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Abstract—The problem we consider in this paper is to take a single two-dimensional image containing a human figure, locate the joint

positions, and use these to estimate the body configuration and pose in three-dimensional space. The basic approach is to store a

number of exemplar 2D views of the human body in a variety of different configurations and viewpoints with respect to the camera. On

each of these stored views, the locations of the body joints (left elbow, right knee, etc.) are manually marked and labeled for future use.

The input image is then matched to each stored view, using the technique of shape context matching in conjunction with a kinematic

chain-based deformation model. Assuming that there is a stored view sufficiently similar in configuration and pose, the correspondence

process will succeed. The locations of the body joints are then transferred from the exemplar view to the test shape. Given the 2D joint

locations, the 3D body configuration and pose are then estimated using an existing algorithm. We can apply this technique to video by

treating each frame independently—tracking just becomes repeated recognition. We present results on a variety of data sets.

Index Terms—Shape, object recognition, tracking, human body pose estimation.
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1 INTRODUCTION

AS indicated in Fig. 1, the problem we consider in this
paper is to take a single two-dimensional image

containing a human figure, locate the joint positions, and
use these to estimate the body configuration and pose in
three-dimensional space. Variants include the case of multi-
ple cameras viewing the same human, tracking the body
configuration and pose over time from video input, or
analogous problems for other articulated objects such as
hands, animals, or robots. A robust, accurate solution would
facilitate many different practical applications—e.g., see
Table 1 in Gavrila’s survey paper [1]. From the perspective of
computer vision theory, this problem offers an opportunity
to explore a number of different trade-offs—the role of low-
level versus high level cues, static versus dynamic informa-
tion, 2D versus 3D analysis, etc., in a concrete settingwhere it
is relatively easy to quantify success or failure.

In this paper, we consider the most basic version of the
problem—estimating the 3D body configuration based on a
single uncalibrated 2D image. The approachweuse is to store
a number of exemplar 2D views of the human body in a
variety of different configurations and viewpoints with
respect to the camera. On each of these stored views, the
locations of the body joints (left elbow, right knee, etc.) are
manuallymarkedand labeled for futureuse. The test image is
then matched to each stored view, using the shape context
matching technique of Belongie et al. [2]. This technique is
based on representing a shape by a set of sample points from
the external and internal contours of anobject, foundusing an
edge detector. Assuming that there is a stored view

sufficiently similar in configuration and pose, the correspon-
dence process will succeed. The locations of the body joints
are then transferred from the exemplar view to the test shape.
Given the 2D joint locations, the 3D body configuration and
pose are estimated using the algorithm of Taylor [3].

The main contribution of this work is demonstrating the
use of deformable template matching to exemplars as a
means to localize human body joint positions. Having the
context of the whole body, from exemplar templates,
provides a wealth of information for matching. The major
issue that must be addressed with this approach is dealing
with the large number of exemplars needed to match
people in a wide range of poses, viewed from a variety of
camera positions, and wearing different clothing. In our
work, we represent exemplars as a collection of edges
extracted using an edge detector and match based on shape
in order to reduce the effects of variation in appearance due
to clothing. Pose variation presents an immense challenge.
In this work, we do not attempt to estimate joint locations
for people in arbitrary poses, instead restricting ourselves to
settings in which the set of poses is limited (e.g., walking
people or speed skaters). Even in such settings, the number
of exemplars needed can be very large. In this work, we also
provide a method for efficiently retrieving from a large set
of exemplars those which are most similar to a query image,
in order to reduce the computational expense of matching.

The structure of this paper is as follows: We review
previous work in Section 2. In Section 3, we describe the
correspondence process mentioned above. We give an
efficient method for scaling to large sets of exemplars in
Section 4. Section 5 provides details on a parts-based
extension to our keypoint estimation method. We describe
the 3D estimation algorithm in Section 6. We show experi-
mental results in Section 7. Finally, we conclude in Section 8.

2 PREVIOUS WORK

There has been considerable previous work on this problem
[1]. Broadly speaking, it can be categorized into two major
classes. The first set of approaches use a 3D model for

1052 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 7, JULY 2006

. G. Mori is with the School of Computing Science, Simon Fraser University,
Burnaby, BC V5A 1S6 Canada. E-mail: mori@cs.sfu.ca.

. J. Malik is with the Computer Science Division, Department of Electrical
Engineering and Computer Science, University of California at Berkeley,
Berkeley, CA 94720-1776. E-mail: malik@cs.berkeley.edu.

