any ad-
ditional cost. Thus, the difference between the costs of the
recoverable and non-recoverable protocols is greatest when
limit is 1, and reduces as limit becomes larger.

Figure 1 illustrates how the back-up is maintained. For
this example, assume that the limit L is 3. The system is
assumed to contain three nodes, 0, 1 and 2. In the figure,iL and iU denote acquire and release operations.1 Also,iR and iW denote read and write operations performed on
this page by node i. Initially, the page is loaded in the local
memory of two nodes (0 and 1 in our example), and one of
them (node 0) is considered to be the last-updater. Back-up
at nodes 0 and 1 is initialized to 1 and 0, respectively. The
memory access row in Figure 1 presents a total ordering
on the accesses to the page under consideration. The next
three rows present values of the update-counters at the three
nodes at various times, e.g., the update-counter:0 row cor-

1Although we obtained the notation iL and iU by abbreviating i-Lock
and i-Unlock, it should be noted that acquire and release operations in
release consistency are not necessarily equivalent to lock and unlock.

responds to node 0. (The values in column i correspond to
the update-counters after the memory access in column i is
performed.) The next row of the table lists the last-updater
variable at each node (it is identical at all nodes). The last
three rows list the value of the back-up variable for the page
at each node. Note that last-updater and back-up change
only when a release is performed, whereas, update-counter
at a nodeA changes when either (i) nodeA performs a local
access to the node, or (ii) another node performs an update
to the page. A “blank” in the table implies that the cor-
responding node does not have a copy of the page at that
time, and theX in the figure denotes an invalidation.

4.1 Duplicate Copy for Non-Shared Data
When it is necessary to ensure that the faulty node can

be recovered, the non-shared data 2 must also be dupli-
cated. When a node writes shared data and updates other
copies of the data, the non-shared data at the node can be
sent, along with the update message, to any one node. Al-
though no additional messages are required, the size of one
of the messages will be larger. The amount of non-shared
data transferred can be reduced by sending only the mod-
ifications to the local data since the most recent update
performed by the node. This incremental approach makes
recovery more complicated, as the non-shared data of a
node can be scattered at various nodes in the system.

An alternative is to specify for each node (say A), another
node (say B) to which the incremental changes in the non-
shared data are sent, when node A performs an update to
some shared data. While this will simplify recovery, it
may increase the number of messages.

4.2 Recovery
The proposed DSM system is recoverable from all single

node failures (fail-stop) because all shared memory pages
and non-shared memory pages (if necessary) have at least
two copies. The recovery is straightforward. After a single
node failure, the shared memory remains available. If the
faulty node is tobe recovered, then its non-shared data is ob-
tained from other nodes (the non-shared data is duplicated,
as described above). Two issues need further elaboration.� Since failure can occurs at any time, contents of the

copies of the same page may be different (if the fail-
ure occurs while an update is in progress). In this
case, some copies are out-of-date. This problem can
be resolved by searching the most up-to-date copy –
to facilitate this, a version number is attached to each
page to count the number of updates performed to the
page from the beginning of execution. The copy with
the largest version number is the most up-to-date copy
(this is similar to [20]). If a node fails after it has
written to a page, but before it has performed a release
then the modifications made by the node are lost when
the node fails. This is acceptable, as the system state
will still be consistent after the failure. However, if
a node fails after the node sent update messages only
for the part of pages to be updated on a release, the
node may not restart from the previous consistent state
because old version of the updated pages may not ex-
ist. This problem can be solved by new mechanisms.

2The non-shared data includes process status, e.g., contents of stack
and registers.



One possibility is for the updating node to send all up-
dates in one message to another node which will send
update messages to other nodes. By this indirect up-
date mechanism, all pages can be updated atomically
in spite of a single node failure. Another mechanism,
lazy-decoding, postpones decoding of update message
for a page until the first access of the data to be mod-
ified by the decoding. Lazy-decoding allows every
page being updated on a release to have at least one
copy of old version of the page until all updates finish
on the release. (The updates are sent immediately on
a release, but not decoded immediately.)� It is necessary to ensure that, after recovery, each
shared memory page has at least two copies. There-
fore, after failure, if only one node has a copy of a
page, then another copy is created on any other node.
Now we assume that two copies of each page exist.
The recovery algorithm must also ensure that all the
last-updater and back-up fields are correct. We now
illustrate how this can be achieved. Consider a pageP . Two cases are possible.