Manuscript received 18 Oct. 2004; revised 3 Oct. 2005; accepted 11 Oct. 2005;
published online 11 May 2006.
Recommended for acceptance by P. Fua.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0564-1004.

0162-8828/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society



estimating the positions of articulated objects. Pioneering
work was done by O’Rourke and Badler [4], Hogg [5], and
Yamamoto and Koshikawa [6]. Rehg and Kanade [7] track
very high DOF articulated objects such as hands. Bregler and
Malik [8] use optical flow measurements from a video
sequence to track joint angles of a 3D model of a human,
using the product of exponentials representation for the
kinematic chain. Kakadiaris and Metaxas [9] use multiple
cameras andmatch occluding contourswith projections from
a deformable 3D model. Gavrila and Davis [10] is another
3D model-based tracking approach, as is the work of Rohr
[11] for tracking walking pedestrians. Sidenbladh and Black
[12] presented a learning approach for developing the edge
cues typically used when matching the 3D models projected
into the image plane. The method first learns the appearance
of edge cues on human figures from a collection of training
imagesand thenuses these learnedstatistics to trackpeople in
video sequences. Attempts have also been made at addres-
sing the high-dimensional, multimodal nature of the search
space for a 3D human body model. Deutscher et al. [13] have
tracked people performing varied and atypical actions using
improvements on a particle filter. Choo and Fleet [14] use a
Hybrid Monte Carlo (HMC) filter, which at each time step
runs a collection of Markov Chain Monte Carlo (MCMC)
simulations initialized using a particle filtering approach.
Sminchisescu and Triggs [15] use a modified MCMC
algorithm to explore the multiple local minima inherent in
fitting a 3D model to given 2D image positions of joints. Lee
and Cohen [16] presented impressive results on automatic
pose estimation from a single image. Their method used
proposal maps, based on face and skin detection, to guide a
MCMC sampler to promising regions of the image when
fitting a 3D body model.

The second broad class of approaches does not explicitly
workwitha3Dmodel, rather 2Dmodels traineddirectly from
example images are used. There are several variations on this
theme. Baumberg and Hogg [17] use active shape models to
track pedestrians. Wren et al. [18] track people as a set of
colored blobs. Morris and Rehg [19] describe a 2D scaled
prismatic model for human body registration. Ioffe and
Forsyth [20]perform low-levelprocessing toobtain candidate
body parts and then use a mixture of trees to infer likely
configurations. Ramanan and Forsyth [21] use similar low-
level processing, but add a constraint of temporal appearance
consistency to track people and animals in video sequences.
Song et al. [22] also perform inference on a tree model, using
extracted point features along with motion information.
Brand [23] learns a probability distribution over pose and
velocity configurationsof themovingbodyanduses it to infer
paths in this space. Toyama and Blake [24] use 2D exemplars,

scored by comparing edges with Chamfer matching, to track
people in video sequences. Most related to our method is the
work of Sullivan and Carlsson [25], who use order structure to
compare exemplar shapes with test images. This approach
was developed at the same time as our initial work using
exemplars [26].

Other approaches rely on background subtraction to
extract a silhouette of the human figure. A mapping from
silhouettes to 3D body poses is learned from training
images, and applied to the extracted silhouettes to recover
pose. Rosales and Sclaroff [27] describe the Specialized
Mappings Architecture (SMA), which incorporates the
inverse 3D pose to silhouette mapping for performing
inference. Grauman et al. [28] learn silhouette contour
models from multiple cameras using a large training set
obtained by rendering synthetic human models in a variety
of poses. Haritaoglu et al. [29] first estimate approximate
posture of the human figure by matching to a set of
prototypes. Joint positions are then localized by finding
extrema and curvature maxima on the silhouette boundary.

Our method first localizes joint positions in 2D and then
lifts them to 3D using the geometric method of Taylor [3].
There are a variety of alternative approaches to this lifting
problem. Lee and Chen [30], [31] preserve the ambiguity
regarding foreshortening (closer endpoint of each link) in an
interpretation tree and use various constraints to prune
impossible configurations. Attwood et al. [32] use a similar
formulation and evaluate the likelihood of interpretations
based on joint angle probabilities for known posture types.
Ambrósio et al. [33] describe a photogrammetric approach
that enforces temporal smoothness to resolve the ambiguity
due to foreshortening. Barrón and Kakadiaris [34] simulta-
neously estimate 3D pose and anthropometry (body para-
meters) from 2D joint positions in a constrained optimization
method.

3 ESTIMATION METHOD

In this section, we provide the details of the configuration
estimation method proposed above. We first obtain a set of
boundary sample points from the image. Next, we estimate
the 2D image positions of 14 keypoints (wrists, elbows,
shoulders, hips, knees, ankles, head, and waist) on the
image by deformable matching to a set of stored exemplars
that have hand-labeled keypoint locations. These estimated
keypoints can then be used to construct an estimate of the
3D body configuration in the test image.

3.1 Deformable Matching Using Shape Contexts

Given an exemplar (with labeled keypoints) and a test
image, we cast the problem of keypoint estimation in the
test image as one of deformable matching. We attempt to
deform the exemplar (along with its keypoints) into the
shape of the test image. Along with the deformation, we
compute a matching score to measure similarity between
the deformed exemplar and the test image.

In our approach, a shape is represented by a discrete set
of n points P ¼ fp1; . . . ; png, pi 2 IR2 sampled from the
internal and external contours on the shape.

We first perform edge detection on the image, using the
boundary detector of Martin et al. [35], to obtain a set of edge
pixels on the contours of the body. We then sample some
number of points (300-1,000 in our experiments) from these
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Fig. 1. The goal of this work. (a) Input image. (b) Automatically extracted
keypoints. (c) Three-dimensional rendering of estimated body config-
uration. In this paper, we present a method to go from (a) to (b) to (c).



edge pixels to use as the sample points for the body.Note that
this process will give us not only external, but also internal
contoursof thebodyshape.The internal contoursareessential
for estimating configurations of self-occluding bodies.

The deformable matching process consists of three steps.
Given sample points on the exemplar and test image:

1. Obtain correspondences between exemplar and test
image sample points.

2. Estimate deformation of exemplar.
3. Apply deformation to exemplar sample points.

We perform a small number (maximum of four in
experiments) of iterations of this process to match an
exemplar to a test image. Fig. 2 illustrates this process.

3.1.1 Sample Point Correspondences

In the correspondence phase, for each point pi on a given
shape, we want to find the “best” matching point qj on
another shape. This is a correspondence problem similar to
that in stereopsis. Experience there suggests that matching
is easier if one uses a rich local descriptor. Rich descriptors
reduce the ambiguity in matching.

The shape context was introduced by Belongie et al. [2] to
play such a role in shape matching. In later work [36], we

extended the shape context descriptor by encoding more
descriptive information than point counts in the histogram
bins. To each edge point qj, we attach a unit length tangent
vector tj that is the direction of the edge at qj. In each bin,
we sum the tangent vectors for all points falling in the bin.
The descriptor for a point pi is the histogram ĥhi:

ĥhk
i ¼

X

qj2Q

tj;where Q ¼ qj 6¼ pi; ðqj � piÞ 2 binðkÞ
� �

: ð1Þ

Each histogram bin ĥhk
i now holds a single vector in the

direction of the dominant orientation of edges falling in the
spatial area binðkÞ. When comparing the descriptors for two
points, we convert this d-bin histogram to a 2D-dimensional

vector v̂vi, normalize these vectors, and compare them using
the L2 norm.

v̂vi ¼ hĥh1;x
i ; ĥh1;y

i ; ĥh2;x
i ; ĥh2;y

i ; . . . ; ĥhd;x
i ; ĥhd;y

i i; ð2Þ

where ĥhj;x
i and ĥhj;y

i are the x and y components of ĥhj
i ,

respectively.
We call these extended descriptors generalized shape

contexts. Examples of these generalized shape contexts are

shown in Fig. 3. Note that generalized shape contexts reduce

to the original shape contexts if all tangent angles are clamped

tozero.As in theoriginal shape contexts, thesedescriptors are

not scale invariant. In the absence of substantial background

clutter, scale invariance can be achieved by setting the bin

radii as a function of average interpoint distances. Some

amount of rotational invariance is obtained via the binning

structure, as after a small rotation sample points will still fall

in the same bins. Full rotational invariance can be obtained by

fixing the orientation of the histogramswith respect to a local

edge tangent estimate. In this work, we do not use these

strategies for full scale and rotational invariance. This has the

drawback of possibly requiring more exemplars. However,

there are definite advantages. For example, people tend to

appear in upright poses. By not having a descriptor with full

rotational invariance, we are very unlikely to confuse sample

points on the feet with those on the head.
We desire a correspondence between sample points on

the two shapes that enforces the uniqueness of matches.

This leads us to formulate our matching of a test image to

an exemplar human figure as an assignment problem (also

known as the weighted bipartite matching problem) [37].