(a) If the last-updater for page P fails, then any other
node having the page is designated as the last-updater,
and its update-counter is cleared to 0. All relevant
nodes are informed of the new last-updater. These
nodes set their last-updater as well as the back-up
fields to point to the new last-updater. The new last-
updater sets its back-up field to point to any other
node that has a copy of the page.

(b) If some node other then the last-updater is faulty,
then it is possible that the back-up field at the last-
updater may be pointing to the faulty node. It is only
necessary to set the back-up to point to any other node
that has a copy of the page.

5 Performance Evaluation
5.1 Methodology

We measured overhead for maintaining recoverable
shared data 3 by comparing the “cost” for non-recoverable
protocol and recoverable protocol. The “cost” metrics used
here are (i) number of messages, (ii) amount of informa-
tion transferred between the nodes, and (iii) number of page
faults. These results are very preliminary and a more com-
plete evaluation of the proposed scheme will be performed
by means of an implementation.

As a preliminary test, we generated synthetic trace data
by using an event generator. (Possible events are read,
write, acquire, and release.) The event generator can pro-
duce synthetic trace data according to the memory access
behavior which we can define as input. We also modi-
fied the Proteus [3], execution-driven multiprocessor sys-
tem simulator, to produce trace data. The modified Proteus
produces trace data for shared memory operations, read,

3We did not measure the overhead (the number of messages and the
amount of data) for non-shared data. However, no additional messages
are required for non-shared data if the non-shareddata is sent along with
an update message for shared data. As for the amountof data, we believe
that the amount of data transferred due to non-shared data is relatively
small as compared to shared data, in many scientific applications.

write, acquire, and release. The trace data are used as in-
put for our simulator which computed the cost (the number
of page faults, the number of messages, and the amount of
data transferred). We assume that the DSM system consists
of 16 nodes, and that the page size is 1024 bytes.

For the simulation, we assume an implementation simi-
lar to Munin, i.e., based on the dynamic distributed owner-
ship mechanism [5].

5.2 Cost Measurement
On a page fault, the number of messages required varies

because of the dynamic distributed ownership mechanism.
The page request is forwarded along the probOwner link
until a node that has a copy of the page is reached (whenL > 1), or till the page “owner” is reached (when L = 1).
We assume that an acquire and release are implemented as
special procedures using a message passing library – an ac-
quire is assumed to require three messages. On a release,
two messages are required per copy of the modified pages
– one for sending a request and the other for acknowledg-
ment. Some application programs traced using Proteus use
semaphores to achieve synchronization – we appropriately
interpreted these as acquires and releases.

Message size for an update at a release is proportional to
on the number of writes performed since the recent acquire.
Other short messages (e.g., acknowledgement) are assumed
to be 8 bytes.

5.3 Results
Figures 2, 3, and 4 show the result of our experiments

with synthetic trace data. We assumed distributed shared
memory system of 16 nodes. 10,000 memory accesses
(each access reads or writes 8 bytes) for a single page
of 1024 bytes are simulated for three different read ra-
tios (70%, 80%, and 90% uniform distribution)to compute
overhead for the recoverable scheme. The results of the
simulation converge by 10,000 accesses. In the figures,
“non-recoverable:x%” means the cost for the competitive
update protocol without recoverable scheme at x% read ra-
tio and “recoverable:x%” means the cost for the recoverable
competitive update protocol at x% read ratio.

Figure 2 shows that the number of page faults decreases
as the update limit (L) increases because the number of
page copies increases by allowing more updates. Observe
that the number of page faults of recoverable scheme is
less than that of non-recoverable scheme for low limit (L).
Maintaining at least two copies for the recoverable scheme
causes page “pre-fetch” effect which reduces the number
of page faults.

Figure 3 shows that the number of messages increases,
especially at high limit (L), as read ratio decreases. At
low limit (L), the number of messages for the recoverable
scheme is greater than that of non-recoverable scheme, be-
cause recoverable scheme needs extra messages to maintain
at least two copies. However, note that the increase in the
number of messages is not too large.