We find an optimal assignment between sample points on

the test body and those on the exemplar.
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Fig. 2. Iterations of deformable matching. (a) Shows sample points from
the two figures to be matched. The bottom figure (exemplar) in (a) is
deformed into the shape of the top figure (test image). (b) and (c) Show
successive iterations of deformable matching. The top row shows the
correspondences obtained through the shape context matching. The
bottom row shows the deformed exemplar figure at each step. In
particular, the right arm and left leg of the exemplar are deformed into
alignment with the test image.

Fig. 3. Examples of generalized shape contexts. (a) Input image. (b) Sampled edge point with tangents. (c) and (d) Generalized shape contexts for
different points on the shape.



To this end, we construct a bipartite graph. The nodes on
one side represent sample points from the test image, on the
other side the sample points on the exemplar. Edge weights
between nodes in this bipartite graph represent the costs of
matching sample points. Similar sample points will have a
lowmatching cost, dissimilar ones will have a highmatching
cost. �-cost outlier nodes are added to the graph to account for
occluded points and noise—sample points missing from a
shape can be assigned to be outliers for some small cost. We
use an assignment problem solver to find the optimal
matching between the sample points of the two bodies.

Note that the output of more specific filters, such as face
or hand detectors, could easily be incorporated into this
framework. The matching cost between sample points can
be measured in many ways.

3.1.2 Deformation Model

Belongie et al. [2] used thin plate splines as a deformation
model. However, it is not appropriate here, as human figures
deform in a more structured manner. We use a 2D kinematic
chain as our deformation model. The 2D kinematic chain has
nine segments: a torso (containing head, waist, hips, and
shoulders), upper and lower arms (linking elbows to
shoulders, and wrists to elbows), and upper and lower legs
(linking knees to hips, and ankles to knees). Fig. 4a depicts the
kinematic chain deformationmodel. Our deformationmodel
allows translation of the torso and 2D rotation of the limbs
around the shoulders, elbows, hips, and knees. This is a
simple representation for deformations of a figure in 2D. It
only allows in-plane rotations, ignoring the effects of
perspective projection as well as out of plane rotations.
However, this deformation model is sufficient to allow for
small deformations of an exemplar.

In order to estimate a deformation or deform a body’s
sample points, we must know to which kinematic chain
segment each sample point belongs. On the exemplars, we
have hand-labeled keypoints; we use these to automatically
assign the hundreds of sample points to segments. Sample
points are assigned to segments by finding minimum
distance to bone-line, the line segment connecting the
keypoints at the segment ends, for arm and leg segments.
For the torso, line segments connecting the shoulders and
hips are used. A sample point is assigned to the segment for
which this distance is smallest.

Since we know the segment SðpiÞ that each exemplar
sample point pi belongs to, given correspondences

fðpi; pi
0Þg, we can estimate a deformation D of the points

fpig. Our deformation process starts at the torso. We find
the least squares best translation for the sample points on
the torso.

Dt ¼ T̂T ¼ argminT

X

pi;SðpiÞ¼torso

kT ðpiÞ � pi
0k2; ð3Þ

T̂T ¼
1

N

X

pi:SðpiÞ¼torso

ðpi
0 � piÞ;where N ¼ #fpi : SðpiÞ ¼ torsog:

ð4Þ

Subsequent segments along the kinematic chain have
rotational joints. We again obtain the least squares best
estimates, this time for the rotations of these joints. Given
previous deformation D̂D along the chain up to this segment,
weestimateDj as thebest rotation around the joint location cj:

Pj ¼ fpi : SðpiÞ ¼ jg; ð5Þ

Dj ¼ R�̂�;cj
¼ argminR�;cj

X

pi2Pj

kR�;cjðD̂D � piÞ � pi
0k2; ð6Þ

�̂� ¼ argmin�

X

pi2Pj

ðD̂D � pi � cjÞ
TRT

� ðcj � p0iÞ; ð7Þ

�̂� ¼ arctan

P

i qixq
0
iy �

P

i qiyq
0
ix

P

i qixq
0
ix þ

P

i qiyq
0
iy

; ð8Þ

where qi ¼ D̂D � pi � cj and q0i ¼ p0i � cj: ð9Þ

Steps 2 and 3 in our deformable matching framework are
performed in this manner. We estimate deformations for
each segment of our kinematic chain model and apply them
to the sample points belonging to each segment.

We have now provided a method for estimating a set of
keypoints using a single exemplar, along with an associated
score (the sumof shapecontextmatching costs for theoptimal
assignment). The simplest method for choosing the best
keypoint configuration in a test image is to find the exemplar
with the best score and use the keypoints predicted using its
deformation as the estimated configuration. However, with
this simplemethod, there are concerns involving the number
of exemplars needed for a general matching framework. In
the following sections,wewill address this by first describing
an efficient method for scaling to large sets of exemplars and
then developing a parts-basedmethod for combiningmatch-
ing results from multiple exemplars.
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Fig. 4. The deformation model. (a) Underlying kinematic chain. (b) Automatic assignment of sample points to kinematic chain segments on an
exemplar. Each different symbol denotes a different chain segment. (c) Sample points deformed using the kinematic chain.



4 SCALING TO LARGE SETS OF EXEMPLARS

The deformable matching process described above is
computationally expensive. If we have a large set of
exemplars, which will be necessary in order to match
people of different body shapes in varying poses, perform-
ing an exhaustive comparison to every exemplar is not
feasible. Instead, we use an efficient pruning algorithm to
reduce the full set of exemplars to a shortlist of promising
candidates. Only this small set of candidates will be
compared to the test image using the expensive deformable
matching process.

In particular, we use the representative shape contexts
pruning algorithm [38] to construct this shortlist of candidate
exemplars. This method relies on the descriptive power of
just a few shape contexts. Given a pair of images of very
different human figures, such as a tall person walking and a
short person jogging, none of the shape contexts from the
walking person will have good matches on the jogging
one—it is immediately obvious that they are different
shapes. The representative shape contexts pruning algo-
rithm uses this intuition to efficiently construct a shortlist of
candidate matches.

In concrete terms, the pruning process proceeds in the
following manner. For each of the exemplar human figure
shapes Si, we precompute a large number s (about 800) of
shape contexts fSCj

i : j ¼ 1; 2; . . . ; sg. But for the query
human figure shape Sq, we only compute a small number r
(r � 5� 10 in experiments) of representative shape contexts
(RSCs).Tocompute theserRSCs,werandomlyselectrsample
points from the shape via a rejection sampling method that
spreads thepointsover theentire shape.Weuseall the sample

points on the shape to fill the histogram bins for the shape
contexts corresponding to these r points. To compute the
distance between a query shape and an exemplar shape, we
find the best matches for each of the r RSCs.

The distance between shapes Sq and Si is then:

dSðSq; SiÞ ¼
1

r

X

r

u¼1

dGSCðSC
u
q ; SC

mðuÞ
i Þ

Nu
; ð10Þ

where mðuÞ ¼ argminjdGSCðSC
u
q ; SC

j
i Þ: ð11Þ

Nu is a normalizing factor that measures how discrimina-
tive the representative shape context SCu

q is:

Nu ¼
1

jSSj

X

Si2SS

dGSCðSC
u
q ; SC

mðuÞ
i Þ; ð12Þ

where SS is the set of all shapes. We determine the shortlist
by sorting these distances. Fig. 5 shows some example
shortlists. Note that this pruning method, as presented,
assumes that the human figure is the only object in the
query image, as will be the case in our experiments.
However, it is possible to run this pruning method in
cluttered images [38].

5 USING PART EXEMPLARS

Given a set of exemplars, we can choose to match either
entire exemplars or parts, such as limbs, to a test image. The
advantage of a parts-based approach that matches limbs is
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Fig. 5. Example shortlists. (a) Shows query image. (b), (c), (d), (e), (f), (g), (h), (i), (j), and (k) Show shortlist of candidate matches from representative

shape context pruning. Exemplars in poses similar to the human figure in the query image are retrieved.



that of compositionality, which saves us from an exponen-
tial explosion in the required number of exemplars.
Consider the case of a person walking while holding a
briefcase in one hand. If we already have exemplars for a
walking motion and a single exemplar for holding an object
in the hand, we can combine these exemplars to produce
correct matching results. However, if we were forced to use
entire exemplars, we would require a different “holding
object and walking” exemplar for each portion of the walk
cycle. Using part exemplars prevents the total number of
exemplars from growing to an unwieldy size. As long as we
can ensure that the composition of part exemplars yields an
anatomically correct configuration, we will benefit from this
reduced number of exemplars.

The matching process is identical to that presented in the
preceding section. For each exemplar, we deform it to the
shape of the test image. However, instead of assigning a
total score for an exemplar, we give a separate score for
each part on the exemplar. This is done by summing the
shape context matching costs for sample points from each
part. In our experiments (Fig. 8), we use six “limbs” as our
parts: arms (consisting of shoulder, elbow, and wrist
keypoints) and legs (hip, knee, and ankle), along with
separate head and waist parts.