Figure 4 shows that small amount of data is transferred
between the nodes, per memory access, at high limit (L)
and/or high read ratio. (A page fault needs to copy the
whole page, whereas, the amount of data transfer needed
due to updates is small for the synthetic traces.) For smallL, the recoverable scheme requires less data transfer, as it
reduces the page fault rate.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35

N
um

be
r 

of
 P

ag
e 

F
au

lt
s 

pe
r 

M
em

or
y 

A
cc

es
s

Updates Limit (L)

The Number of Page Faults 

’1. non-recoverable:70%’
’2. recoverable:70%’

’3. non-recoverable:80%’
’4. recoverable:80%’

’5. non-recoverable:90%’
’6. recoverable:90%’

Figure 2: The number of page faults (synthetic trace)

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35

N
um

be
r 

of
 M

es
sa

ge
s 

pe
r 

M
em

or
y 

A
cc

es
s

Updates Limit (L)

The Number of Messages

’1. non-recoverable:70%’
’2. recoverable:70%’

’3. non-recoverable:80%’
’4. recoverable:80%’

’5. non-recoverable:90%’
’6. recoverable:90%’

Figure 3: The number of messages (synthetic trace)

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35A
m

ou
nt

 o
f 

D
at

a 
T

ra
ns

fe
rr

ed
 (

B
yt

es
) 

pe
r 

M
em

or
y 

A
cc

es
s

Updates Limit (L)

The Amount of Data

’1. non-recoverable:70%’
’2. recoverable:70%’

’3. non-recoverable:80%’
’4. recoverable:80%’

’5. non-recoverable:90%’
’6. recoverable:90%’

Figure 4: The amount of data (synthetic trace)

Four application programs (MP3D, Floyd-Warshall,
FFT, and Gauss-Jacobi) were used to evaluate the overhead
of recoverable competitive update protocol. These appli-
cations are simulated on the modified Proteus to produce
trace data, and our protocol simulator is executed with the
trace data to evaluate the overhead. Due to lack of space,
we present the results for only one application in Figure 5
(Note that Figure refmp3d plots total cost over the entire ap-
plication) – the other applications yield similar results [13].
Observe that, in most cases, the recoverable scheme has
a comparable or smaller “cost” than the non-recoverable
protocol.

As noted previously, the difference in the “cost” of the
recoverable protocol and the non-recoverable protocol is
likely to be the greatest when the limit, is small. The simu-
lation results suggest that thecost of the recoverable scheme
is comparable or smaller than that of the non-recoverable
scheme, for all values of the limit.

6 Conclusion and Future Work
This paper presented a scheme to implement a software

DSM that is recoverable in the presence of a single node
failure. Our scheme differs from the previous work in that
the proposed scheme is based on the competitive update
protocol, which combines the advantages of invalidate as
well as traditional update protocols. In addition, our ap-
proach is integrated with the release consistency model for
maintaining memory consistency. In the basic competitive
update protocol, the number of copies of a page varies dy-
namically – in the extreme, only one node may have a copy
of the page or all nodes may have a copy of the page. Our
approach is based on the simple observation that, to make
the DSM recoverable from a single failure, it is adequate to
ensure that each page has at least two copies at all times. To
achieve this we suggest a modification to the basic competi-
tive update protocol. Recovery is simple because an active
back-up copy exists for each page. The proposed scheme
is applicable to other updated-based protocols that incorpo-
rate mechanisms to selectively invalidate some pages. It is
also applicable to generalizations of the competitive update
protocols where the limit may be different for each page,
and vary with time [13, 14].

Preliminary performance evaluation results indicate that
the proposed scheme does not significantly increase the
number or size of messages required by an application.
Further analysis is necessary to fully evaluate the pro-
posed scheme. The proposed recoverable DSM scheme
is presently being implemented on a network of worksta-
tions.

Acknowledgements: We thank the referees for their
detailed comments.

References
[1] S. V. Adve, Designing Memory Consistency Models for

Shared-Memory Multiprocessors, PhD thesis, University of
Wisconsin-Madison, Dec. 1993.

[2] M. Banatre, A. Gefflaut, and C. Morin, “Tolerating node
failures in cache only memory architectures,” Tech. Rep.
853, INRIA, 1994.

[3] E. Brewer and C. Dellarocas, Proteus User Doc., 1992.
[4] L. Brown and J. Wu, “Dynamic snooping in a fault-tolerant

distributed shared memory,” in Symposium on Distributed
Computing Systems, pp. 218–226, 1994.