WithN exemplars we haveN estimates for the location of
each of the six limbs. Each of these N estimates is obtained
using the deformable matching process described in the
previous section.Wewill denoteby lji the jth limbobtainedby
matching to the ith exemplar, and its shape context matching
score (obtained from the deformable matching process) to be
Lj
i .Wenowcombine these individualmatching results to find

the “best” combinationof these estimates. It is not sufficient to
simply choose each limb independently as the one with the
best score. There would be nothing to prevent us from
violating underlying anatomical constraints. For example,
the left leg could be found hovering across the image disjoint
from the rest of the body.Weneed to enforce the consistency of
the final configuration.

Consider again the case of using part exemplars to match
the figure of a person walking while holding a briefcase.
Given a match for the arm grasping the briefcase and
matches for the rest of the body, we know that there are
constraints on the distance between the shoulder of the
grasping arm and the rest of the body. Motivated by this,
the measure of consistency we use is the 2D image distance
between the bases (shoulder for the arms, hip for the legs)
of limbs. We form a tree structure by connecting the arms
and the waist to the head and the legs to the waist. For each
link in this tree, we compute the N2 2D image distances
between all pairs of bases of limbs obtained by matching
with the N different exemplars. We now make use of the
fact that each whole exemplar on its own is consistent.
Consider a pair of limbs ðlui ; l

v
jÞ—limb u from exemplar i

and limb v from exemplar j, with ðu; vÞ being a link in the
tree, such as left hip—waist. Using the limbs from these two
different exemplars together is plausible if the distances
between their bases is comparable to that of each of the
whole exemplars. We compare the distance duvij between the
bases bui and bvj of these limbs with the two distances
obtained when taking limbs u and v to be both from
exemplar i or both from exemplar j. We define the
consistency cost Cuv

ij of using this pair of limbs ðlui ; l
v
jÞ

together in matching a test image to be a function of the
average of the two differences, scaled by a parameter �:

duvij ¼ kbui � bvjk; ð13Þ

Cuv
ij ¼ 1� exp �

jduvij � duvii j þ jduvij � duvjj j

2�

� �

: ð14Þ

Note that the consistency cost Cuv
ii for using limbs from

the same exemplar across a tree link is zero. As the
configuration begins to deviate from the consistent
exemplars, Cuv

ij increases. We define the total cost SðxÞ
of a configuration x ¼ ðx1; x2; . . . ; x6Þ 2 f1; 2; . . . ; Ng6 as the
weighted sum of consistency scores and shape context
limb scores Lj

xj :

SðxÞ ¼ ð1� wcÞ
X

6

j¼1

Lj
xj þ wc

X

links:ði;jÞ

Cij
xixj : ð15Þ

The relative importance between quality of individual scores
and consistency costs is determined by wc. Both wc and �
(defined above) were determinedmanually. Note that, when
usingpart exemplars, shape contexts are still computedusing
sample points fromwhole exemplars. In our experiments,we
did not find the use of shape context limb scores from whole
exemplars to be problematic, possibly due to the coarse
binning structure of the shape contexts.

There are N6 possible combinations of limbs from the
N exemplars. However, we can find the optimal configura-
tion inOðN2Þ time using a dynamic programming algorithm
along the tree structure.

Moreover, an extension to our algorithm can produce the
top K matches for a given test image. Preserving the
ambiguity in this form, instead of making an instant choice,
is particularly advantageous for tracking applications, where
temporal consistency can be used as an additional filter.

6 ESTIMATING 3D CONFIGURATION

We use Taylor’s method [3] to estimate the 3D configuration
of a body given the keypoint position estimates. Taylor’s
method works on a single 2D image, taken with an
uncalibrated camera.

It assumes that we know:

1. the image coordinates of keypoints ðu; vÞ,
2. the relative lengths l of body segments connecting

these keypoints,
3. a labeling of “closer endpoint” for each of these body

segments, and
4. that we are using a scaled orthographic projection

model for the camera.

In our work, the image coordinates of keypoints are
obtained via the deformable matching process. The “closer
endpoint” labels are supplied on the exemplars and auto-
matically transferred to an input image after the matching
process. The relative lengths of body segments are fixed in
advance, but could also be transferred from exemplars.

We use the same 3D kinematic model defined over
keypoints as that in Taylor’s work.

We can solve for the 3D configuration of the body
ðXi; Yi; ZiÞ : i 2 keypointsf g up to some ambiguity in scale s.
The method considers the foreshortening of each body
segment to construct the estimate of body configuration.
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For each pair of body segment endpoints, we have the

following equations:

l2 ¼ ðX1 �X2Þ
2 þ ðY1 � Y2Þ

2 þ ðZ1 � Z2Þ
2; ð16Þ

ðu1 � u2Þ ¼ sðX1 �X2Þ; ð17Þ

ðv1 � v2Þ ¼ sðY1 � Y2Þ; ð18Þ

dZ ¼ ðZ1 � Z2Þ; ð19Þ

¼)dZ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � ððu1 � u2Þ
2 þ ðv1 � v2Þ

2Þ=s2
q

: ð20Þ

To estimate the configuration of a body, we first fix one
keypoint as the reference point and then compute the
positions of the others with respect to the reference point.
Since we are using a scaled orthographic projection model,
the X and Y coordinates are known up to the scale s. All
that remains is to compute relative depths of endpoints dZ.
We compute the amount of foreshortening and use the user-
supplied “closer endpoint” labels from the closest matching
exemplar to solve for the relative depths.

Moreover, Taylor notes that the minimum scale smin can

be estimated from the fact that dZ cannot be complex.

s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu1 � u2Þ
2 þ ðv1 � v2Þ

2
q

l
: ð21Þ

This minimum value is a good estimate for the scale

since one of the body segments is often perpendicular to the

viewing direction.

7 EXPERIMENTS

We demonstrate results of our method applied to three
domains—video sequences ofwalking people from theCMU
MoBo Database, a speed skater, and a running cockroach. In
all of these video sequences, each frame is processed

independently—no dynamics are used and no temporal
consistency is enforced.

Each of these experiments presents a challenge in terms
of variation in pose within a restricted domain. In the case
of the MoBo Database, substantial variation in clothing and
body shape are also present. We do not address the
problem of background clutter. In each of the data sets,
either a simple background exists or background subtrac-
tion is used, so that the majority of extracted edges belong
to the human figure in the image.

7.1 CMU MoBo Database

The first set of experiments we performed used images from
the CMU MoBo Database [39]. This database consists of
video sequences of number of subjects, performing different
types of walkingmotions on a treadmill, viewed from a set of
stationary cameras. We selected the first 10 subjects
(numbers 04002-04071), 30 frames (frames numbered 101-
130) from the “fastwalk” sequence for each subject, and a
camera view perpendicular to the direction of the subject’s
walk (vr03_7). Marking of exemplar joint locations, in
addition to “closer endpoint” labels, was performed manu-
ally on this collection of 300 frames. Background subtraction
was used to remove most of the clutter edges found by the
edge detector.

We used this data set to study the ability of our method to
handle variations in body shape and clothing. A set of
10 experiments was conducted in which each subject was
usedonce as the query against a set of exemplars consisting of
the images of the remaining nine subjects. For each query
image, this set of 270 exemplars was pruned to a shortlist of
length 10 using representative shape contexts. Deformable
matching to localize body joints is only performed using this
shortlist. In our unoptimized MATLAB implementation,
deformablematching betweenaquery andan exemplar takes
20-30 seconds on a 2 GHz AMD Opteron processor. The
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Fig. 6. Results on MoBo data set. The top row shows input image with recovered joint positions. The middle row shows best matching exemplar,

from which joint positions were derived. The bottom row shows 3D reconstruction from different viewpoint. Only joint positions marked as

unoccluded on the exemplar are transferred to the input image. Joint positions are marked as red dots, black lines connect unoccluded joints

adjacent in the body model. Note that background subtraction is performed to remove clutter in this data set.



representative shape contexts pruning takes a fraction of a
second and reduces overall computation time substantially.

Note that on this data set keypoints on the subject’s right
arm and leg are often occluded and are labeled as such.
Limbs with occluded joints are not assigned edge points in
the deformable matching and, instead, inherit the deforma-
tion of limbs further up the kinematic chain. Occluded
joints from an exemplar are not transferred onto a query
image and are omitted from the 3D reconstruction process.

Fig. 6 shows sample results of 2D body joint localization
and 3D reconstruction on the CMU MoBo data set. The
same body parameters (lengths of body segments) are used
in all 3D reconstructions. With additional manual labeling,
these body parameters could be supplied for each exemplar
and transferred onto the query image to obtain more
accurate reconstructions.

More results of 2D joint localization are shown in Fig. 7.
Given good edges, particularly on the subject’s arms, the
deformable matching process performs well. However, in
cases such as the third subject in Fig. 7, the edge detector
has difficulty due to clothing. Since the resulting edges are
substantially different from those of other subjects, the joint
localization process fails.