0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 5 10 15 20 25 30 35

T
ot

al
 N

um
be

r 
of

 P
ag

e 
F

au
lt

s

Update Limit (L)

The Number of Page Faults (MP3D)

’1. non-recoverable’
’2. recoverable’

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

0 5 10 15 20 25 30 35

T
ot

al
 N

um
be

r 
of

 M
es

sa
ge

s

Update Limit (L)

The Number of Messages (MP3D)

’1. non-recoverable’
’2. recoverable’

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

1.1e+08

1.2e+08

1.3e+08

0 5 10 15 20 25 30 35

T
ot

al
 A

m
ou

nt
s 

of
 D

at
a 

(B
yt

es
)

Update Limit (L)

The Amounts of Data (MP3D)

’1. non-recoverable’
’2. recoverable’

Figure 5: Overhead for Recoverable Scheme (MP3D)

[5] J. B. Carter, Efficient Distributed Shared Memory Based
On Multi-Protocol Release Consistency. PhD thesis, Rice
University, Sept. 1993.

[6] T. Fuchi and M. Tokoro, “A mechanism for recoverable
shared virtual memory,” 1994.

[7] H. Grahn, P. Stenstrom, and M. Dubois, “Implementa-
tion and evaluation of update-based cache protocols under
relaxed memory consistency models,” Future Generation
Computer Systems, vol. 11, pp. 247–271, June 1995.

[8] G. Janakiraman and Y. Tamir, “Coordinated checkpointing-
rollback error recovery for distributed shared memory mul-
ticomputer,” in 13th Symp. on Rel. Distr. Syst., 1994.

[9] B. Janssens and W. K. Fuchs, “Relaxing consistency in re-
coverable distributed shared memory,” in Proc. 23rd Int.
Symp. on Fault-Tolerant Computing, pp. 155–163, 1993.

[10] B. Janssens and W. K. Fuchs, “Reducing interprocessor de-
pendencein recoverable distributed shared memory,” in 13th
Symposium on reliable Distributed Systems, Oct. 1994.

[11] A. Karlin et al., “Competitive snoopy caching,” in Proc. of
the 27’th Annual Symposium on Foundations of Computer
Science, pp. 244–254, 1986.

[12] A.-M. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and
I. Puaut, “A recoverable distributed shared memory integrat-
ing coherence and recoverability,” in Proc. 25th Int. Symp.
on Fault-Tolerant Computing, pp. 289–298, 1995.

[13] J.-H. Kim and N. H. Vaidya, “Distributed shared memory:
Recoverable and non-recoverable limited update protocols,”
Tech. Rep. 95-025, Texas A&M Univ., College Stn., 1995.

[14] J.-H. Kim and N. H. Vaidya, “Towards an adaptive dis-
tributed shared memory,” Tech. Rep. 95-037, Texas A&M
University, College Station, 1995.

[15] K. Li and P. Hudak, “Memory coherence in shared virtual
memory systems,” ACM Transactions on ComputerSystems,
vol. 7, pp. 321–359, Nov. 1989.

[16] N. Neves, M. Castro, and P. Guedes, “A checkpointprotocol
for an entry consistent shared memory system,” in Symp. on
Principles of Distr. Comp., pp. 121–129, Aug. 1994.

[17] B. Nitzberg and V. Lo, “Distributed shared memory: A
survey of issues and algorithms,” IEEE Computer, vol. 24,
pp. 52–60, Aug. 1991.

[18] G. Richard and M. Singhal, “Using logging and asyn-
chronous checkpointing to implement recoverable dis-
tributed shared memory,” in 12th Symposium on Reliable
Distributed Systems, 1993.

[19] M. Stumm and S. Zhou, “Algorithms implementing dis-
tributed shared memory,” IEEE Computer, pp. 54–64, May
1990.

[20] M. Stumm and S. Zhou, “Fault tolerant distributed shared
memory algorithms,” in Int. Conf. on Parallel and Distr.
Processing, pp. 719–724, 1990.

[21] O. Theel and B. Fleisch, “Design and analysis of highly
available and scalable coherence protocols for distributed
shared memory systems using stochastic modeling,” in Int.
Conf. on Parallel Procesing, vol. I, Aug. 1995.

[22] K.-L. Wu and W. K. Fuchs, “Recoverable distributed shared
virtual memory: Memory coherenceand storage structures,”
in Int. Symp. on Fault-Tolerant Comp., pp. 520–527, 1989.