Fig. 8 shows a comparison between the parts-based
dynamic programming approach and single exemplar
matching. The parts-based approach is able to improve
the localization of joints by combining limbs from different
exemplars. The main difficulty encountered with this
method is in the reuse of edge pixels. A major source of
error is matching the left and right legs of two exemplars to
the same edge pixels in the query image. This reuse is a
fundamental problem with tree models.
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Fig. 7. Results on MoBo data set. Each pair of rows shows input images with recovered joint positions above best matching exemplars. Only joint

positions marked as unoccluded on the exemplar are transferred to the input image. Note that background subtraction is performed to remove clutter

in this data set.



7.2 Speed Skating

Wealsoappliedourmethod to a sequenceof video framesof a
speed skater.Wechose five frames foruse as exemplars, upon
which we hand-labeled keypoint locations. We then applied
our method for configuration estimation to a sequence of
20 frames. Results are shown in Fig. 9.

Difficulties are encountered as the skater’s arm crosses in
front of her body. More exemplars would likely be
necessary at these points in the sequence where the relative
ordering of edges changes (i.e., furthest left edge is now the
edge of thigh instead of the edge of the arm).

7.3 Cockroach Video Sequence

The final data set consisted of 300 frames from a video of a
cockroach running on a transparent treadmill apparatus,
viewed frombelow.Thesedatawere collectedbybiologists at
UCBerkeleywhoarestudying theirmovements.Theresearch
that they are conducting requires the extraction of 3D joint
angle tracks for many hours of footage. The current solution
to this tracking problem is manual labor. In each frame of
each sequence, a person manually marks the 2D locations of

each of the cockroach’s joints. 3D locations are typically
obtained using stereo from a second, calibrated camera.

Such a setting is ideal for an exemplar-based approach.
Even if every 10th frame from a sequence needs to be
manually marked and used as an exemplar, a huge gain in
efficiency could be made.

As a preliminary attempt at tackling this problem, we
applied the same techniques that we developed for detecting
human figures to this problem of detecting cockroaches. The
method and parameters used were identical, aside from
addition of two extra limbs to our model.

We chose 41 frames from the middle 200 frames (every
fifth frame) as exemplars to track the remainder of the
sequence. Again, each frame was processed independently
to show the efficacy of our exemplar-based method. Of
course, temporal consistency should be incorporated in
developing a final system for tracking.

Fig. 10 shows some results for tracking using the parts-
based method. Results are shown for the first 24 frames,
outside of the range of the exemplars, which were selected
from frames 50 through 250.
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Fig. 8. Comparison between single exemplar and dynamic programming. The top row shows results obtained matching to a single exemplar and the

bottom row uses dynamic programming to combine limbs from multiple exemplars. The third column shows an example of reuse of edge pixels to

match left and right legs at same location.

Fig. 9. Results on speed skater sequence. Frames 6-8, 10-12, and 14-16 are shown. Exemplars for the sequence are frames 5, 9, 13, and 17.



8 CONCLUSION

The problem of recovering human body configurations in a

general setting is arguably the most difficult recognition

problem in computervision. Bynomeansdoweclaim tohave

solved it here; much work still remains to be done. In this

paper, we have presented a simple, yet apparently effective,

approach to estimating human body configurations in 3D.

Ourmethodmatchesusing2Dexemplars, estimates keypoint

locations, and then uses these keypoints in a model-based

algorithm for determining the 3D body configuration.
We have shown that using full-body exemplars provides

useful context for the task of localizing joint positions.

Detecting hands, elbows, or feet in isolation is a difficult

problem. A hand is not a hand unless it is connected to an

elbow which is connected to a shoulder. Using exemplars

captures this type of long-range contextual information.

Future work could incorporate additional attributes such as

locationsof labeled features suchas facesorhands in the same

framework.
However, there is definitely a price to be paid for using

exemplars in this fashion.Thenumberofexemplarsneededto

match people in awide range of poses, viewed from a variety

of camera positions, is likely to be unwieldy. Recent work by

Shakhnarovich et al. [40] has attempted to address this

problemof scaling to a large set of exemplars byusing locality

sensitive hashing to quickly retrieve matching exemplars.
The opposite approach to exemplars of assembling

human figures from a collection of low-level parts (e.g.,

[20], [21], [22], [41]) holds promise in terms of scalability,

but, as noted above, lacks the context needed to reliably

detect these low-level parts. We believe that combining

these two approaches in a sensible manner is an important

topic for future work.
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